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An Extension of Clairaut's Differential Equation.

By H. LEVY.

(Bead 8th March 1912. Received 12th March 1912).

§1. I propose in this paper to investigate the geometrical
nature of a certain species of differential equation, which includes,
as a particular case, Clairaut's well worn equation

We may regard any ordinary differential equation

#w)=o 0)
either from a purely analytical or from a geometrical standpoint. We
shall only consider, for the moment at least, the latter point of view.
Commencing at any point (x,y,) in the plane, equation (1) defines
a finite number of directions associated with that point. Restricting
ourselves to any one of these branches, and moving for an infini-
tesmal distance along it, to the neighbouring point («, + A ^ ,
yi + Ayj) we are enabled, once more by (1), to determine the
gradient of the same branch at this point, and so on by repeating
this process we gradually trace out an integral curve of the
differential equation. Generally, the whole system of integral
curves in the plane may be considered to be exhaustively traced
out if we suppose any curve C extending across the plane, and from
every point of it, integral curves start off in the directions deter-
mined by equation (1) at the point. The gradients of the integral
curves at the points of section with C will in general be all
different, but it will be possible so to choose C that the tangents
to corresponding branches of the integrals where they cross be
parallel.

The curve C is then the locus of points of constant gradient
on the system defined by (1), and therefore C is merely one, of an
infinity of such curves given by

<K*y<0=o (2)
A system such as (2) is termed the " Isoclinal Family " of (1).
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But the curves given by (2) may equally well be regarded as
the integral system of some differential equation

which itself has an isoclinal family

The first interesting case arises when this latter system is
identical with the integral curves of (1), that is to say, <j>(xyp) = 0
and J\xyp) = 0 are mutually isoclinal.

In this case the solution of

<f>(xyp) = 0 is

and of f{%yp) = 0 is 4>{xyc) = 0.

For example, consider the differential equation
xs-px + y = 0,

the solution of which is
a? + ex - y = 0.

The isoclinal family is
3? - ex + y = 0,

and its differential equation
a;2 + px — y = 0,

a system whose isoclinals are given by
x2 + ex - y = 0.

The two families of parabolas

x2 — ex + y — 0

must therefore be mutually isoclinal.

A more interesting case arises, however, when the isoclinal
system is identical with the original curves, that is to say, the
system of curves are their own isoclinals, and each member is cut
by all the others at the same inclination. (j>(xyc) = Q will now
be the complete integral of <j>(xyp) = 0.

The gradient at any point (xy) is given by

<

where c is to be substituted as a function of x and y from
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If <f>(xycj) = 0 be any member of the system, the gradient of all the
curves crossing it is given by p = et.

Hence the condition that <f>(xyp) = 0 be self isoclinal is that the
elimination of c and Cj between

c, = - fx(y)l^,(y)
Q I (3)

should lead to an identity in x and y.
Stated in the general form (3) it becomes excessively difficult

to determine the form <j> must assume to satisfy the required
conditions, but there is one case of especial interest which we can
treat. If we assume, for the moment, 0 = ^ the problem becomes,
to determine the function <j>(xyp) = 0, to satisfy the condition

<f,x{xyp)+p4>ll(xyp) = 0 (4)
Suppose

4> = ,k.p" + , Ap- 1 + .Ap-2 + ... + n_,Ap + „ A = 0 (5)

where rA is some function of (xy) to be determined. On sub-
stituting the expression (5) in the condition (4), and equating the
coefficients of the powers of p to zero, we obtain the equations:—

(i) oA, = O

••• iA= -y^'(as)+ &(«:)
(iii) 1A,= -1A.«yfc"(«)

.-. , A = j ^ 0 > ) - # . ' ( * )
2!

etc., etc.

(n + l) nAx = 0.

•*• ^o(n|> ^I ' "" 1 1 ) •••^'ii a r e al l cons tan t s .

Hence ^ is an arbitrary function of the n01 degree, ^, of the

n - 1th degree, <pr of the n - r0" degree, and \pn is a constant, and the
coefficients in (5) are thus completely determined.
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Consider in particular the following example which will serve
to illustrate the foregoing.

Suppose
V̂  = *2> 4/i = x - !. & = 1

then the equation formed according to the above is
x*p* + (x- l-2xy)p + y'-y + 1=0,

and its solution will therefore be
*V + (x - 1 - 2xy)c + y- - y + 1 = 0.

But on solving the proposed equation for y it may be thrown
into the form

1+

which is in the form of Clairaut's equation.
And quite generally it can be shown that every equation of the

type (5) already determined must admit of being thrown into
Clairaut's form. This may be made at once evident, either by
grouping the terms of equation (5), or by regarding the original
condition (4) as a partial differential equation with xyp as
independent variables, as follows :—-

dx dy dp d<j>
= = =

where J is arbitrary, or in the more usual form
y-px=J\p).

It is worthy of remark that the condition (4) affords a valuable
test to determine whether any given equation may be thrown
directly into Clairaut's form.

Suppose, for example, that
4> =p>(x° - a? - 1) - p\Zx*y - 2*2/ + 1) + py*(3x - 1) - y> = 0.

Applying the condition (4) we obtain

4>, + P<t>, = (3a:3 - 2o:)p3 - (Qxy -

+p[- 3*y + Ixtf + 2y(3x -
= 0.
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Hence the condition is satisfied, and the complete solution is
therefore

<?(a? - x2 - 1) - c2(3aay - 2xy + 1) + cf(3x - 1) - y3 = 0.

The equation may in fact be represented in the form

(xp - y)3 -p(xp - yf - p*(p + 1) = 0.

We may illustrate this with a further example,

<f> =p* + JBV - 2p(\ + x + xy) + (y + If = 0.

Here <k +p<t>t = 2xp2 -2(y+\)p + 2(y + l)p - 2xp2 = 0,

and the solution is therefore given by

As before, the equation may otherwise be written
(xp - yf - 2(xp - y) +p3 - 2p + 1 = 0.

If a differential equation, therefore, satisfies the condition
<t>x+p4>, = 0, whether it be possible to solve for y algebraically or
not, and in general it will not, the integral is given by replacing
p by c in the original equation.

Clairaut's equation, however, represents a system of straight
lines, and it might be asked in what sense such a system can be
regarded as self-isoclinal, since any one member is cut by all the
others in general at various angles.

But the assumption c = c1 in the conditions (3), by which we
arrived at this form, is in reality equivalent to the statement that
every member of the system of curves is met by itself at a constant
inclination, that is to say, the inclination of the curve at all points
of it is constant, and consequently it represents a straight line.
Each member is an isoclinal for itself.

§2. But after all, the assumption 0 = 0, would appear to be
merely a very particular case of the general problem, while from
the geometrical point of view there is every reason to suppose that
forms of (f> may exist other than Clairaut's, which represent a
a system of self-isoclinals.

The question may be considerably simplified by the following
consideration, which gives an insight into the problem so far as to
indicate how such equations may arise analytically.
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Suppose, if possible, that

0 (1)
is solved for p in terms of x and y, and expressed finally in the
form

X+P* = 0 (6)
where x a n d ^ are irrational functions of x and y, containing many
ambiguities as regards sign. The rationalization of (6) will give
rise to (1).

Consider the conditions which must be imposed on x and ^ in
order that

X+cf = 0 (7)
may be the solution of (6), in which case on rationalization a form
of <f> will be evolved of the required type.

On differentiating (7) we obtain

and eliminating p and c by means of (6) and (7) the condition is
obtained

(8)

Regarding (8) as a partial differential equation, the solution is
evidently

V + xxlt "A ~
where,/is an arbitrary function.

But from equation (6)

hence
y-px=/(P)

must be the differential equation sought, and this is of Clairaut's
form once more. But if we glance back to equations (6) and
(7) the reason is at once evident, for we have chosen x and y\i in
the former identical with those in the latter, whereas these
functions were capable of numerous ambiguous forms. We have
in fact chosen one of the branches of (1) at any point and made it
isoclinal to itself everywhere, thus giving rise, as already seen earlier
in the paper, to Clairaut's equation, whereas what ought to be done,
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is to choose two branches of (1) passing through any point, and
make these isoclinal everywhere in the plane. Therein lies the
true extension of Clairaut's equation.

Expressed analytically, if

0 (10)

be two equations such as (6), where \ i and Xs» ^i and ̂ 2 differ only
as regards the signs of the irrational parts involved, then (10) and
(11) on rationalization will lead to the same equation. It follows
immediately that if the solution of (10) be

then the solution of the rationalized equation

is 4>(xyc) = 0.

For example, consider the case where <f> is of the second degree
in p, so that we may write

P = X+
and suppose that the solution of this is

Differentiating the latter and inserting the value of p from the
former, we obtain the equation

In order that p may appear in the final equation to the second
degree, it will be sufficient to determine x a n d f to satisfy these
conditions

As an illustration, suppose x» = 0 ; then

X = ex + d/2c,
where c, d, and/are constants.

When c = l d = 0 f=Q
p = x+ J2y - x*,

that is, p*-px+2x*-2y =

the solution of which is c2 - 2cx + 23?-2y
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The last equation represents a system of parabolas, any member
of which is cut by all the others at the same inclination. (See fig.)

Suppose Xx = 0 in (13), then

Taking e = 1, d = 0, a = 1, we get the equation

that is, p*

and its solution is cs - Icy - e* — 0,
a system possessing a curious property, to which we shall return.
In the same manner, by making certain assumptions as regards
if/ or \, numerous other examples may be constructed illustrating
the above.

There is a special property of Clairaut's differential equation
which appears at first sight not to be necessarily shared by the
generalized equation as we view it, and that is, the fact that every
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system of Clairaut's typo possesses a singular solution as envelope
locus.

Now, in discussing the question geometrically, it was tacitly
assumed that every member of the self-isoclinal system was cut by
every other, and therefore by its consecutive, but this is not
necessarily true. For example, in the case above quoted,

no two members, for which c has the same sign, intersect in real
points.

If we restrict ourselves to such families of curves where every
member meets every other, then it can easily be shown that every
such system must have an envelope locus. For, consider the
the behaviour of three such consecutive curves e - Ac, c, c + Ac, at
their points of intersection, A, B, C. (See fig.)

C+AC C C-AC

The gradient at A of c is c - Ac, the gradient at D of c + Ac
is c, and therefore the gradient of AD lies between c - Ac and
c + Ac, and hence in the limit DA will be an elemental tangent of
inclination c, and this can be repeated continuously in the two

directions DA and AD, and thus we trace out an envelope locus,
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the gradient at any point of which is equal to the constant deter-
mining the particular member of the isoclinals which touches the
envelope at the point in question.

The equation
jr - 2px + 2x2 -2y = 0,

representing a system of self-isoclinals, has, for example, the
singular solution

a ? - 2 y - 0 ;
while in the case of

j»» -2 W -«* -0 ,

any two consecutive members of the system meet in an imaginary
point having contact there with the imaginary envelope
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