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Abstract

We consider the asymptotic variance of the departure counting process D(t) of the GI/G/1
queue; D(t) denotes the number of departures up to time t . We focus on the case
where the system load � equals 1, and prove that the asymptotic variance rate satisfies
limt→∞ var D(t)/t = λ(1 − 2/π)(c2

a + c2
s ), where λ is the arrival rate, and c2

a and c2
s

are squared coefficients of variation of the interarrival and service times, respectively.
As a consequence, the departures variability has a remarkable singularity in the case in
which � equals 1, in line with the BRAVO (balancing reduces asymptotic variance of
outputs) effect which was previously encountered in finite-capacity birth–death queues.
Under certain technical conditions, our result generalizes to multiserver queues, as well
as to queues with more general arrival and service patterns. For the M/M/1 queue, we
present an explicit expression of the variance of D(t) for any t .
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1. Introduction

In the study of queueing systems, the analysis of departure processes has played an important
role. Following Burke’s theorem [5], which states that departures of a stationary M/M/1
queue form a Poisson process, many papers have dealt with properties of interdeparture times,
departure counting processes, and approximations. A classic survey is by Daley [8], while
other useful references in this area are [9] and [10, Chapter VII].

A key object in the analysis of departure processes is the variance of the number of departures
between time 0 and t , in the sequel denoted by D(t); see, e.g. [7]. From an application point
of view, insight into var D(t) is of crucial importance in the performance analysis of supply
chain and manufacturing networks; several recent studies have investigated approximations for
departure processes in complex queueing systems; see, e.g. [20] and the references therein.
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Related research deals with decoupling queueing networks into subsystems where the output
of one or several queues is fed as an input to other queues; see, e.g. [24]. In such cases, it is of
crucial importance to understand the structure of var D(t).

1.1. Main result

In this paper we contribute to the analysis of var D(t) by considering the critically loaded
GI/G/1 queue. This critically loaded regime, in which the mean interarrival time equals the
mean service time, is relevant from a practical standpoint (as in many real-life situations queues
are saturated or close to saturation). Moreover, it is mathematically interesting since it leads
to counterintuitive results in line with the BRAVO (balancing reduces asymptotic variance of
outputs) effect observed previously in finite-capacity birth–death queues [17]; see also [16].

We now describe the contribution of our work and its relation to BRAVO in more detail. We
let ζA represent a generic interarrival time and ζS represent a generic service time. We denote
the system load by � := λ/µ, with λ := 1/ E ζA and µ := 1/ E ζS , and we let the squared
coefficients of variations (ratio of variance and square of the mean) of ζA and ζS be c2

a and c2
s ,

respectively. We study the asymptotic variance of the departure process, defined as

σ := lim
t→∞

var D(t)

t
,

when the queue is critically loaded, that is, � = 1. Under suitable regularity conditions, it is
not hard to prove that

m := lim
t→∞

E D(t)

t
= min{λ, µ},

whereas σ = λc2
a for � < 1 and σ = µc2

s for � > 1. However, there is evidently no explicit
expression for σ in the case � = 1 in the literature. We show that

σ = λ

(
1 − 2

π

)
(c2

a + c2
s ), � = 1. (1.1)

It thus follows that the variability function v(�) := σ/m = limt→∞ var D(t)/E D(t) has a
singular point at � = 1, which can be regarded as a manifestation of the BRAVO phenomenon.
More specifically, for � �= 1, v(�) is essentially determined by either the arrival or the service
process; for � = 1, v(�) is determined by both the arrival and service processes. Consider, for
instance, the M/M/1 queue; then v(�) = 1 for � �= 1, but it is reduced to 2(1 − 2/π) ≈ 0.72
at � = 1.

In addition to the GI/G/1, (1.1) is a fundamental quantity which appears in a variety of
critically loaded systems. We show that it holds for the GI/G/s queue (with s ∈ N servers),
and generalizes to multichannel, multiserver queues with more general (nonrenewal) arrival
and service patterns (see Theorems 6.1 and 6.2). We also demonstrate numerically that, when
ρ ≈ 1 (but is not necessarily equal to 1), the variance for finite t approximately follows (1.1);
see Figure 1 in Section 5. This numerical experiment illustrates that the BRAVO phenomenon
may also be observed in practice in systems that are nearly critically loaded.

Our starting point for obtaining (1.1) is a diffusion limit presented in [12, Section 4], where
it was shown that, for critically loaded queues, the sequence of processes

D̂n(t) = D(nt) − λnt√
n

, n = 1, 2, . . . ,
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converges weakly to
D̂(t) = inf

0≤s≤t
{c2

aB1(s) + c2
s B2(t − s)},

where B1(·) and B2(·) are independent standard Brownian motions. It then turns out that
σ = λ var D̂(1), given suitable uniform integrability (UI) conditions.

1.2. Auxiliary technical results

On route to obtaining (1.1), we derive some important auxiliary results which are of inde-
pendent interest. We first identify the distribution of D̂(1) (which, for brevity, we denote simply
by D̂) and show that var D̂ = (1 − 2/π)(c2

a + c2
s ).

We then continue to attack the required UI conditions. This is often a challenging task
in applied probability. We remind the reader that a collection of random variables {Zt } is
uniformly integrable if

lim
M→∞

(
sup

t
E |Zt | 1{|Zt |≥M}

)
= 0.

A well-known sufficient condition is to have

sup
t

E(|Zt |1+ε) < ∞ for some ε > 0.

We denote by Zt ⇒ Z the fact that Zt converges in distribution to Z. In case Zt is uniformly
integrable, this also implies that limt→∞ E Zt = E Z; see [4].

In handling the UI conditions, our problem narrows down to proving that the sequence
{Q(t)2/t} is uniformly integrable, where Q(t) denotes the number of customers in the system
in our critically loaded queue. Using a sequence of steps which rely on the reflection map for the
queue length, stochastic ordering results, and renewal-theoretic results, we are able to establish
UI for the GI/NWU/1 queue (where NWU stands for new worse than used—see Section 4.2
for a definition). We also find that a sufficient condition for the UI requirement is that

P(B > x) ∼ L(x)x−1/2,

where B is a generic busy period and L(·) is a slowly varying function (i.e. L(ax)/L(x) → 1
as x → ∞ for every a > 0) that is bounded by a constant.

We refer to Theorem 2.2 for an exact statement of our results. It should be noted that we
believe that the complications when establishing the UI requirement are primarily of a technical
nature, and that we in fact believe that (1.1) holds for a broader class of critically loaded GI/G/1
queues. This conjecture is formalized following Theorem 2.2. We are also able to handle the
UI conditions for some GI/G/s queues (Theorem 6.2).

To complement our asymptotic results, we perform an explicit analysis for the departure
process of the M/M/1 queue, and obtain var D(t) at all time points in terms of Bessel functions.
This yields an alternative derivation of (1.1) for this case as well as other more refined properties.

1.3. Organization

This paper is organized as follows. In Section 2 we present the main result and formulate
related conjectures. In Section 3 we derive the distribution of D̂, and compute the explicit
expression for var D̂. In Section 4 we find conditions under which the process {Q(t)2/t} is
uniformly integrable. In Section 5 we find the variance curve of the M/M/1 queue. We conclude
in Section 6 with a discussion on the extensions to the multiserver GI/G/s queue, as well as to
queues with more general arrival and service patterns.
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2. Main results

In this section we present our main results on the critically loaded GI/G/1 queue operating
under the first-come–first-served (FCFS) discipline. Assume that Q(0) = 0, and denote by
A(t) the number of arrivals during [0, t]. In addition, assume that the first interarrival time is
identically distributed to the generic interarrival time ζA. We further denote by S(t) the renewal
counting process induced by the service times. A key role is played by the process Q, defined
as

Q =
{

Q(t)2

t
, t ≥ t0

}
for some t0 > 0.

We state our main result in Theorems 2.1 and 2.2 below. We first establish the following
elementary lemma which is used throughout the paper.

Lemma 2.1. For real x and y and r ≥ 1,

|x + y|r ≤ 2r−1(|x|r + |y|r ). (2.1)

Proof. It is easy to check that, for z ≥ 0, the function f (z) = (1 + z)r/(1 + zr) is globally
maximized when z = 1 and attains a maximum of 2r−1. The result follows by taking z = |y|/|x|
and using the triangle inequality.

Theorem 2.1. Consider the critically loaded GI/G/1 queue with E ζ 2
A < ∞ and E ζ 2

S < ∞.
Assume that Q is uniformly integrable. Then

σ = λ

(
1 − 2

π

)
(c2

a + c2
s ). (2.2)

Proof. From the heavy-traffic functional central limit theorem in [12, Theorem 4.1], upon
applying the projection map (at the time t = 1) and the continuous mapping theorem, we have

D(t) − λt√
λt

⇒ D̂ as t → ∞. (2.3)

Furthermore, using the continuous mapping theorem, we obtain

(D(t) − λt)2

λt
⇒ D̂2 as t → ∞. (2.4)

Under the UI conditions established below, we have, from (2.3) and (2.4),

lim
t→∞ E

((
D(t) − λt√

λt

)k)
= E(D̂k), k = 1, 2. (2.5)

Observe that var D(t) = E(D(t)−λt)2 − (E D(t)−λt)2, and combine this with (2.5) to obtain

σ

λ
= lim

t→∞
var D(t)

λt

= lim
t→∞

E(D(t) − λt)2

λt
−

(
lim

t→∞
E D(t) − λt√

λt

)2

= var D̂,

which yields the desired result using Proposition 3.1 below.
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It now remains to establish the convergence of the moments in (2.5). To do so, we establish
that the sequences {[(D(t) − λt)/

√
λt]k, t ≥ t0}, k = 1, 2, are uniformly integrable. First

note that D(t) = A(t) − Q(t). Combining this with (2.1) yields∣∣∣∣D(t) − λt√
λt

∣∣∣∣ ≤
∣∣∣∣A(t) − λt√

λt

∣∣∣∣ +
∣∣∣∣Q(t)√

λt

∣∣∣∣,
∣∣∣∣D(t) − λt√

λt

∣∣∣∣
2

≤ 2

(∣∣∣∣A(t) − λt√
λt

∣∣∣∣
2

+
∣∣∣∣Q(t)√

λt

∣∣∣∣
2)

.

It thus suffices to show that the sequences {(A(t) − λt)2/λt, t ≥ t0} and Q are uniformly
integrable. UI of the first sequence is a standard result from renewal theory; cf. [11, p. 49]. UI
of the second sequence is an assumption (which we partially prove in Theorem 2.2 below).

The above theorem is generalized in Section 6 for multichannel, multiserver queues with
more general arrival and service processes. We are able to establish the UI of Q needed by
Theorem 2.1 for different cases.

Theorem 2.2. If E ζ 4
A < ∞ and E ζ 4

S < ∞, then Q is uniformly integrable in the following
cases.

(i) Any critically loaded GI/G/1 queue with P(B > x) ∼ L(x)x−1/2, where L(·) is a
bounded, slowly varying function.

(ii) The critically loaded M/G/1 queue.

(iii) The critically loaded GI/NWU/1 queue.

(iv) The critically loaded D/G/1 queue with P(ζS > b) = 1 for some b > 0.

The theorem is proved by a sequence of arguments in Section 4. A version of this theorem
for the GI/G/s queue is given in Section 6.

We conjecture that our result also holds under milder conditions. To this end, we first remark
that the condition in Theorem 2.2(i) has been shown to be true in [27] for the critically loaded
M/G/1 queue with E ζ 2

S < ∞. We conjecture that this also holds for the critically loaded GI/G/1.

Conjecture 2.1. For the critically loaded GI/G/1 queue with E ζ 2
A < ∞ and E ζ 2

S < ∞,

P(B > x) ∼ L(x)x−1/2,

where L(·) is a bounded, slowly varying function.

Conjecture 2.1, along with Theorem 2.2(i), implies UI for all GI/G/1 queues with finite
fourth moments. We also conjecture that the fourth moment condition may be reduced to 2 + ε

moments for some strictly positive ε. Combining this with the multiserver result of Section 6,
we conjecture the following.

Conjecture 2.2. Consider the critically loaded GI/G/s multiserver queue. Assume that

E ζ
2+ε

A < ∞ and E ζ
2+ε

S < ∞
for any ε > 0. Then (2.2) holds.

3. The distribution of D̂

In this section we derive the distribution of the random variable D̂, defined as

inf
0≤t≤1

{c1B1(t) + c2B2(1 − t)},
where B1 and B2 are two independent standard Brownian motions. This answers an open
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question posed in [12]. As usual, �(x) is the distribution function of a standard normal random
variable.

Theorem 3.1. Let c1, c2 ≥ 0. Then

P(D̂ ≤ x) = �

(
x

c1

)
+ �

(
x

c2

)
− �

(
x

c1

)
�

(
x

c2

)

+ 1√
2π

∫ ∞

0
e−L(u,x)�(−M(u, x)) du, (3.1)

where

L(u, x) := 1

2

(
u(c2

1 − c2
2)

č2 − x

c1

)2

, M(u, x) := 2uc1c2

č2 + x

c2
, č :=

√
c2

1 + c2
2.

For the case where c1 = c2 = c, the last term on the right-hand side of (3.1) simplifies to

e−x2/(2c2)

√
2π

(
e−x2/(2c2)

√
2π

− x�(−x/c)

c

)
.

Proof. Define the event

E(b1, b2) := {B1(1) = b1, B2(1) = b2}
for arbitrary b1 and b2. Furthermore, denote by B(b)(t) a Brownian bridge process which starts
at 0 at time 0 and ends at b at time 1 (i.e. B(b)(t) = B(t) − t (B(1) − b), where B(·) is a standard
Brownian motion). Conditioning on E(b1, b2) we have

P(D̂ ≤ x | E(b1, b2)) =
⎧⎨
⎩P

(
inf

0≤t≤1
{b2c2 + čB(d)(t)} ≤ x

)
, x ≤ min(b1c1, b2c2),

1, x > min(b1c1, b2c2),

where d := (b1c1 − b2c2)/č.

Manipulating the above probability of the Brownian bridge, we obtain

P
(

inf
0≤t≤1

{b2c2 + čB(d)(t)} ≤ x
)

= P

(
sup

0≤t≤1
{−B(d)(t)} ≥ b2c2 − x

č

)

= P

(
sup

0≤t≤1
{B(−d)(t)} ≥ b2c2 − x

č

)
.

The first equality is trivial and the second step follows from the symmetry of the Brownian
bridge. Now use (see [15, Chapter V])

P
(

sup
0≤t≤1

{B(b)(t)} > y
)

= e−2y(y−b),

to arrive at

P(D̂ ≤ x | E(b1, b2)) =
⎧⎨
⎩exp

{
− 2

č2 (x − b1c1)(x − b2c2)

}
, x ≤ min(b1c1, b2c2),

1, x > min(b1c1, b2c2).
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By unconditioning we obtain

P(D̂ ≤ x)

= 1

2π

∫
(b1,b2)∈R2

P(D̂ ≤ x | E(b1, b2))e
−(b2

1+b2
2)/2 db1 db2

= 1

2π

∫
min(b1c1,b2c2)<x

e−(b2
1+b2

2)/2 db1 db2

+ 1

2π

∫
min(b1c1,b2c2)≥x

exp

{
−

(
2

č2 (x − b1c1)(x − b2c2) + 1

2
(b2

1 + b2
2)

)}
db1 db2.

The first integral in the above expression can be represented as

�

(
x

c1

)
+ �

(
x

c2

)
− �

(
x

c1

)
�

(
x

c2

)
.

For the integral on the right-hand side, we first change the region of integration to the positive
quadrant, move the terms involving only b1 out of the inner integral, and then complete the
square:

1

2π

∫ ∞

0

∫ ∞

0
exp

{
−

(
2c1c2

č2 b1b2 + 1

2

(
b1 + x

c1

)2

+ 1

2

(
b2 + x

c2

)2)}
db1 db2

= 1√
2π

∫ ∞

0
e−L(u,x)�(−M(u, x)) du. (3.2)

For the case where c1 = c2 = c, the remaining integral can be simplified to the desired
expression by changing the order of integration.

We are now able to obtain an explicit expression for var D̂.

Proposition 3.1. We have

E D̂ = −
√

2(c2
1 + c2

2)

π
, E D̂2 = c2

1 + c2
2, var D̂ = (c2

1 + c2
2)

(
1 − 2

π

)
.

Proof. We first determine the density of D̂ by differentiating the distribution function, and
then calculate the first and second moments in the standard manner. The part of the density
obtained from �(x/c1)+�(x/c2)−�(x/c1)�(x/c2), multiplied by x or x2, can be integrated
relatively easily. The part related to (3.2) should first be integrated over x (after multiplication
by x or x2). In both cases, this yields an integral over the positive quadrant of a function
proportional to bivariate independent Gaussian distributions, which can therefore be simplified.
Upon combining these terms, we obtain the result.

4. Uniform integrability

Our main result, Theorem 2.1, involves the assumption that Q is uniformly integrable. In
this section we find sufficient conditions for this assumption to hold, thus establishing (i)–(iv)
of Theorem 2.2. We apply several methods in the analysis. In Section 4.1 we use the reflection
mapping for the queue to establish UI for the GI/M/1 queue. In Section 4.2 we construct
couplings that involve the reflected queueing process, the actual queue process, and the count
of the number of busy cycles. This allows us to establish the UI for the GI/NWU/1 queue, and
for the GI/G/1 queue under an additional condition on the tail of the busy period. In Section 4.3
we show UI for the D/GI/1 case by using a different approach: we relate Q(t) and Wn, the
workload seen by the nth arrival, and then apply a UI result from [22].
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4.1. Reflection mapping for queue length

In this subsection we prove UI for the GI/M/1 case. We do so by first introducing a process
{Q′(t)} (which is closely related to {Q(t)}), and prove UI for Q′, defined as

Q′ =
{

Q′(t)2

t
, t ≥ t0

}
for some t0 > 0. The following proposition plays a crucial role. Define X(t) := A(t) − S(t),
and let

Q′(t) = X(t) − inf
0≤s≤t

X(s)

denote the associated reflected process. Note that, for the GI/M/1 case, it holds that Q′(t)
equals in distribution Q(t) (see, e.g. [18, p. 68]); this does not hold for the GI/G/1 case. For
the M/M/1 case, the reflected process is distributed as sup0≤s≤t X(s), but this is in general not
true for GI/M/1; cf. [3, p. 98].

Proposition 4.1. Assume that both

E
((

sup
0≤s≤t

{|A(s) − λs|}
)4)

and E
((

sup
0≤s≤t

{|S(s) − λs|}
)4)

(4.1)

are O(t2). Then,

(i) E(Q′(t)4) = O(t2),

(ii) supt≥t0
E(Q′(t)4/t2) < ∞,

(iii) Q′ is uniformly integrable.

Proof. Use inequality (2.1), with r = 4, to obtain

Q′(t)4 ≤ 8
(
X(t)4 +

(
sup

0≤s≤t

−X(s)
)4)

.

We now deal with both terms separately. The first term is bounded as

X(t)4 = ((A(t) − λt) − (S(t) − λt))4 ≤ 8(|A(t) − λt |4 + |S(t) − λt |4),
and, therefore, it follows from (4.1) that

E(X(t)4) = O(t2). (4.2)

We now consider the second term:(
sup

0≤s≤t

−X(s)
)4 ≤

(
sup

0≤s≤t

|X(s)|
)4

=
(

sup
0≤s≤t

|(S(s) − λs) + (λs − A(s))|
)4

≤
(

sup
0≤s≤t

{|S(s) − λs| + |A(s) − λs|}
)4

≤
(

sup
0≤s≤t

|S(s) − λs| + sup
0≤s≤t

|A(s) − λs|
)4

≤ 8
((

sup
0≤s≤t

|S(s) − λs|
)4 +

(
sup

0≤s≤t

|A(s) − λs|
)4)

.

https://doi.org/10.1239/aap/1300198521 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1300198521


Variance of departures in critically loaded queues 251

Again invoking (4.1) yields

E
((

sup
0≤s≤t

−X(s)
)4) = O(t2). (4.3)

Upon combining (4.2) and (4.3), we obtain (i). Result (ii) follows directly from (i), and (iii)
follows from the sufficient condition of UI in (ii).

Recall that Doob’s Lp maximum inequality for both continuous time and discrete time states
that, for any p > 1 and martingale {Mt },

E
((

sup
0≤s≤t

|Ms |
)p)

≤
(

p

p − 1

)p

E(|Mt |p).

We may use Doob’s inequality together with Proposition 4.1 to show that in the M/M/1 case,
Q is uniformly integrable. This can be done by observing that {A(t) − λt} and {S(t) − λt} are
martingales. Applying Doob’s inequality shows that

E
((

sup
0≤s≤t

(A(s) − λs)
)4) ≤

(
4

3

)4

(3λ2t2 + λt) = O(t2),

with the same result holding for {S(t) − λt}.
For the GI/M/1 case, {A(t) − λt} is no longer a martingale, yet the following theorem is

useful (and is of independent interest).

Theorem 4.1. Let {ζi, i ≥ 0} be a sequence of nonnegative, independent, and identically
distributed random variables, and let Sn := ∑n

i=1 ζi be their partial sums. Denote the cor-
responding renewal counting process by N(t) := sup{n : Sn ≤ t}. Define E ζ1 := γ −1, and
assume that E ζ 4

1 < ∞. Then

E
((

sup
0≤s≤t

{|N(s) − γ s|}
)4) = O(t2).

Proof. Define V (t) = infn{n : Sn ≥ t}, so that N(t) + 1 = V (t) and SN(t) ≤ t ≤ SV (t). As
a result of these inequalities, we have

γ s − N(s) ≤ γ SV (s) − N(s) = γ SV (s) − V (s) + 1 ≤ sup
0≤n≤V (s)

{γ Sn − n} + 1,

and, on the other hand,
N(s) − γ s ≤ N(s) − γ SN(s)

≤ sup
0≤n≤N(s)

{n − γ Sn}

≤ sup
0≤n≤V (s)

{n − γ Sn}

≤ sup
0≤n≤V (s)

|γ Sn − n| + 1.

Combining these two inequalities, we obtain

|N(s) − γ s| ≤ sup
0≤n≤V (s)

|γ Sn − n| + 1.
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Define Mn := ∑n
i=1 ξi , where ξi := γ ζi − n (which is a martingale). Taking the supremum

over s between 0 and t yields

sup
0≤s≤t

|N(s) − γ s| ≤ sup
0≤n≤V (t)

|γ Sn − n| + 1 = sup
0≤n≤V (t)

|Mn| + 1. (4.4)

We are interested in the fourth moment of the quantity on the left-hand side of (4.4). Owing to
(2.1), we have

E
((

sup
0≤s≤t

|N(s) − γ s|
)4) ≤ 8 E

((
sup

0≤n≤V (t)

|Mn|
)4) + 8.

Recalling that Mn is a martingale, observe that V (t) is a stopping time with respect to the
natural filtration of {Mn} and, hence, Mn∧V (t) is a martingale as well. Therefore, owing to
Doob’s maximum inequality, for k = 0, 1, . . . ,

E
((

sup
0≤n≤k

|Mn∧V (t)|
)4) ≤

(
4

3

)4

E((Mk∧V (t))
4). (4.5)

Furthermore, observe that the sequence {sup0≤n≤k |Mn∧V (t)|} is monotone increasing in k, and,
almost surely,

lim
k→∞

(
sup

0≤n≤k

|Mn∧V (t)|
)4 =

(
sup
0≤n

|Mn∧V (t)|
)4 =

(
sup

0≤n≤V (t)

|Mn|
)4

.

Applying the monotone convergence theorem, we obtain

lim
k→∞ E

((
sup

0≤n≤k

|Mn∧V (t)|
)4) = E

((
sup

0≤n≤V (t)

|Mn|
)4)

. (4.6)

Furthermore, observe that, almost surely,

lim
k→∞ |Mk∧V (t)|4 = |MV (t)|4.

Also, E supk |Mk∧V (t)|4 < ∞, as follows from

(Mk∧V (t))
4 ≤ 8γ 4(Sk∧V (t))

4 + 8(k ∧ V (t))4 ≤ 8γ 4(SV (t))
4 + 8(V (t))4

and the fact that, for fixed t , the right-hand side has finite mean; see, e.g. [11].
Now applying the dominated convergence theorem, we obtain

lim
k→∞ E((Mk∧V (t))

4) = E((MV (t))
4). (4.7)

Combining (4.5), (4.6), and (4.7), we obtain

E
((

sup
0≤n≤V (t)

|Mn|
)4) ≤

(
4

3

)4

E(M4
V (t)).

We now complete the proof by showing that the right-hand side of the previous display is
O(t2). To this end, define E(ξ�

i ) = m�, and recall that it was assumed that m� < ∞, � =
1, 2, 3, 4. Furthermore, let γ (r) denote the cumulant generating function of ξi , i.e. γ (r) =
log(E(erξi )), Re(r) ≤ 0. Let γ (n)(r) denote the nth derivative of γ (r). Observe that γ (0) = 0,
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γ (1)(0) = m1 = 0, and γ (2)(0) = var(ξi) = m2, and that γ (3)(0) and γ (4)(0) can be expressed
in terms of m�, � = 2, 3, 4. Since V (t) is a stopping time, Wald’s identity [21] yields

E exp{rMV (t) − V (t)γ (r)} = 1.

Taking the second-order derivative and fourth-order derivative (with respect to r) of the latter
equation at 0, we find that

E((MV (t))
2) = E V (t)m2, (4.8)

E((MV (t))
4) = γ (4)(0) E V (t) + 4γ (3)(0) E V (t)MV (t)

− 3 E V (t)2m2
2 + 6m2 E V (t)(MV (t))

2. (4.9)

Then, note that the Cauchy–Schwarz inequality gives

E V (t)MV (t) ≤
√

E V (t)2 E(MV (t))2, (4.10)

E V (t)(MV (t))
2 ≤

√
E V (t)2 E((MV (t))2)2 = E(MV (t))

2
√

E V (t)2. (4.11)

Also, E V (t) = O(t) and E V (t)2 = O(t2); see, e.g. [3, Chapter V]. From (4.8) we deduce that
E(MV (t))

2 = O(t). Using (4.10) and (4.11), the latter equation gives E V (t)MV (t) = O(t3/2)

and E V (t)(MV (t))
2 = O(t2). Substituting these results into (4.9) yields

E(MV (t))
4 = O(t2),

as desired.

Corollary 4.1. For the critically loaded GI/M/1 queue, with E ζ 4
A < ∞, Q is uniformly inte-

grable.

Proof. Theorem 4.1 gives (4.1), which completes the proof.

4.2. Coupling Q and Q′

In the previous subsection we were able to establish UI for the GI/M/1 queue using the
fact that Q′(t) is distributed the same as Q(t). This property does not carry over to queues
with nonexponential service times, but nevertheless we can obtain the desired UI from Q′(t)
for a large class of service times using the following result, which we prove using a coupling
argument.

Recall that the distribution of a random variable X is new worse than used (NWU) if

P(X > x) ≤ P(X > t + x)

P(X > t)
for all x, t ≥ 0.

We denote by GI/NWU/1 the single-server queue with service times having an NWU service
distribution; see [19] for more background.

Theorem 4.2. Denote by C(t) the number of busy cycles of the process {Q(t)} during the time
interval [0, t]. Let r ≥ 1. Then,

(i) for GI/NWU/1, Q(t) ≤st Q′(t), t ≥ 0,

(ii) for GI/G/1, E Q(t)r ≤ 2r−1(E Q′(t)r + E C(t)r ), t ≥ 0.
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Proof. We begin with (i). Let L(·) denote the probability law of a stochastic process. We
will construct a probability space supporting two coupled processes {Q̃(t)} and {Q̃′(t)} such
that

Q̃(t) ≤ Q̃′(t), t ≥ 0, with probability 1, (4.12)

where L(Q) = L(Q̃) and L(Q′) = L(Q̃′). Establishing such a construction is equivalent to a
stochastic order on the function space of sample paths (see [14]), from which (i) is an elementary
consequence. We let Q̃ = Q, so that it remains to produce (4.12) with L(Q′) = L(Q̃′). We let
both systems start empty and give both systems the given arrival process for Q. We redefine the
service times of the upper bound system {Q̃′(t)} every time an arrival enters an empty system.
Otherwise, arrivals are assigned identical service times in both systems, which are taken from
the given independent and identically distributed service times for Q. The construction is
recursive over busy cycles of the process Q̃, i.e. we do mathematical induction over successive
epochs at which an arrival finds the upper bound system empty. Clearly, the sample paths of
the two systems are identical until the first time that an arrival in the upper bound system finds
the system empty. Because of the reflection construction, the actual service time in the upper
bound system is a residual service time, but, by the NWU assumption, the residual service
time is stochastically larger than an ordinary service time. Given that stochastic order, we
can construct a new service time for the upper bound process that is greater than or equal to
the corresponding service time in the lower bound system with probability 1, and yet has its
given probability law. Performing this construction maintains L(Q′) = L(Q̃′). We repeat this
construction each time an arrival at the upper bound system finds an idle server; necessarily,
the corresponding arrival in the lower bound system finds the server idle too. By this special
construction we make the service times of the upper bound process greater than or equal to the
service times in the lower bound process with probability 1, while their distributions remain
unchanged. It is known and not difficult to show that the queue length sample paths will be
ordered with probability 1 if two systems differ only by service times that are all ordered; this is,
e.g. the basis for Theorems 5 and 8 and the remark on page 216 of [23]. Hence, we achieve the
sample-path order in (4.12) while keeping the relations L(Q) = L(Q̃) and L(Q′) = L(Q̃′).
This sample path order holds over the successive finite time segments [0, τn), where τn is the
time that the nth busy cycle begins. By mathematical induction, it thus holds over the entire
positive halfline. We thus have (i).

We now turn to (ii). We will achieve the moment inequality by constructing a coupling of
Q(t), C(t), and Q′(t) on the same probability space. Again, we let Q̃ = Q, so it remains to
produce

Q(t) ≤ Q̃′(t) + C(t), t ≥ 0, with probability 1,

where L(Q′) = L(Q̃′). We will do the construction by finding an intermediate system Q̂ with

Q(t) ≤ Q̂(t) ≤ Q̃′(t) + C(t), t ≥ 0, with probability 1, (4.13)

where still L(Q′) = L(Q̃′).
We let all three systems start empty and give them the specified arrival process for Q. We

let all three systems be assigned the same service times from the sequence of independent and
identically distributed random variables for Q.

The right-hand side of (4.13) indicates Q′(t) with an additional customer added per busy
period which is added whenever an arrival finds an empty system in Q. We let the service time
of the extra arrival for Q̃′ match the service time of the arrival in Q, so that we can think of
an extra initial customer with the residual service time, and otherwise the same arrivals having
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identical service times. We now construct the system Q̂ from Q̃′ by combining the customer
with the residual service time and the new customer into a single customer with the sum of
the residual service time and the new service time. Hence, by this ‘combining’ of customers,
at the start of every busy period, Q̂(t) is initially less than Q̃′(t) + 1, and the inequality holds
throughout the busy period. Again, using induction as in (i), we have the second inequality in
(4.13).

With this construction, note that Q̂ differs from Q only by having some customers with
longer service times. In particular, whenever an arrival in Q finds an empty system, that
customer has a shorter service time than the corresponding arrival in Q̂. As a consequence, by
the same reasoning as in part (i), we have the first inequality in (4.13). Now combining with
(2.1) directly implies the final claimed moment inequality.

Note that the coupling in part (ii) of the above proof also implies that there exists a joint
distribution between Q′(t) and C(t) such that Q(t) ≤ Q′(t) + C(t) with probability 1. Also,
note that in the above theorem we did not use the renewal structure of the arrival process and,
thus, the result actually holds for queues with arbitrary arrival processes.

We now have UI of Q for the GI/NWU/1 queue.

Corollary 4.2. For the critically loaded GI/NWU/1 queue with E ζ 4
A < ∞ and E ζ 4

S < ∞, Q
is uniformly integrable.

Proof. From Theorem 4.2(i) we deduce that E Q(t)4 ≤ E Q′(t)4. By Proposition 4.1(ii) we
have E Q′(t)4 = O(t2). Thus, E Q(t)4 = O(t2), which completes the proof.

In order to use the stochastic order in Proposition 4.1(ii) for the UI of Q in the GI/G/1 queue,
we need first to establish the order of growth of the moments of C(t). The following theorem
is attributed to A. Löpker (personal communication). To the best of the authors’ knowledge,
this general result about renewal processes has not appeared elsewhere.

Theorem 4.3. Let N(t) and ζi be defined as in Theorem 4.1. Suppose that P(ζi ≥ x) =
1 − F(x) ∼ L(x)x−α with α ∈ [0, 1) and L(·) slowly varying. Then

E N(t)m ∼ tαmL(t)−m �(1 + m)

�(1 − α)m�(1 + αm)
, t → ∞.

Proof. We have

E N(t)m =
∞∑
i=1

imP(N(t) = i)

=
∞∑
i=1

im(F ∗i (t) − F ∗i+1(t))

=
∞∑
i=1

imF ∗i (t) −
∞∑
i=2

(i − 1)mF ∗i (t)

=
∞∑
i=1

a(i)F ∗i (t),

where a(i) = im − (i − 1)m. Clearly,
∑n

i=1 a(i) = nm. Now using Omey’s theorem [2,
Theorem D] with ρ = m and L1(x) = 1 (where ρ and L1(·) follow the notation of [2]), the
result follows.
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We are now in a position to relate the growth rate of C(t) to the tail asymptotics of the busy
period distribution.

Corollary 4.3. For the critically loaded GI/G/1 queue with E ζ 4
A < ∞ and E ζ 4

S < ∞, if

P(B > x) ∼ L(x)x−1/2 (4.14)

with L(x) slowly varying and bounded, then Q is uniformly integrable.

Proof. We apply Theorem 4.3 with m = 4 to C(t) of Theorem 4.2, to obtain E C(t)4 =
O(t2). Furthermore, observe that Theorem 4.1 applied to A(t) and S(t) implies condition (4.1),
and, thus, by Proposition 4.1(i), we have E Q′(t)4 = O(t2). Since Theorem 4.2(i) implies that
E Q(t)4 ≤ 8(E Q′(t)4 + E C(t)4), we have E Q(t)4 = O(t2), and, as a result,

sup
t≥t0

E

(
Q′(t)2

t

)2

< ∞.

Hence, we conclude that Q is uniformly integrable.

Corollary 4.4. For the critically loaded M/G/1 queue with E ζ 4
S < ∞, Q is uniformly

integrable.

Proof. The tail asymptotics for the busy period in (4.14) have been established for the
critically loaded M/G/1 queue in [27, Theorem 4.1]. Consequently, the result follows from
Theorem 4.3.

4.3. The D/GI/1 case

The approach we follow for the D/GI/1 queue differs substantially from the approach taken
in the previous subsections. Here we simply relate the queue size to the workload and use a
previous result of UI stated in [22].

Proposition 4.2. For the critically loaded D/G/1 queue with E ζ 4
S < ∞ and P(ζS > b) = 1

for some b > 0, Q is uniformly integrable.

Proof. In the following we relate Q(t) and Wn, the workload seen by the nth arrival. Note
that in [22, Theorem 4.1] it was shown that if E ζ 2m

S < ∞ then (Wn/
√

n)k, k ≤ 2m, is uniformly
integrable. Moreover, it is well known that if we have the nonnegative sequences of random
variables Xn, Yn, and Zn such that Zn < Xn + Yn, and Xn and Yn are uniformly integrable,
then so is Zn.

We have Q(t) ≤ W(t)/b + 1 and W(t) = WA(t) − (t − τA(t)) ≤ WA(t), where τA(t) is the
arriving time of the A(t)th arrival. Therefore, we see that, for �λt� > 0,

Q(t)√
t

≤ b−1 W(t) + b√
t

(4.15)

≤ b−1 WA(t) + b√
t

(4.16)

≤ b−1
√

λ
WA(t) + b√

A(t)

= b−1
√

λ

(
W�λt�√�λt� + b√�λt�

)
, (4.17)

where the third inequality and last line follow from A(t) = �λt� ≤ λt (at time 0 the queue
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is empty and an interarrival time is deterministic and equal to 1/λ). Using (2.1) with r = 4,
(4.17) then gives (

Q(t)√
t

)4

≤ 8b−4λ2
{(

W�λt�√�λt�
)4

+
(

b√�λt�
)4}

. (4.18)

Note that (b/
√�λt�)4 is bounded from above by b4, t ≥ t0 > 0, which implies that it is

uniformly integrable. Moreover, under the assumption that E ζ 4
S < ∞, (W�λt�/

√�λt�)4 is
uniformly integrable; see [22, Theorem 4.1]. Hence, both terms on the right-hand side of
(4.18) are uniformly integrable, and, hence, so is Q.

5. The variance curve of the M/M/1 queue

In this section we consider the M/M/1 queue and obtain expressions for the first and second
moments of D(t) for any t ≥ 0. We first consider arbitrary λ, µ > 0, and obtain cumbersome
yet computationally tractable expressions for E D(t) and var D(t) in terms of integrals of Bessel
functions (Theorem 5.1). These expressions are useful for numerically illustrating the presence
of the BRAVO effect for finite t and � ≈ 1 (see Figure 1). For the critically loaded case, some
simplification occurs and these integrals evaluate to simpler explicit expressions, given in terms
of Bessel functions (Corollary 5.1).

We are further able to perform asymptotic expansions for E D(t) and var D(t) for large t

(Theorem 5.2). These expansions show that in the critically loaded case, the variance and
expectation curves have a lower-order square root term that does not exist when λ �= µ. They
also serve as an alternative proof to our main result in the specific case of M/M/1.

Notation. We denote the convolution operator by ‘∗’ and make use of the modified Bessel
function of the first kind:

Ij (2t) =
∞∑

n=0

tj+2n

(j + n)! n! .
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Figure 1: Demonstration of the BRAVO effect for λ ≈ µ and finite t : var D(t) is plotted for M/M/1
systems with µ = 1. The dashed line is for λ = 0.9, the solid line is for λ = 0.98, and the dotted line is

for λ = 1.1. The horizontal line is at the height 1000 · 2(1 − 2/π).

https://doi.org/10.1239/aap/1300198521 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1300198521


258 A. AL HANBALI ET AL.

Theorem 5.1. For the M/M/1 queue with Q(0) = 0,

E D(t) = √
λµ

∫ t

0
(t − u)

I1(2u
√

λµ)e−(λ+µ)u

u
du,

var D(t) = µt(µt + 2) − √
λµ

∫ t

0
(t − u)(µ(t − u) + 2)

I1(2u
√

λµ)

u
e−(λ+µ)u du

+ 2λµ

∫ t

0
(t − u)2 I2(2u

√
λµ)

u
e−(λ+µ)u du

+ µ

∫ t

0
(µ(λ − µ)(t − u)2 − 4µ(t − u) − 2)I0(2u

√
λµ)e−(λ+µ)u du

+ µ
√

λµ

∫ t

0
(t − u)((µ − λ)(t − u) + 2)I1(2u

√
λµ)e−(λ+µ)u du

+ √
λµ

∫ t

0
(t − u)

I1(2u
√

λµ)e−(λ+µ)u

u
du

− λµ

(∫ t

0
(t − u)

I1(2u
√

λµ)e−(λ+µ)u

u
du

)2

.

Proof. Let Xα be an exponential random variable with mean 1/α. Let φα(z) denote the
probability generating function (PGF) of the number of departures at the random time Xα . We
have

φα(z) = EXα E(zD(Xα) | Xα) =
∫ ∞

0
αe−αt E(zD(t)) dt.

Note that φα(z)/α can be interpreted as the Laplace transform of E zD(t). Define φ1
α := φ′

α(1)/α

and φ2
α := φ′′

α(1)/α, and denote by L−1(·) the inverse Laplace transform. Thus, it is readily
seen that

E D(t) = L−1(φ1
α), E D(t)2 = L−1(φ2

α + φ1
α). (5.1)

From [6, Equation (2.71), p. 199,], inserting k = 0, ρ = α, q = z, and x2(q) = r(z, α) (see
also [1, Equation (25)]), we have the following simple expression:

φα(z)

α
= z

µ(1 − z) + α

1 − r(z, α)

z − r(z, α)
. (5.2)

Here

r(z, α) = λ + µ + α − √
(λ + µ + α)2 − 4λµz

2λ
.

Furthermore, let

s(z, α) = λ + µ + α + √
(λ + µ + α)2 − 4λµz

2λ
= µz

λr(z, α)
.

Differentiating (5.2) with respect to z at the point z = 1 yields

φ1
α = λ

α2 r(1, α), (5.3)

φ2
α = 2µ

µ + α

α3 − 2λ
µ + α

α3 r(1, α) + 2λ2

α3 r(1, α)2

+ 2µ

α3

(
µ − (µ + α)2

λ

)
1

s(1, α) − r(1, α)
+ 2µ

α3 (µ + α − λ)
r(1, α)

s(1, α) − r(1, α)
.
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Now using an explicit inversion, as in, e.g. [6, p. 81], for (5.3), we obtain

L−1(φ1
α) = λt ∗

√
µ

λ

I1(2t
√

λµ)e−(λ+µ)t

t
,

L−1(φ2
α) = µt(µt + 2) − √

λµt(µt + 2) ∗
(

I1(2t
√

λµ)

t
e−(λ+µ)t

)

+ 2λµt2 ∗
(

I2(2t
√

λµ)

t
e−(λ+µ)t

)
+ µ(µ(λ − µ)t2 − 4µt − 2) ∗ (I0(2t

√
λµ)e−(λ+µ)t )

+ µ
√

λµt((µ − λ)t + 2) ∗ (I1(2t
√

λµ)e−(λ+µ)t ).

Using (5.1) and reorganizing the above convolution term, we obtain the result.

In the case � = 1, the integrals of Theorem 5.1 evaluate into somewhat simpler expressions
given in terms of Bessel functions (rather than integrals of Bessel functions).

Corollary 5.1. For the critically loaded M/M/1 queue with Q(0) = 0,

E D(t) = λt − 1
2 e−2λt ((1 + 4λt)I0(2λt) + 4λtI1(2λt)) + 1

2 ,

var D(t) = 1
4 e−4λt (e4λt (8λt + 1) − (4λt + 1)2I0(2λt)2 − 4e2λtλtI1(2λt)

− 16λ2t2I1(2λt)2 − 4λtI0(2λt)(e2λt + (2 + 8λt)I1(2λt))).

Proof. Directly evaluate the integrals of Theorem 5.1 with λ = µ.

Furthermore, the integrals of Theorem 5.1 yield the following asymptotic expansion.

Theorem 5.2. For the M/M/1 queue with Q(0) = 0,

E D(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λt − �

1 − �
+ o(1) if λ < µ,

λt − 2

√
λ

π
t1/2 + 1

2
+ o(1) if λ = µ,

µt − 1

� − 1
+ o(1) if λ > µ,

and

var D(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λt − �

(1 − �)2 + o(1) if λ < µ,

λ2

(
1 − 2

π

)
t −

√
λ

π
t1/2 + π − 2

4π
+ o(1) if λ = µ,

µt − �

(1 − �)2 + o(1) if λ > µ.

Proof. The cases λ = µ and λ �= µ are treated separately. The λ = µ case follows directly
from Corollary 5.1. To obtain the linear term, divide the expressions of Corollary 5.1 by t and
evaluate the limit as t → ∞. To obtain the

√
t-term, subtract the linear term, divide by

√
t , and
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evaluate the limit. To obtain the constant term, subtract the linear and
√

t-terms, and evaluate
the limit. The remaining error is o(1).

The λ �= µ case is more complicated. Consider first E D(t). Theorem 5.1 readily gives

E D(t) = √
λµ

(
t

∫ ∞

0

I1(2u
√

λµ)e−(λ+µ)u

u
du −

∫ ∞

0
I1(2u

√
λµ)e−(λ+µ)u du

− t

∫ ∞

t

I1(2u
√

λµ)e−(λ+µ)u

u
du +

∫ ∞

t

I1(2u
√

λµ)e−(λ+µ)u du

)

= √
λµ

(
2
√

λµ

λ + µ + |λ − µ| t − 2
√

λµ

|λ − µ|(λ + µ + |λ − µ|)
− t

∫ ∞

t

I1(2u
√

λµ)e−(λ+µ)u

u
du +

∫ ∞

t

I1(2u
√

λµ)e−(λ+µ)u du

)
,

where the second equality follows by interchanging the integration and the summation resulting
from the definition of the I1(2

√
λµt) functions in the first two terms. For the second two terms,

we use the following result for p, s > 0, p �= s, and γ ∈ Z:∫ ∞

t

uγ Im(pu)e−su du = 1√
2πp(s − p)

tγ−1/2

e(s−p)t
+ O

(
tγ−3/2

e(s−p)t

)
.

See, for example, [6, p. 83]. Combining we obtain

E D(t) = 2λµ

λ + µ + |λ − µ| t − 2λµ

|λ − µ|(λ + µ + |λ − µ|) + o(1).

Our result for E D(t) now follows. The result for var D(t) follows along the same lines.

We end this section with a numerical example. We use Theorem 5.1 to evaluate var D(t)

for three M/M/1 queues with � < 1, � ≈ 1, and � > 1. The integrals of expressions involving
Bessel functions are easily evaluated numerically. Variance curves of three example systems
are plotted in Figure 1. The time horizon is [0, 1000]. It can be observed that as � is varied
from 0.9 to 1.1, the variance curve decreases when � ≈ 1.

The main point made is that the BRAVO effect appears for λ ≈ µ, for finite t and not only
for the critical λ = µ case. It is further evident that the asymptotic slope of 2(1 − 2/π) which
holds for � = 1 also approximately holds as a nonasymptotic slope (for finite t) for � ≈ 1.

6. Extensions

In this section we address a number of extensions. The contribution is twofold. Our first aim
is to indicate that the (1 − 2/π) effect as in (1.1) holds in great generality. In this respect we
simply require that the arrival and service processes satisfy a functional law of large numbers
(FLLN) and a functional central limit theorem (FCLT), relying on the same diffusion limit
result of [12]. In this general case, we assume that the UI conditions hold without attempting
to prove so. Our second aim is to establish the UI conditions for the GI/G/s queue in the same
manner as the GI/G/1 queue, thus generalizing our main result to the multiserver case.

The general model we consider is a multichannel, multiserver queue as described in [12];
see also [13]: r arrival channels of customers arrive to a queue with s servers. When a customer
arrives to find one or more free servers, he/she is served by a free server under some arbitrary
tie breaking rule. When a customer arrives to a system with all s servers busy, he/she queues
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up to wait for the next available server in an FCFS manner. The service times do not depend
on the arrival channel but may depend on the server used. The r + s arrival and service
processes are mutually independent. Denote the arrival processes by Ai(t), i = 1, . . . , r , and
the service processes by Si(t), i = 1, . . . , s. Assume the existences of λi > 0, i = 1, . . . , r ,
and µi > 0, i = 1, . . . , s, such that

lim
t→∞

E Ai(t)

t
= λi and lim

t→∞
E Si(t)

t
= µi (FLLN).

Consider the queue in the critical regime with λ:

λ =
r∑

i=1

λi =
s∑

i=1

µi.

Furthermore, assume that there exist asymptotic variances κa
i > 0, i = 1, . . . , r , and κs

i > 0,

i = 1, . . . , s, such that

Ai(nt) − λint√
κa
i n

⇒ B(t) and
Si(nt) − µint√

κs
i n

⇒ B(t) (FCLT),

where the weak convergence is as in [12] as n → ∞, and B(·) is a standard Brownian motion; cf.
also [25]. In case of renewal processes, κa

i /λi and κs
i /µi are the squared coefficient of variation

of the interrenewal times. For ease of reference, we refer to this model as the critically loaded
Gr /G/s queue. We now have the following result.

Theorem 6.1. Consider the critically loaded Gr /G/s queue. Assume that the following two
processes are uniformly integrable:{

(
∑r

i=1 Ai(t) − λt)2

λt
, t ≥ t0

}
and

{
Q(t)

t2 , t ≥ t0

}
.

Then

σ =
(

1 − 2

π

)( r∑
i=1

κa
i +

s∑
i=1

κs
i

)
. (6.1)

Proof. The proof follows the exact same lines as the proof of Theorem 2.1. See also [13]
for a discussion of generalizing renewal processes.

The critically loaded GI/G/s queue with arrival rate λ is a special case. Take r = 1, and set all
s +1 processes as renewal processes with the s service processes having the same distributions.
In this case define κa

1 = λc2
a and κs

i = λc2
s /s, i = 1, . . . , s. The asymptotic variance (6.1)

reduces once again to

σ = λ

(
1 − 2

π

)
(c2

a + c2
s ).

For the GI/G/s queue, we are able to establish the required UI conditions for a variety of
cases. Observe first that the first UI condition holds for renewal arrivals as in Theorem 2.1.
Furthermore, conditions for the second sequence are given in the following theorem.

Theorem 6.2. Consider the critically loaded GI/G/s queue operating under the FCFS disci-
pline. Assume that E ζ 4

A < ∞ and E ζ 4
S < ∞. Then, {Q(t)2/t, t ≥ t0} is uniformly integrable
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in the following cases.

(i) P(B > x) ∼ L(x)x−1/2, where L(·) is a bounded, slowly varying function and B is the
busy period of a GI/G/1 queue with an interarrival time distribution which is an s-fold
convolution of ζA.

(ii) The critically loaded Gamma(1/s,λ)/G/s queue. That is,

P(ζA ≤ x) =
∫ x

0

λ1/s

�(1/s)
t1/s−1e−λt dt.

(iii) The critically loaded GI/NWU/s queue.

(iv) The critically loaded D/G/s queue with P(ζS > b) = 1 for some b > 0.

Proof. We apply the results in [26] for the special case of GI/G/s and the cyclic service.
In the cyclic service discipline, arrival sj + i, j = 0, 1, . . . , is assigned to the ith server,
i = 1, 2, . . . , s. The partition of the arrivals in this manner generates a collection of sGI/G/1
queues, each with service time ζS and interarrival time being an s-fold convolution of ζA. It
is easily seen that, when the GI/G/s is critically loaded, all the s individual GI/G/1 queues are
also critically loaded.

Let Qi(t), i = 1, . . . , s, denote the queue length of the ith single-server queue at time t

with Qi(0) = 0. Then it follows from [26, Equation (8)] that

Q(t) ≤st

s∑
i=1

Qi(t).

We now have, for cases (i)–(iv),

E Q(t)4 ≤ E

( s∑
i=1

Qi(t)

)4

≤ 8s−1 E
s∑

i=1

(Qi(t))
4 = s8s−1 E(Q1(t))

4 = O(t2).

The second inequality follows from s − 1 applications of (2.1). The O(t2) term is obtained for
cases (i)–(iv) using the results of Section 4. Note that case (ii) is based on the M/G/1 result
of Corollary 6.1 since a convolution of s Gamma(1/s, λ) random variables is an exponential.
Also, observe that, since E ζ 4

A < ∞, the s-fold convolution retains this property as is needed
for (i) and (iii).
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