On the Density of Cyclic Quartic Fields

Zhiming M. Ou and Kenneth S. Williams

Abstract. An asymptotic formula is obtained for the number of cyclic quartic fields over Q with discriminant $\leq x$.

1 Introduction

Let $h(n)$ denote the number of cyclic quartic fields over the rational number field Q with discriminant n. We consider

$$
N(x)=\sum_{n \leq x} h(n)
$$

In [1, Theorem 9] Baily proved

$$
\begin{equation*}
N(x) \sim \frac{3}{\pi^{2}}\left\{\frac{25}{24} \prod_{p \equiv 1(\bmod 4)}\left(1+\frac{2}{(p+1) \sqrt{p}}\right)-1\right\} x^{1 / 2} \tag{1.1}
\end{equation*}
$$

where p runs through primes $p \equiv 1(\bmod 4)$. Unfortunately Baily's generating function $f(s)=\sum_{n=1}^{\infty} \frac{h(n)}{n^{s}}$ is given incorrectly, and so the constant in (1.1) is wrong. In giving the Euler product for $f(s)$, Baily [1, p. 209] overlooks that the discriminant is $\frac{1}{2} f_{4}^{3} f_{2}^{2}$ in one case rather than $f_{4}^{3} f_{2}^{2}$ and so his term $4 \cdot 16^{-3 s}=4 \cdot 2^{-12 s}$ should be replaced by $4 \cdot 2^{-11 s}$.

In this paper, using the representation of a cyclic quartic field given by Hardy, Hudson, Richman, Williams and Holtz [2], see also [3], and an elementary method, we correct Baily's result and at the same time give an estimate for the error term. We prove

Theorem

$$
\begin{equation*}
N(x)=\frac{3}{\pi^{2}}\left\{\frac{24+\sqrt{2}}{24} \prod_{p \equiv 1(\bmod 4)}\left(1+\frac{2}{(p+1) \sqrt{p}}\right)-1\right\} x^{1 / 2}+O\left(x^{1 / 3} \log ^{3} x\right) \tag{1.2}
\end{equation*}
$$

[^0]
2 Representation of a Cyclic Quartic Field

In [2] the authors show that a cyclic quartic extension K of the rational number field Q can be expressed uniquely in the form

$$
\begin{equation*}
K=Q(\sqrt{A(D+B \sqrt{D})}) \tag{2.1}
\end{equation*}
$$

where A, B, D are integers such that

$$
\left\{\begin{array}{l}
A \text { is squarefree and odd } \tag{2.2}\\
B \geq 1, D \geq 2 \\
D \text { is squarefree and } D-B^{2} \text { is a square } \\
(A, D)=1
\end{array}\right.
$$

where (A, D) denotes the gcd of A and D. The discriminant $d(K)$ of K is given by
(2.3) d(K) $= \begin{cases}2^{8} A^{2} D^{3}, & \text { if } D \equiv 0(\bmod 2), \\ 2^{6} A^{2} D^{3}, & \text { if } D \equiv 1(\bmod 2), B \equiv 1(\bmod 2), \\ 2^{4} A^{2} D^{3}, & \text { if } D \equiv 1(\bmod 2), B \equiv 0(\bmod 2), A+B \equiv 3(\bmod 4), \\ A^{2} D^{3}, & \text { if } D \equiv 1(\bmod 2), B \equiv 0(\bmod 2), A+B \equiv 1(\bmod 4) .\end{cases}$

3 Proof of the Theorem

Let K be a cyclic quartic extension of Q. From (2.1)-(2.3) we see that the discriminant $d(K)$ of K is of the form

$$
\begin{equation*}
d(K)=2^{\alpha}\left(p_{1} \cdots p_{m}\right)^{2}\left(q_{1} \cdots q_{r}\right)^{3} \tag{3.1}
\end{equation*}
$$

where $\alpha=0,4,6$ or 11 and $p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{r}$ are distinct odd primes with $m \geq$ $0, r \geq 1$ if $\alpha=0,4,6, r \geq 0$ if $\alpha=11$, and $q_{j} \equiv 1(\bmod 4), j=1, \ldots, r$. We set

$$
\begin{equation*}
A=p_{1} \cdots p_{m}, \quad D=q_{1} \cdots q_{r} \tag{3.2}
\end{equation*}
$$

We note that A and D defined in (3.2) are slightly different from the A and D in Section 2.

If $\alpha=0$ then $n=d(K)=A^{2} D^{3}$ and $K=Q(\sqrt{\varepsilon A(D+B \sqrt{D})})$ for some $\varepsilon= \pm 1$ and some positive integer B such that

$$
B \equiv 0 \quad(\bmod 2), \quad B \equiv 1-\varepsilon p_{1} \cdots p_{m} \quad(\bmod 4), \quad D-B^{2}=\text { square. }
$$

Moreover distinct pairs (ε, B) give different fields K. Thus

$$
\begin{aligned}
h(n) & =\sum_{\substack{\varepsilon=-1,+1 \\
B \equiv 1-\varepsilon p_{1} \cdots p_{m} \\
D-B^{2}=\square}} \sum_{\substack{B+m^{2} \mid B \\
(\bmod 4)}} 1=\sum_{\substack{B>0,2 \mid B \\
D-B^{2}=\square}} 1 \\
& =\sum_{\substack{C>0,2 \nmid C \\
D-C^{2}=\square}} 1=\frac{1}{2} \sum_{\substack{B>0 \\
D-B^{2}=\square}} 1=\frac{1}{2} \sum_{\substack{B<0 \\
D-B^{2}=\square}} 1 \\
& =\frac{1}{4} \sum_{\substack{B \neq 0 \\
D-B^{2}=\square}}=\frac{1}{4} \sum_{\substack{B \\
D-B^{2}=\square}} 1=\frac{1}{8} \sum_{\substack{B, C \\
D=B^{2}+C^{2}}} 1=\frac{1}{8} r_{2}(D) \\
& =\frac{1}{8} 2^{r+2}=2^{r-1}=\frac{1}{2} d(D),
\end{aligned}
$$

where $r_{2}(k)$ denotes the number of representations of the positive integer k as the sum of two squares and $d(k)$ denotes the number of positive divisors of k.

If $\alpha=4$ then $n=d(K)=2^{4} A^{2} D^{3}$ and $K=Q(\sqrt{\varepsilon A(D+B \sqrt{D})})$ for some $\varepsilon= \pm 1$ and some positive integer B such that

$$
B \equiv 0 \quad(\bmod 2), B \equiv 3-\varepsilon p_{1} \cdots p_{m} \quad(\bmod 4), D-B^{2}=\text { square. }
$$

Moreover distinct pairs (ε, B) give different fields K. Thus

$$
h(n)=\sum_{\varepsilon=-1,+1} \sum_{\substack{B>0,2 \mid B \\ B \equiv 3-\varepsilon p_{1} \cdots p_{m} \\ D-B^{2}=\square}} 1=\sum_{\substack{B>0,2 \mid B \\ D-B^{2}=\square}} 1=\frac{1}{2} d(D) .
$$

If $\alpha=6$ then $n=d(K)=2^{6} A^{2} D^{3}$ and $K=Q(\sqrt{\varepsilon A(D+B \sqrt{D})})$ for some $\varepsilon= \pm 1$ and some positive integer B such that

$$
B \equiv 1 \quad(\bmod 2), \quad D-B^{2}=\text { square }
$$

Moreover distinct pairs (ε, B) give different fields K. Thus

$$
h(n)=2 \sum_{\substack{B>0,2 \nmid B \\ D-B^{2}=\square}} 1=2 \sum_{\substack{C>0,2 \mid C \\ D-C^{2}=\square}} 1=2^{r}=d(D) .
$$

If $\alpha=11$ then $n=d(K)=2^{11} A^{2} D^{3}$ and $K=Q(\sqrt{\varepsilon A(2 D+B \sqrt{2 D})})$ for some $\varepsilon= \pm 1$ and some positive integer B such that

$$
2 D-B^{2}=\text { square. }
$$

Moreover distinct pairs (ε, B) give different fields K. Thus

$$
\begin{aligned}
h(n) & =2 \sum_{\substack{B>0 \\
2 D-B^{2}=\square}} 1=2 \sum_{\substack{B<0 \\
2 D-B^{2}=\square}} 1=\sum_{\substack{B \neq 0 \\
2 D-B^{2}=\square}} 1 \\
& =\sum_{\substack{B \\
2 D-B^{2}=\square}} 1=\frac{1}{2} \sum_{\substack{B, C \\
2 D=B^{2}+C^{2}}} 1=\frac{1}{2} r_{2}(2 D)=\frac{1}{2} 2^{r+2}=2^{r+1}=2 d(D) .
\end{aligned}
$$

Summarizing we have

$$
h(n)= \begin{cases}2 d(D), & \text { if } n=2^{11} A^{2} D^{3}, \tag{3.3}\\ d(D), & \text { if } n=2^{6} A^{2} D^{3}, \\ \frac{1}{2} d(D), & \text { if } n=2^{4} A^{2} D^{3} \text { or } A^{2} D^{3} .\end{cases}
$$

Recalling that $D=1$ can only occur when $n=2^{11} A^{2} D^{3}$, we have

$$
\begin{aligned}
\sum_{n \leq x} h(n)=2 & \sum_{2^{11} A^{2} \leq x} 1+2 \sum_{2^{11} A^{2} D^{3} \leq x} d(D)+\sum_{2^{6} A^{2} D^{3} \leq x} d(D) \\
& +\frac{1}{2} \sum_{2^{4} A^{2} D^{3} \leq x} d(D)+\frac{1}{2} \sum_{A^{2} D^{3} \leq x} d(D),
\end{aligned}
$$

so that

$$
\begin{equation*}
\sum_{n \leq x} h(n)=2 \sum_{\substack{A \leq\left(x / 2^{11}\right)^{1 / 2} \\ A \text { squarefree } \\ A \text { odd }}} 1+2 S\left(2^{-11} x\right)+S\left(2^{-6} x\right)+\frac{1}{2} S\left(2^{-4} x\right)+\frac{1}{2} S(x) \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
S(x)=\sum_{A^{2} D^{3} \leq x} d(D) \tag{3.5}
\end{equation*}
$$

and the sum is over all positive integers A and D such that

$$
\begin{equation*}
A=p_{1} \cdots p_{m} \quad(m \geq 0), D=q_{1} \cdots q_{r} \quad(r \geq 1) \tag{3.6}
\end{equation*}
$$

where $p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{r}$ are distinct odd primes with $q_{j} \equiv 1(\bmod 4)(j=$ $1, \ldots, r)$. We set
(3.7) $\mathcal{P}=\left\{D \mid D=q_{1} \cdots q_{r}(r \geq 1), q_{1}, \ldots, q_{r}\right.$ are distinct primes $\left.\equiv 1(\bmod 4)\right\}$, so that

$$
\begin{equation*}
S(x)=\sum_{\substack{D \leq x^{1 / 3} \\ D \in \mathcal{P}}} d(D) \sum_{\substack{1 \leq A \leq \sqrt{x D^{-3}} \\ A \\ \text { Asuarefree } \\(A, 2 D)=1}} 1 \tag{3.8}
\end{equation*}
$$

Note that $1 \notin \mathcal{P}$.

$$
\begin{aligned}
& \text { We first estimate } \sum_{\substack{A \leq y \\
A \text { squarefree } \\
A \text { odd }}} 1 \text {, where } y=\left(x / 2^{11}\right)^{1 / 2} \text {. We have } \\
& \qquad \begin{aligned}
\sum_{\substack{A \leq y \\
A \text { squarefree } \\
A \text { odd }}} 1 & =\sum_{\substack{A \leq y \\
A \text { odd }}} \sum_{d^{2} \mid A} \mu(d) \\
& =\sum_{\substack{d \leq y^{1 / 2} \\
d \text { odd }}} \mu(d) \sum_{\substack{a \leq y / d^{2} \\
a \text { odd }}} 1 \\
& =\sum_{\substack{d \leq y^{1 / 2} \\
d \text { odd }}} \mu(d)\left(\frac{y}{2 d^{2}}+O(1)\right) \\
& =\frac{y}{2} \sum_{\substack{d^{1 / 2} \\
d \text { odd }}} \frac{\mu(d)}{d^{2}}+O\left(y^{1 / 2}\right) \\
& =\frac{y}{2} \sum_{\substack{d=1}}^{\infty} \frac{\mu(d)}{d_{\text {odd }}}+O\left(y^{1 / 2}\right) \\
& =\frac{y}{2} \prod_{p \neq 2}\left(1-\frac{1}{p^{2}}\right)+O\left(y^{1 / 2}\right) \\
& =\frac{y}{2}\left(1-\frac{1}{2^{2}}\right)^{-1} \prod_{p}\left(1-\frac{1}{p^{2}}\right)+O\left(y^{1 / 2}\right) \\
& =\frac{4}{\pi^{2}} y+O\left(y^{1 / 2}\right) \\
& =\frac{x^{1 / 2}}{2^{7 / 2} \pi^{2}}+O\left(x^{1 / 4}\right)
\end{aligned}
\end{aligned}
$$

We now turn to the estimation of $S(x)$. The inner sum in (3.8) is

$$
\begin{aligned}
\sum_{\substack{A \leq \sqrt{x D^{-3}}(A, 2 D)=1}} \sum_{d^{2} \mid A} \mu(d) & =\sum_{\substack{d \leq\left(x D^{-3}\right)^{1 / 4} \\
(d, 2 D)=1}} \mu(d) \sum_{\substack{a \leq d^{-2} \sqrt{x D^{-3}}(a, 2 D)=1}} 1 \\
& =\sum_{\substack{d \leq\left(x D^{-3}\right)^{1 / 4} \\
(d, 2 D)=1}} \mu(d) \sum_{e \mid 2 D} \mu(e) \sum_{b \leq e^{-1} d^{-2} \sqrt{x D^{-3}}} 1 \\
& =\sum_{e \mid 2 D} \mu(e) \sum_{\substack{d \leq\left(x D^{-3}\right)^{1 / 4} \\
(d, 2 D)=1}} \mu(d)\left[\frac{\sqrt{x D^{-3}}}{d^{2} e}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \sqrt{x D^{-3}} \sum_{e \mid 2 D} \frac{\mu(e)}{e} \sum_{\substack{d \leq\left(x D^{-3}\right)^{1 / 4} \\
(d, 2 D)=1}} \frac{\mu(d)}{d^{2}}+O\left(d(2 D)\left(\frac{x}{D^{3}}\right)^{1 / 4}\right) \\
= & \sqrt{x D^{-3}} \sum_{e \mid 2 D} \frac{\mu(e)}{e} \sum_{(d, 2 D)=1} \frac{\mu(d)}{d^{2}}+O\left(d(D)\left(\frac{x}{D^{3}}\right)^{1 / 4}\right) \\
& +O\left(\left(\frac{x}{D^{3}}\right)^{1 / 2} \sum_{e \mid 2 D} \frac{1}{e}\left(\frac{x}{D^{3}}\right)^{-1 / 4}\right) \\
= & \sqrt{x D^{-3}} \frac{\varphi(2 D)}{2 D} \frac{6}{\pi^{2}}\left(\prod_{p \mid 2 D}\left(1-\frac{1}{p^{2}}\right)^{-1}\right)+O\left(d(D)\left(\frac{x}{D^{3}}\right)^{1 / 4}\right)
\end{aligned}
$$

since

$$
\begin{aligned}
\sum_{\substack{d=1 \\
(d, 2 D)=1}}^{\infty} \frac{\mu(d)}{d^{2}} & =\prod_{(p, 2 D)=1}\left(1-\frac{1}{p^{2}}\right)=\prod_{p}\left(1-\frac{1}{p^{2}}\right) / \prod_{p \mid 2 D}\left(1-\frac{1}{p^{2}}\right) \\
& =\frac{1}{\zeta(2)} \prod_{p \mid 2 D}\left(1-\frac{1}{p^{2}}\right)^{-1}=\frac{6}{\pi^{2}} \prod_{p \mid 2 D}\left(1-\frac{1}{p^{2}}\right)^{-1}
\end{aligned}
$$

and Euler's phi function $\varphi(n)=n \sum_{d \mid n} \frac{\mu(d)}{d}$. Thus

$$
\begin{aligned}
& S(x)= \frac{3}{\pi^{2}} x^{1 / 2} \sum_{\substack{D \leq x^{1 / 3} \\
D \mathcal{P}}} d(D) \varphi(D) D^{-5 / 2} \prod_{p \mid 2 D}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
&+O\left(x^{1 / 4} \sum_{\substack{D \leq x^{1 / 3} \\
D \in \mathcal{P}}} d^{2}(D) D^{-3 / 4}\right) \\
&=\frac{4}{\pi^{2}} x^{1 / 2} \sum_{\substack{D=1 \\
D \in \mathcal{P}}}^{\infty} d(D) \varphi(D) D^{-5 / 2} \prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
&+O\left(x^{1 / 2} \sum_{\substack{D x^{1 / 3} \\
D \in \mathcal{P}}} d(D) \varphi(D) D^{-5 / 2}\right)+O\left(x^{1 / 4} \sum_{\substack{D \leq x^{1 / 3} \\
D \in \mathcal{P}}} d^{2}(D) D^{-3 / 4}\right),
\end{aligned}
$$

as

$$
\prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1}=\frac{\pi^{2}}{6} \prod_{p \nmid D}\left(1-\frac{1}{p^{2}}\right)<\frac{\pi^{2}}{6} .
$$

Clearly

$$
\sum_{\substack{D=1 \\ D \in \mathcal{P}}}^{\infty} d(D) \varphi(D) D^{-5 / 2} \prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1}=\prod_{p \equiv 1(\bmod 4)}\left(1+\frac{2}{(p+1) \sqrt{p}}\right)-1 .
$$

It remains to estimate $R_{1}=\sum_{\substack{D \leq x^{1 / 3} \\ D \in \mathcal{P}}} d^{2}(D) D^{-3 / 4}$ and $R_{2}=\sum_{\substack{D>x^{1 / 3} \\ D \in \mathcal{P}}} d(D) \varphi(D) D^{-5 / 2}$.
Firstly

$$
\begin{aligned}
\sum_{\substack{D \leq x \\
D \in \mathcal{P}}} d^{2}(D) & =\sum_{\substack{D \leq x \\
D \in \mathcal{P}}} d(D) \sum_{\substack{a \mid D}} 1=\sum_{\substack{a b \leq x \\
a b, b \in \mathcal{P} \\
(a, b)=1}} d(a b)+2 \sum_{\substack{D \leq x \\
D \in \mathcal{P}}} d(D) \\
& \leq \sum_{\substack{a \leq x \\
a \in \mathcal{P}}} d(a) \sum_{\substack{b \leq x / a \\
b \in \mathcal{P}}} d(b)+2 \sum_{\substack{D \leq x \\
D \in \mathcal{P}}} d(D) \\
\sum_{\substack{D \leq x \\
D \in \mathcal{P}}} d(D) & =\sum_{\substack{D \leq x \\
D \in \mathcal{P}}} \sum_{a \mid D} 1 \leq \sum_{\substack{a \leq x \\
a \in \mathcal{P}}}\left(2+\sum_{\substack{b \leq x / a \\
b \in \mathcal{P}}} 1\right) \ll x \log x,
\end{aligned}
$$

so

$$
\begin{aligned}
\sum_{\substack{D \leq x \\
D \in \mathcal{P}}} d^{2}(D) & \ll x \log x+\sum_{\substack{a \leq x \\
a \in \mathcal{P}}} d(a) \frac{x}{a} \log \frac{x}{a} \\
& \ll x \log x+x \log x \sum_{\substack{a \leq x \\
a \in \mathcal{P}}} \frac{d(a)}{a} \\
& \ll x \log ^{3} x .
\end{aligned}
$$

By partial summation we have

$$
\begin{aligned}
R_{1} & =x^{-\frac{1}{4}} \sum_{\substack{D \leq x^{1 / 3} \\
D \in \mathcal{P}}} d^{2}(D)-\int_{1}^{x^{1 / 3}}\left(\sum_{\substack{D \leq y \\
D \in \mathcal{P}}} d^{2}(D)\right) d\left(y^{-3 / 4}\right) \\
& =O\left(x^{1 / 3-1 / 4} \log ^{3} x\right)=O\left(x^{1 / 12} \log ^{3} x\right)
\end{aligned}
$$

and

$$
R_{2} \leq \sum_{\substack{D>x^{1 / 3} \\ D \in \mathcal{P}}} d(D) D^{-3 / 2}=-\int_{x^{1 / 3}}^{\infty}\left(\sum_{\substack{D \leq y \\ D \in \mathcal{P}}} d(D)\right) d\left(y^{-3 / 2}\right)=O\left(x^{-1 / 6} \log x\right)
$$

Therefore

$$
S(x)=\frac{4 c_{0}}{\pi^{2}} x^{1 / 2}+O\left(x^{1 / 3} \log ^{3} x\right)
$$

where

$$
c_{0}=\prod_{p \equiv 1(\bmod 4)}\left(1+\frac{2}{(p+1) \sqrt{p}}\right)-1
$$

and

$$
\begin{aligned}
\sum_{n \leq x} h(n)= & \frac{x^{1 / 2}}{2^{5 / 2} \pi^{2}}+O\left(x^{1 / 4}\right) \\
& +\frac{4 c_{0}}{\pi^{2}}\left(2 \cdot 2^{-11 / 2}+2^{-3}+\frac{1}{2} 2^{-2}+\frac{1}{2}\right) x^{1 / 2}+O\left(x^{1 / 3} \log ^{3} x\right) \\
= & \left(\frac{(24+\sqrt{2})}{8 \pi^{2}} c_{0}+\frac{\sqrt{2}}{8 \pi^{2}}\right) x^{1 / 2}+O\left(x^{1 / 3} \log ^{3} x\right) \\
= & \left(\frac{24+\sqrt{2}}{8 \pi^{2}} \prod_{p \equiv 1(\bmod 4)}\left(1+\frac{2}{(p+1) \sqrt{p}}\right)-\frac{24}{8 \pi^{2}}\right) x^{1 / 2}+O\left(x^{1 / 3} \log ^{3} x\right) \\
= & \frac{3}{\pi^{2}}\left\{\frac{24+\sqrt{2}}{24} \prod_{p \equiv 1(\bmod 4)}\left(1+\frac{2}{(p+1) \sqrt{p}}\right)-1\right\} x^{1 / 2}+O\left(x^{1 / 3} \log ^{3} x\right) .
\end{aligned}
$$

This completes the proof of (1.2).

References

[1] A. M. Baily, On the density of discriminants of quartic fields. J. Reine Angew Math. 315(1980), 190-210.
[2] K. Hardy, R. H. Hudson, D. Richman, K. S. Williams and N. M. Holtz, Calculation of class numbers of imaginary cyclic quartic fields. Carleton-Ottawa Math. Lecture Note Series 7, July 1986.
[3] R. H. Hudson and K. S. Williams, The integers of a cyclic quartic field. Rocky Mountain J. Math. 20(1990), 145-150.

Department of Basic Science
Beijing University of Posts and
Telecommunications
Beijing 100876
People's Republic of China

Centre for Research in Algebra
and Number Theory
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario
K1S 5B6
williams@math.carleton.ca

[^0]: Received by the editors March 11, 1999.
 Research of the first author was supported by the China Scholarship Council. Research of the second author was supported by Natural Sciences and Engineering Research Council of Canada grant A-7233.

 AMS subject classification: 11R16, 11R29.
 Keywords: cyclic quartic fields, density, discriminant.
 (c)Canadian Mathematical Society 2001.

