Canad. Math. Bull. Vol. 18 (2), 1975

A CHARACTERIZATION OF EXPONENTIAL
FUNCTIONS WITH NON-LINEAR EXPONENTS

BY
HALINA SWIATAK

It is well known (see e.g. [1]) that the Cauchy functional equation

fx+y) = f(x)f(¥)

characterizes the function f: x—e**.
It was mentioned in [2] that the functions f:x—A4 exp(ax*™), g:x—e**/4 can

be characterized by the equation

€)) fx=y) = f)f(Me((x—y)*" —x*"—y*™)
but the proof was done only for m=1 which was considerably simple.

The purpose of this paper is to show that the functions f:x—4 exp(xx®™),
g:x—>€e**[A are the only solutions of (1) in the class of functions

Z={(f.8):/*R—>R,g:R—R, f(x) # 0, for gis continuous at the point x = 0}.
The following lemmas will be appplied:

Lemma 1. If g:R—>R, h:R—R, h(R)=R and if h and go h:x—>g(h(x)) are
continuous functions, then g is also a continuous function.

LEMMA 2. If h: (=0, 6)—(—e¢, €) is a continuous and strictly monotonic function
for which h(0)=0, then every function g:(—e&, &)—>R satsifying the condition
lim,,,, g(h(u))=g(0) is continuous at the point y=0.

The proofs of these lemmas follow almost immediately from the definition of the
limit and from the definition of a continuous function.

LemMA 3. If the function g is continuous at the point x=0 and satisfies equation
(1), where f(x)#£0, then f and g are continuous functions.

Proof. Notice first that the assumption f(x)7#0 guarantees that f(x)g(x)%0
for x € R. In fact; f(y)=0 for a certain y implies f(x)=0 and g(£&)=0 implies
f(n—1)=0, where 7 is a solution of the equation (n—1)*"—n?m—1=§.

Setting in (1) y=0 one obtains f(x)=f(x)f(0)g(0) and hence
2 f(0)g(0) = 1.

Setting in (1) x=0 one obtains f(—y)=f(0)g(0)f(y) i.e., by (2),

(3) J(=y») =/
Received by the editors August 10, 1973,
277

https://doi.org/10.4153/CMB-1975-052-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1975-052-5

278 H. SWIATAK [June

The continuity of the function g at the point x=0 implies immediately the
continuity of the function f2: x—f(x)? since, by (1),

lim f(x)® = lim ———~— /O __ 1O = f(0)°.

=0 a0 g(—2x°")  g(0)
Setting in (1) x=u/2, y=—u/2 one obtains

0=l (-55))
=4 (-5

and, consequently,

Hence, by (3),

tim 1) = tim (4 ¢ (1550 ") = 107 = 50

The continuity of the functions f and g at the point x=0 and equation (1) imply
the continuity of the function f at an arbitrary point.

To prove that also the function g is continuous everywhere notice that the function
h:x—(x—1)*"—x*—1 is a continuous function that maps R onto R. Setting in
(1) y=1 one obtains

fx=1
JS(x)

and since f'is a continuous function, the function g o ~:x—g(A(x)) is continuous
everywhere. Now, Lemma 1 implies the continuity of the function g.

g(h(x)) =

LeMMA 4. If the function f (f(x)#0) is continuous at the point x=0 and satisfies
equation (1), the functions f and g are continuous everywhere.

Proof. Setting in (1) x=2u, y=u one obtains

4) g(h(w) = }(—) with  hy(u) = —2""u™",
Setting in (1) x=—u, y=u one obtains
" _ f(—2u) s — (H2m__ 2m
4" g(hy(u)) _f_—(—u)f(u) with  hy(u) = Q""" —2)u"™™.
Let
hu) = hy(u) foru < 0'

ho(u) foru >0

The function / defined aboveis a continuous and strictly increasing function satisfy-
ing the condition 4(0)=0. Since the function f is continuous at the point #=0,
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equalities (4'), (4”) and (2) imply

llm g(h(w) = jTO) = g(0).

Applying Lemma 2 one concludes that the function g is continuous at the point
y=0 and, by Lemma 3, the functions f and g are continuous everywhere.

THEOREM. If the functions f (f(x)#0) and g satisfy equation (1) and at least one
of them is continuous at the point x=0, then

f(x) = Aexp(ax®™),

g(x) = /A
where A (A#0) and « are constants.

&)

Proof. Similarly as in the proof of Lemma 3 one can show that f(x)g(x)#O0.
Lemmas 3 and 4 imply the continuity of the functions fand g and it follows from
(1) that sgn f(x)=sgn g(x) for all x € R. Therefore it suffices to find only the
positive continuous solutions f, g of (1) considering the equation

(6) F(x—y) = F(x)+F(y)+G((x—y)*"—x*"—y*"),
where
(M F(x) =Inf(x), G(x)=1Ing(x).
The continuity of the functions Fand G follows from the continuity of the func-
tions fand g.

Multiplying (6) by —2m[(x—y)*™14y2™-1] and integrating with respect to y
from « to B one obtains
(8 T (x) = T y(X)F(x)+T 5(x)+T ),
where
2m—2
Tyx)=—2m 3 (2'" 1)( pyix2m-ii f WiF () du,
=0 x—p
T o(x) = (x—p)*"—(x—a)'"— " +a’",
2m—2
T ==m3 (7)o o a,

=0
T (x) =-£x——a)2m-x2m—z’m G(u) du.

The continuity of the functions F and G guarantees that the functions 7, 7 ,,
J s, 7 4 have continuous first derivatives. Therefore (8) implies that the function F
has the continuous first derivative at all the points x such that 7 ,(x)>0. Since I,
is a strictly monotonic function and 7 ,(0)=0, the function F has the continuous
first derivative in R\{0}.
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Notice now that the functions
hy:x — (x—i)"—=x""—i""  (i=1,2)

are strictly monotonic in R. (This follows from the continuity of A; and from the
fact that A;(x)=2m[(x—i)>"1—x2""1]0 which guarantees sgn ;(x)=const for
all x € R). Therefore A, are invertible functions. Moreover, #;* have the continuous
first derivatives in R. Setting in (6) y=1, h,(x)=(x—1)>m—x2m— 1 =u,, x=Hh; " (4;)
one proves the existence of the continuous first derivative of the function G in
R\{0, —2}. Similarly, setting in (6) y=2, hy(x)=(x—2)*m—x2"—-22"=y,, x=
h3'(u,) one proves the existence of the continuous first derivative of the function
G in R\{0, —2?m+1} Thus the function G has the continuous first derivative in

R\{0}.
Setting in (6) y=x—u one obtains
® F(u) = F(x)+F(x—u)+G(k(x, u),

where k(x, u)=u*™—x>"— (x—u)?*™.

If x €(1, 2) and |u|<1/4, k(x, u)<(1/2*™)—1—(1—1/4)*»< —1 and x—u>3/4.
Therefore the existence of the continuous first derivatives of the functions F and G
in R\{0} implies that the right-hand side of (9) is differentiable with respect to
u € (—1/4, 1/4) for every fixed x € (1, 2). Moreover,

u— -—F'(x—u)-l—ai k(x, u)G'(k(x, u))
u

is a continuous function and (9) implies the existence of the continuous first
derivative of the function Fin (—1/4, 1/4). Consequently, (6) implies the existence
of the continuous first derivative of the function G in a neighborhood of the point
x=0. This completes the proof of the fact that F, G € C*(R). Now, analogous
considerations allow one to prove that F, G € C3(R).

Differentiating (6) with respect to x and y one obtains

F'(x—y) = 2m(2m—1)(x—y)*"~*
X G/((x— )P —xtm— i) dmP(x— Pt - x*)
X [(x—y)*" 4y G (k= y)P =" — ).
Setting in the last equation y=0 one obtains
F'(x) = 2m(2m—1)G'(0)x*™2

and hence
F(x) = ax*"+ax+b with o = G'(0).

Since, by (6), F(y)=F(—y),
(10) F(x) = ax2m+b.
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Substituting this into (6) one obtains

(11) a(x—p)*" = a(x*"+y*")+ b+ G((x—y)*" —x""— y*m).

Setting in (11) y=x yields G(—2x*™)=—2ax?*™—b and hence G(u)=cu—>b for
u<0. Setting in (11) y=—x yields G((2*"—2)x*")=(2*"—2)ax*™—b and hence
G(u)=au—>b for u>0 which, together with (10) and (7), implies that the positive
continuous solutions f (f(x)#0), g of (1) have the form (5), where A=e"is an
arbitrary positive constant. In view of previous remarks all the solutions f, g of (1)
satisfying the assumptions of the theorem have the form (5), where 4 (40) is an
arbitrary constant.
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