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Abstract. There is an interesting duality between some of the concepts of ergodic
theory and those of topological dynamics. This paper is a first attempt at developing
a topological analogue to the measure-theoretic notion of a transformation having
minimal self-joinings. The main problem is to understand the dynamics of the
composition of a cartesian product of powers of a transformation having topological
minimal self-joinings with a compact permutation of the coordinates. Most of the
results are about the minimal subsets of such a composition.

0. Introduction
Rudolph [9] introduced the concept of minimal self-joinings (MSJ) to build examples
of exotic ergodic behaviour. His example of MSJ was not in the context of a concrete
homeomorphism of a familiar compact metric space. Since then del Junco, Rahe
and Swanson [3] have shown that Chacon's example [1] has MSJ. This example can
be constructed by 'doubling the ones' in a certain symbolic almost automorphic
minimal set whose maximal equicontinuous factor is the 3-adic integers. This
construction is analogous to that used by Furstenberg, Keynes and Shapiro [5] to
construct a proximal orbit dense (POD) flow. In fact, del Junco [2] has pointed out
that Chacon's example is a POD flow. (The author was also aware of the existence
of POD flows similar to the Chacon example [8].)

These developments raise two natural questions. What is the relationship between
MSJ and POD? What is the topological analogue of MSJ? Del Junco [2] has partially
answered the first question. This paper is devoted to the second question and
proceeds from the premise that minimal sets should be analogous to ergodic
measures. This produces an interesting theory, but the results thus far are not as
good as one might desire.

The main thrust of our work is to study the dynamics of the obvious maps which
commute with a countable power of a system with topological minimal self-joinings.
In other words, we investigate Rudolph's U{ir, I) maps from a topological rather
than measure theoretic viewpoint. Moreover, our analysis focuses on the minimal
subsets of these maps.

1. Preliminaries
Let X be a compact metric space. Given a homeomorphsim T of X onto itself, the
pair (X, T) will be called a flow. The flow (X, T) is (topologically) ergodic if every
proper closed invariant set is nowhere dense, and (topologically) weak mixing if
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(X xX, TxT) is ergodic. The flow (X, T) is point transitive if there exists a point
xeX whose orbit {Tnx: neZ} is dense in X. (As usual Z denotes the integers.)
Because X is metric the Baire category theorem can be used to show that weak
mixing implies point transitive. A stronger notion than ergodicity is minimality
which means there are no proper closed invariant subsets. Equivalently a flow is
minimal if every orbit is dense. A minimal subset of (X, T) is, of course, a closed
invariant subset M of X such that (M, T \ M) is a minimal flow. The flow (X, T) is
totally minimal if (X, T") is minimal for all n e Z, n ̂  0. Keynes has shown that a
flow which is both weak mixing and minimal is totally minimal [6, theorem 3.1].

A homomorphism from (X, T) to (Y, S) is a continuous map <p from X to Y
such that <pT = S<p. The terms isomorphism, automorphism, and endomorphism will
be used in the usual way. We will say (Y, S) is a factor of (X, T) or (X, T) is an
extension of (Y, S) if there exists an onto homomorphism from (X, T) to (Y, S).
If <p is a homomorphism of (X, T) onto (Y, S), then

R = {(*i, x2) eXxX: <p(Xi) = cp(x2)}
is a closed invariant equivalence relation on X. Conversely, any closed invariant
equivalence relation on X determines a factor (X/R, S) of (X, T). We will say a
factor is proper if the corresponding closed invariant equivalence relation is not the
diagonal

A = {(x1,x2)eXxX:xl = x2}.

The proximal relation P for a flow (X, T) is the set of all points (x, y) e X x X such
that there exists a sequence of integers {&,} for which

lim Tk'x = lim Tk<y.

We say JC and y are proximal when (*, y) € P and d/sta/ when (x, y) g P. Suppose
(Y, S) is a factor of (X, T) determined by the closed invariant equivalence relation
R on X. Then (X, T) is called a proximal extension if /? <= P and a dista/ extension
if i ? n P = A.

One other kind of extension will occur in this paper. Suppose G is a compact
topological group acting continuously on X such that gT = Tg for all geG. Then

R={(xux2);x2 = gxl for some geG}

is a closed invariant equivalence relation on X. We will call (X, T) a group extension
of (X/R, S). Note that any finite group of automorphisms determines a group
extension.

Since we will be working primarily with cartesian products of powers of
T: X -» X, it will be convenient to have some simple notation for handling them.
Let D be a countable set (finite or infinite). Then each aeZD defines a flow
(XD, a) by

(ax)(d)=Ta{d)x(d).

Here we are thinking of aeZD and xeXD as functions from D into Z and X
respectively. In this notation T"x would be nx and (X x X, T x T3) would be
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{X2, (1, 3)). (When F is finite with cardinality k, we assume D = {1,2,..., k} and
write Xk instead of XD.)

PROPOSITION 1.1. Suppose (X, T) is weak mixing and minimal. Then {XD, a) is
weak mixing if and only if a(d) # 0 for all deD.

Proof. If some a(d) = 0, then obviously there exist proper open invariant sets.
Assume a(d)^0 for all deD and D is finite. Then (X, T") is weak mixing for

n ;*0 [6, theorem 2.6], and by repeated applications of lemma 5.1 of [6], (XD, a)
is weak mixing. The infinite case follows easily from the finite case. •

COROLLARY 1.2. Let (X, T) be a weak mixing minimal flow. Then for D countable
(XD, a) is point transitive if and only if a(d) # 0 for all deD.

2. Elementary properties of TMSJ
For each a eZD there is a natural embedding of (X, T) in (XD, 1) where l(d) = 1
for all d in D. Define the diagonal by

& = {xeXD:x(d) = x(d') for all d, d' e D}

and set F(a) = a A, which is called an off-diagonal. In other words, x e F(a) if and
only if there exists yeX such that x(d) = Ta(d)y for all d. Clearly F(a) is closed
and invariant under 1. Alternatively, the off-diagonals can be thought of as graphs,
for example, when a = (0, fc)eZ2, then F(a)is just the graph of Tk. When fceZ,
we set F(fc) = X

PROPOSITION 2.1. Suppose (X, T) has at least one infinite orbit, and let a, fi eZD.
Then the following hold:

(a) F(a) = F(/3) if and only if there exists an integer k such that a = /3 + fcl;
(b) aF(/3) = F(/3) if and only if a = kl.

Proof, (a) Let y e X such that T"y ^ y for all n # 0. Suppose there exists y' eX
such that Ta(d)y=Tfi(d)y' for all deD. It follows that

for all d,d'eD. Let k be the common value fora(d) — p{d). The converse is obvious.
(b) Note that aF(/3) =F(a+/3) and use (a). •

Clearly (F()8), k\) is always isomorphic to {X, Tk). We want a similar fact for any
aelD instead of fcl. Let A c Z b e the range of a and for je A set Dj = a~l(j),
which partitions D. Define A eZA by A(/)=/ Then for any |8,eZD', je A, (XA, A)
is isomorphic to the flow

\jeA

where l\jEAr(/3j) is, in the natural way, viewed as a subset of XD. We will refer
to {£>,},£ A as the canonical partition determined by a and to A as the canonical
injection determined by a.

PROPOSITION 2.2. Let (X, T) be a minimal non-periodic flow, and let a e ZD. Suppose
is a partition of D and 0, eZD> for ; e A such that l\j£A F(/3;) is a minimal
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subset of (XD, a). Then {Dj}jeA is the canonical partition determined by a and
(XA, A) is minimal, where A is the canonical injection determined by a. Moreover,
a(d)*O foralldeD.

Proof. Let a, = a|£>,. Then a t f W Hft)) = Jl>eA T(fii) implies a,-r(iS,) = r(0y) and
a, = kjl, kj € Z. Thus a(d) = a(d') for all d, d' e Dj. If fe; = fcf for; # /, then n,£A r(j8y)
is not minimal because (X2, (k, k)) is never minimal. The rest is obvious. •

Suppose (X, T) has a unique invariant measure fi, and T has minimal self-joinings
when viewed as a measure preserving transformation. Roughly speaking, minimal
self-joinings means every invariant measure for (XD, a), a(d) ^ 0 for all d, with all
its marginals equal to /J. is a product of the natural copies of /x on off-diagonals. (See
the introduction to [9].) Let M be a minimal subset of (XD, a) where a(d) # 0 for
all de D. There exists an ergodic invariant measure v for (XD, a) with support M.
Clearly, the marginals of v are all /x. Therefore, v is the product of off-diagonal
measures. In particular, there exists a partition {D;};e A of D and /?; e 2 D ' such that

This suggests the following definition: the flow (X, T) has topological minimal
self-joinings (TMSJ) if (X, T) is (topologically) weak mixing and given a e 1D with
D countable and a(d) ^ 0 for all deD, then every minimal subset M of {XD, a)
is of the form

M=nr(ft)
;eA

for some partition {D;-}yeA of D and y3, e ZDK When the above holds only under the
more restrictive condition that a(d)>0 for all d, we add the adjective 'positive'
(PTMSJ). Note TMSJ and PTMSJ imply (X, T) is minimal and TMSJ implies PTMSJ.

PROPOSITION 2.3. Suppose (X, T) has TMSJ {PTMSJ} and aeZD with a(d)*0
{a(d) > 0} for all de D. The following are equivalent:

(a) a is injective, i.e. a(d) # a(d') for all d # d';
(b) (XD, a) is minimal;
(c) (XD, a) is totally minimal.

Proof. Use the definitions and proposition 2.2.

PROPOSITION 2.4. Suppose (X, T) has TMSJ {PTMSJ} and aeZD with a(d)*0
{a(d)>0} for all deD. If <p is an endomorphism of (XD,a) and (XD,a) is
minimal, then tp = (2 for some /3 in Z°. In particular, if <p is an endomorphism of
(X, T), then <p = T" for some neZ.

Proof. Consider the minimal set M = {(x, cpx): xeXD}, and apply proposition 2.2.
to(XDxXD,aXa). D

It is also easy to prove the following:

PROPOSITION 2.5. / / (X, T) has TMSJ {PTMSJ}, then every factor of {X, T) has
TMSJ {PTMSJ}.
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A flow (X, T) is called a proximal orbit dense (POD) flow if (X, T) is totally minimal
and whenever x, y e X with x # y, then for some n # 0, x and T"y are proximal.
Equivalently, (X, T) is a POD flow if it is totally minimal and when x^y,

Cl {T"x, T"y): neZ}=> T(0, k)

for some k ^ 0. It follows that when (X, T) is a POD flow the minimal subsets of
(X x X, TxT) are precisely the sets T(a),ae Z2; this concept is due to Furstenberg.
Keynes and Shapiro [5] who showed that POD flows are prime, i.e. if (Y, S) is a
factor of a POD flow (X, T), then (Y, T) is either isomorphic to (X, T) or is the
trivial minimal flow on a single point. They also showed that if (X, T) is a POD flow,
then either (X, T) is isomorphic to (X, T'1) or

(X2, (1,-1)) = (XXX, TXT"1)

is minimal. Moreover, it is known that POD flows must occur on metric spaces [6,
lemma 2.1 and theorem 2.2].

THEOREM 2.6. // (X, T) is a POD flow, then (X, T) has PTMSJ or TMSJ according
to whether (X, T) is or is not isomorphic to (X, T"1).

Proof. Let a be an element of ZD satisfying the required conditions. Let A and A
denote the canonical decomposition and injection determined by a. Then (XA, A)
is minimal [7, corollary 3.6].

Consider M a minimal subset of (XD, a) and let 77; be the projection of XD onto
XD> for each /€ A. Then TTJ(M) is a minimal subset of (XD', A(/)l) and

M e H T , (M) .
ye A

The next proposition will show that each vj{M) = T{pi) for some /3,eZD<. Since
(ILeA r(/3,), a) is isomorphic to the minimal flow (XA, A), it will then follow that

•
PROPOSITION 2.7. Let (X, T) be a totally minimal flow. If the only minimal sets of
(X2,1) = (X x X, Tx T) are the sets T(a), ae Z2, then the only minimal subsets of
(X°, ml), D countable and m # 0, are the sets T(a), a e ZD.

Proof. First let M be a minimal subset of (X2, ml). We can assume m > 1. Set

M' = "\J (il)M
i=0

Then M' is a closed invariant set under 1 and contains some minimal set T(a).
Because (X, T) is totally minimal, Y{a) is also a minimal subset of (X2, ml). Thus
r(a) = (il)M for some i, 0 s i < m - l from which it follows that M = T(a).

Now let M be a minimal subset of (XD, ml). Pick doe D. For each de D, d¥^ d0,
let nd be the projection of XD onto X2 defined by

Clearly, nd(M) is a minimal subset of (X2, mf) and there exists a(d)eZ such that

ird(M)={(x,a(d)x):xeX}.
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Setting a(d0) = 0, we have M c F(a). Finally, M = F(a) because F(a) is a minimal
subset of (XD, ml). D

Keynes and Newton showed that if <p:(Y,S)-*(X,T) is an almost one-to-one
homomorphism (<p~'(x) is a singleton for at least one x) and (X, T) is POD, then
(Y2,1) has only off-diagonals as minimal subsets [7, lemma 2.16]. The next proposi-
tion gives a slightly stronger result.

PROPOSITION 2.8. If (Y, S) is minimal, cp:(Y, S)->(X, T) is an almost one-to-one
homomorphism and {X, T) has TMSJ {PTMSJ}, then (Y, T) also has
TMSJ {PTMSJ}.

Proof. Let A = {x: \(p'x(x)\ = 1} and define e: A-* Y by e(x) = <p~l{x). Then A is a
dense invariant subset ofX and e is an isomorphism of (A, T) into (Y, S). It follows
that (Y, S) is totally minimal. Furthermore, if we define $: (YD, a) -»(XD, a) and
e: (^ D ,a) ->(y D ,a) by (<p;t)(d) = <p(x(d)) etc., then this situation reoccurs and
(YD, a) is minimal when (XD, a) is minimal.

Let M be a minimal subset of (YD, a). Then <p(M) = FlieA Tx(A)- Since

which is minimal because (XA, A) is minimal. •

Furstenberg, Keynes and Shapiro [5] constructed POD flows. Del Junco [2] has
pointed out that for their examples (X, T) is isomorphic to {X, T~'). Furthermore,
del Junco's work [2] together with his joint work with Rahe and Swanson [3] shows
that Chacon's example [1] has MSJ and is POD. Thus there are POD flows for
which (X, T) is not isomorphic to (X, T~'). Consequently TMSJ and PTMSJ are
distinct notions which together generalize POD.

3. U{ir, a) minimal sets: finite order case
Let 77 be a permutation of D where, as always, D is countable, and let {X, T) be a
flow. Then

defines a homeomorphism of XD onto itself and for each o eZD,

defines an automorphism of (XD, I). The general problem is to understand the
dynamics of (XD, U) when (X, T) has TMSJ.

We will need to assume that IT is compact, that is, for all de D the cardinality
l(d) of the set {wk(d): keZ} is finite. Even without any infinite cycles IT can still
have infinite order in the group of all permutations on D, namely when /(£>) is not
a finite subset of Z. This determines two distinct cases. In this section we will always
assume n has finite order.
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Let l(D) = {a,, a2, • •., ar} and let p equal the least common multiple of a 1 ; . . . , ar.
So p is the order of IT. Define av e 1° by

av(d)= I <*(7T-(d)), •

Note that

Clearly, (XD, U") is the same as (XD, a j .

Remark 3.1. Let (X, T) be a weak mixing minimal flow. Then {XD, U(TT, a)) is
weak mixing if and only if a^d) 5* 0 for all d e D.

Remark 3.2. Assume X is not finite. The flow (XD, U(n, a)) is minimal if and only
if IT is the identity and (XD, a) is minimal. Moreover, M is a minimal subset of
(XD, U( IT, a)) if and only if there exists a minimal subset Mo of (XD, a,,) such that

M=lj l/'M0.
i=0

If (X, T) has TMSJ {PTMSJ} and an(d)*0 {av(d)>0} for all deD, then every
minimal set of (XD, a^) is canonically isomorphic to (XA, A) when A is the canonical
injection determined by aw. Thus the minimal sets of (XD, U(v, a)) are all construc-
ted in some way from the same underlying minimal set. There is a natural general
construction which we will use to analyze this situation.

For any flow (X, T) there is a standard way to construct an extension of the cyclic
flow on p points using (X, T). Let Xp = X x { 0 , 1 , . . . , p— 1} and define Tp by

f(jc, i + 1) if i<p-1
TJx, i) = \P 1(7X0) if i = p—1.

If (X, T) is totally minimal, then (Xp, Tp) is minimal for all positive integers p.
For a specific flow (X, T), let x(p,Q,P) denote the flow obtained by applying the

above construction to {XD,q^). i.e.

In this notation p and q will always be positive integers, and /3 will always be an
element of ZD for some countable D. In other words, for a given flow (X, T),
xip,q,P) describes a family of flows constructed from (X, T) and parameterized
by p, q, and /J. The purpose of the seemingly superfluous q is to remove common
factors from the coordinates of p. In this notation

(X, T) = x ( l , l , l ) , ( X , a ) = * ( l , l , a ) ,

(X 2 , (Txr 3 ) 2 )= A ' ( l ,2 , ( l ,3 ) ) and (Xp,Tp)=X(p,l,D,

and

PROPOSITION 3.3. Assume (XD, /3) is totally minimal. If x(p',q',P) is factor of
Xip, q, /3), then p' divides p.
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Proof. From the hypothesis there exists a closed invariant equivalence relation R
on x(p,<l,P) such that x(p, <?> P)/R is the cyclic flow on p' points. Define Ro on
XD by (x, y)ei?0 if and only if ((x,0), (y,0))eR, and check that Ro is a closed
invariant equivalence relation for (XD, q/3). Clearly XD/R0 is finite and therefore

RO = XDXXD

because (XD, qfi) is totally minimal. It follows that the cyclic flow on p' points is
a factor of the cyclic flow on p points. •

THEOREM 3.4. If (X, T) has TSMJ {PTMSJ} and a^d) # 0{a^{d) > 0} for all de D,
then the isomorphism classes of the minimal subsets of (XD, U(n, a)) are in one-to-
one correspondence with the (positive) common divisors of p, the order of IT, and 8,
the greatest common divisor of {a^(d): d e D}. Furthermore, if a is a common divisor
of p and 8, then ^(p/cr, 1>(1/0")A) is a representative of the isomorphism class
determined by cr where A is the canonical injection determined by a^.

Proof. By remark 3.2 a minimal subset M of (XD, U) has the form

M=U U'Mo
i=0

where Mo is minimal for av Let k be the smallest positive integer such that
UkM0 = Mo. Clearly k divides p and Mo = Y\jeA T( /3;). Set <r = p/k. Since Uk<T = am

Uk\M0 is an automorphism of Mo. Using the canonical isomorphism between
(XA, A) and Mo, and proposition 2.4, we see that

Uk\M0=y\M0

for some y e ZD such that y is constant on each D,. Thus an = ay, cr divides a^(d)
for all deD,

Uli\M0 = (l/<r)an\M0,

and there exists a canonical isomorphism from \(p/o; 1, (l/o-)A). From proposition
3.3 it follows that different common divisors of p and 8 determine distinct isomorph-
ism classes of the form xip/v, 1> (l/f)A). The remainder of the proof is devoted
to showing that if a is a common divisor of p and 8, then for fe = p/a there exists
an a^-minimal set Mo such that UmM0 = Mo if and only if k divides m.

Let {Dj}jeA be the canonical partition determined by a^. note that TTD; = Dj. Set
TT, = 771 Dj and a; = a | -D,. Then

The minimal set Mo must have the form [lyeA r(/3;), Pj&1D>. Hence UkM0 = M0 if
and only if

for all / in A, where t/ydenotes [/(IT,-, a;). Fix/'and let d, d'eDy. Thena7r(d) = a,(d')
which can be written

1 /(<*) 1 l(d')

I a(7r-i(d))=—- I a(7T-(d')). (2)
! l\d ) t=\
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The version of an(d) = a7r(d'), d,d'€Dj, given above says the average use of T
over a TT orbit is constant on Dt. In the light of equations (1) and (2) we study

for arbitrary k under the assumption that (2) holds for all d,d'eD.
It is a straightforward calculation to show that l/fcr(/8) = r(/3') where

Since r(/3) = r(/3') if and only if there exists an integer n such that /?' = fi + nl,
Ukr(p) = T(/3) if and only if thre exists neZ such that

or

for all deD.lt we fix d and sum the above equation over the TT orbit of d, we find
that

1 Ud)

which is independent of d by the assumption that (2) holds. Therefore, UkT(f$) =
F(/3) if and only if whenever D' = {Tr'(d): 1< j</(d)} for some deD

1/(771D', a | D')T()31 £>') = T(01 £>').

In other words, for a given fe, to solve Uk(T(p)) = T(p) for p, it suffices to solve
this problem for each cycle of TT.

PROPOSITION 3.5. Let TT = (1 , . . . , / ) be a cycle, let k be a positive integer, and let
aeZ' satisfying air(i)?

iO{a7r(i)>O} for l < i < / . Set U=U(ir,a) on X1. then
Uk(T{p)) = r(p) has a solution if and only if I divides k £|= 1 a(i). Moreover, when
I divides kl!=i a(i), there exists /3eZl such that Um(T(p)) = r(p) if and only if
(k, I) divides m.

Before proving this proposition we show how it can be used to complete the proof
of theorem 3.4. As before, let k = p/cr where a is a common divisor of p and S.
So, given d e D, there exists r e Z such that

because S divides every a^id). Since the above equation can be written
Ud)

l{d)r=k I a(7T-'(d)),
i = l

the second part of the proposition can be applied to each cycle of TT. Thus for each
;e A there exists /3; in ZD> such that
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and hence UkM0 = M0. Moreover, UmM0 = M0 implies (k, l(d)) divides m for all
deD.

Suppose m is the smallest positive integer such that UmM0 - Mo. Then m | k
and (m, l(d))<(k, l{d)) for all d. From (k, l{d))\m, we get (k, /(d))s(m, l(d)) and
(fc, /(d)) = (m, /(d)) for all d. Since every prime power that divides k also divides
some l(d), k = m and the proof of theorem 3.4 is complete. •

Proof of proposition 3.5. Set

i ().
In this context solving Uk{Y{^)) = F(/3) for fi is equivalent to showing that n(k) e Z
and that the linear system

(Lk) P(j)-p(Tr-k(]))=i <*(*-'(]))-n(k)=f(j)

has an integral solution. (Here D = {\,..., I}.) In particular, / dividing k £'=i a(i)
is an obvious necessary condition for the existence of a solution. To see that it is
also sufficient first notice that the value of /3 at ; will determine /3 at every point
of the Tr^-orbit of / This determination of p will be consistent if and only if / sums
to 0 over every 7rfc-orbit. It is easy to check that for any positive integer k, f sums
to zero over every nk orbit. When / divides k £'=i a(i), f is integral valued. To
determine /3 we arbitrarily pick an integral value for fi at one point of each nk orbit.

For the second part we can assume without loss of generality that k = (k,l).
Suppose fe'| k, k' ̂  k. Because each irk orbit is a union of at least two different Tr*
orbits, we can specify one integer value for each irk orbit so that the resulting /3 is
not a solution of j8 for k'. Clearly, this can be done simultaneously for all such k'. •

4. The structure of factors for \(p, q, a) minimal sets
Throughout this section it will be assumed that (X, T) has TMSJ {PTMSJ}, a e 1°
with a(d)^0{a(d)>0} for all deD, and (XD, a) is minimal. It follows that
x(p,q, a) is minimal for all positive integers p and q. We can and will assume that
the greatest common divisor of {a(d): deD} is 1.

Before studying the factors of x(p, Q> a)> we show that the isomorphism class of
X(p, q, a) is uniquely determined by p and the range of qa. Let a' e ZD satisfy the
same conditions as a and ask: when are x(p, q, a) and x(p', <7'> «') isomorphic?

PROPOSITION 4.1. The minimal sets x(P> <7> a) and x(P-> <7'> <*') are isomorphic if
and only if p = p' and there exists a bijection rj:D-^D' such that

qa(d) = q'a'(v(d))

for all deD.

Proof. Assume x(p, 1, a) and x(p'> Q\ «') are isomorphic. It follows from proposi-
tion 3.3 that p = p'. It is also clear that (XD, qa) and (XD, q'a') are isomorphic.
In particular, (X, q'a'(d')) is a factor of (XD, qa) for each d'eD and (XD xX, qa x
q'a'(d')) is not minimal. Therefore, there exists a unique deD such that qa(d) =
q'a'(d'). The rest of the proof is routine. •
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Let (y, S) be a factor oi x(p,q,a) and let R be the corresponding invariant closed
equivalence relation on x(p,q,a). We will assume that R does not equal the
diagonal. Since, using proposition 2.4, it is easy to show that every endomorphism
of x(p> <7) a) is an automorphism, (Y, S) cannot be isomorphic to *(p, q, a). As in
the proof of proposition 3.3 let Ro denote the invariant closed equivalence relation
on (XD, qa) given by (x, y) e i?oif and only if ((*, 0), (y, 0)) e R. Note the following:

Remark 4.2. The factor (Y, S) is finite if and only if R0 = XDx XD.
Let E be any subset of D and define the relation R{E) on x(p, <7> a) by

R(E) = {((x,i)Ay,j)y.i = i and x{d) = y{d) foralldeE}.
Remark 4.3. R(E) is an invariant closed equivalence relation on x(p> <?> «)•
Moreover, x(P><?> <*)/R(E) is isomorphic to x(P^,a\E) when E # 0 , and the
cyclic flow on p points when E - 0 .

When R - R(E) for some subset £ c D , £ ^ D , w e will say *(p, <?, a) is a Cartesian
extension of (Y, S).

PROPOSITION 4.4. If Ro is not contained in the proximal relation of (XD, a), then
there exists a smallest subset E<^D such that R(E) c R and E^D.

Proof. Let (x, y) be an element of Ro with x and y not proximal. Then the orbit
closure of {x, y) in (XDxXD, aXa) contains a minimal set M different from the
diagonal. As in the proof of proposition 2.4, there exists /? € ZD such that

M = {(x,/3x):xeXD}

Clearly )3#0. Let E ={d: p(d) = 0}* D. Set E' = D\E and P' = P\E'. Hence
(XH , /3') is weak mixing and we can find u e XE with a dense /?' orbit. Consequently,
for w e XE,

((u,w),{kp'u,w))eR0 forallfceZ

which implies R(E)<^R. (This part of the argument comes from [7, proposition
3.3].) Now set

Note that £j c £2 implies R(EJ => i?(E2) and that £1 ; E2 e % implies Ex n E2 e
Set

Since Cl (U {R(E): £ € ^ } ) c #, it suffices to show that

R(F)aCl(U{R(E):Ee%}).

Let ((x, i), (y, i)eR(F) and let W be a neighbourhood of (*, y). There exists a
finite set J c D such that if y'(d) = y(d) for all d e J, then (x, y') € W. Set

and J2 = J\Jt.

There exists D ' e ? such that D'nJ2 = 0. Now define y' in X D by y'(d) = y(d) for
all d e / and y'(d) = x(d) for all d*; /. Then (x, y') e Wn £(D')oand it follows that

i), (y, 0) eCl ( U W £ ) : £ 6 £}). •
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PROPOSITION 4.5. IfR0 equals the diagonal, thenx(p,q, a) is a finite group extension
of (Y, S) and there exists a common divisor a ofp and q such that (Y, S) is isomorphic
tox(p/<r,q/(T,a).

Proof. Let i be the smallest positive integer for which ((x, 0), (y, i)) e R for some x
and y in XD. Because (XD, qa) is minimal, for every x there exists y such that
((x,0),(y,i))eR and y is uniquely determined by x since R0 = A. Clearly the
function x -» y is an automorphism of (XD, qa). Hence there exists y e ZD such that
((x, 0), (yx, i)) € R for all x. Define 0: x(p, q, «) -»*( A ?, «) by

= <

and check that 6 is an automorphism of x(p, q, «)• It follows that ((x,j),0(x,j))eR
for all (*,y).

From the choice of i it follows that / divides p and then 0p/' = identity because
i?o = A. Thus

It also follows from the choice of i that the 6 orbits are precisely the equivalence
classes for R. Thus x(p> <7> «) is a finite group extension of (Y, S).

Now set a = p/i. Then ga + cry = 0 implies <r|^ and y = -(q/a)a. Set p'=p/(r
and q' = q/a, and write; = mp' + rwi thOsr<p ' . Defined: #(p, <?, a ) ^ ^ ( p ' , ^ ' , a)
by

Finally, to complete the proof one checks that W(x,j) =^{x',j'), j<j', if and only
if 6k(x,i) = (x',n where k = (j'-j)/p'. •

Since 6 constructed as above is an automorphism for any i, 0 s i < p, and any y 6 ZD,
the previous paragraph proves the following corollary:

COROLLLARY 4.6. / / cr is a common divisor of p and q, then x(p, q, «) is a finite
group extension of x(p/o; q/a, a).

COROLLARY 4.7. The relation Ro equals the diagonal if and only if x(p, q, «) is a
finite group extension of (Y, S).

Proof. Let 6 be an automorphism of #(p, q, a) of finite order and suppose that
6(x, 0) = (y, 0). It follows that 6{x, j) = (yx, j) for some yeZD and then y = 0. •

Actually slightly more is true about the automorphisms of x(P, <7> «)• Every
automorphism is of the form 6 constructed in the proof of proposition 4.5. The
torsion subgroup of the group of automorphisms is the finite cyclic group of order
S = (p,q) generated by the 6 constructed with i = p/8 and y = -(q/8)a.

THEOREM 4.8. / / (Y, S) is a factor of a minimal flow x(p, q, a) constructed from a
flow having TMSJ {PTMSJ}, then exactly one of the following holds:

(I) x(P>q> a) is a Cartesian extension of (Y, 5);
(II) x(p> q, «) is a'finite group extension of (Y, S);

(III) x(p> q> «) is a proper proximal extension of a distal extension of (Y, S).
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(The distal extension need not be proper.)
(IV) there exists a subset E of D such that xip, q,a\E) is a proper extension of

(Y,S) satisfying (II) or (III).

Proof. Observe that the following conditions on R are mutually exclusive:
(i) R = R(E) for some subset E of D with E*D;
(ii) «o = A;
(iii) b*R0<=P;
(iv) R => R (E) for some subset E of D with £ * D and i? # £ (F) for all F <= D.

If none of (i), (ii), and (iii) holds, then using proposition 4.4 it follows that (iv)
holds. We also know that (i) and (ii) are equivalent to (I) and (II), respectively. To
complete the proof it suffices to show that (iii) and (iv) are equivalent to (III) and
(IV), respectively.

If br*Roc:P, then

R={((x,i),(y, 7)):»=7 and (x,y)eR0}
is an invariant closed equivalence relation on * (p, q, a) such that A # R <= P. It is
routine to check that the homomorphism from x(P> q-> a)/R to (Y, S) is distal.

Now suppose (III) holds. Then there exists an invariant closed equivalence relation

Obviously, A * Ro<= P. If Ro is not contained in P, then R(E) <= i? for some E * D.
Without loss of generality, E = D\{d0}. Fix weX and for ueX let xueXD be
defined by xu(d) equals w or u according to whether d 5* d0 or d = d0. Then

C = {(u, v): (xu, xv) e R~o}

is closed in X2. Set W = X2\C. If W = 0 , then R~o contains points not in P. If W * 0 ,
then

(R\R)nP*0

because the proximal relation is dense in X2. This contradicts the distal part of (III).
Next assume (iv) holds. Clearly, R0<£P and, by proposition 4.4, there exists a

smallest set E such that R(E)<=R. Then (Y,S) is a factor of *(A9, <*\E) and
determines an invariant closed equivalence relation R on x(P> <?> <*\E)- Because
R(E)^R, JRT*A and satisfies one of the conditions (i), (ii), (iii) or (iv). By the
choice of E, (i) and (iv) are impossible.

Finally, assume (IV). Obviously, there exists E^D such that R(E)<^R and
R(E) r* R. Also the induced invariant closed equivalence relation R on x(p> <7> «IE)
satisfies (ii) or (iii). If R=R(F) for some FcD, then it follows that F<=£ and
R =R(F) where F is viewed as a subset of E. This contradicts the fact that R
satisfies exactly one of the conditions (i) to (iv). Hence, R satisfies (iv) and the
proof is finished. •

COROLLARY 4.9. // (X, T) is a POD flow and (Y, S) is a factor of the minimal
flow x(p, q, a), then exactly one of the following holds:

(a) x(P> q, «) is a Cartesian extension of (Y, S);
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(b) x(P> <7» a) IS a finite extension of (Y, S);
(c) there exists a subset E of D with E 7s D such that \(p, q, a\E) is a finite

group extension of (Y, S).

Proof. It suffices to show that (iii) in the previous proof is impossible when (X, T)
is POD. Suppose (x, y) e Ro with x # y. Because (X, T) is POD, lemma 3.2 from
[7] applies and there exists y e ZD, y ̂  0, such that

{(x,yx):xeXD}czR0.

It follows that Ro is not contained in the proximal relation when Ro ^ A. •

THEOREM 4.10. Suppose the minimal flows x(Pi> <7i» a i ) and x(Pi-> a2, "2) ore con-
structed /rom f/ie same (X, T) with TMSJ {PTMSJ} and the at satisfy the usual
conditions. Then the following are equivalent:

(1) x(Pi, <7i, «i) and x(p2, q2, a2) are disjoint, i.e. x(Pi, <?i, «i)xx(p2, q2, «2)
is minimal;

(2) ^(pi, <7i, «i) and ̂ ( ^ ^ ^2, #2) do not have a common non-trivial factor;
(3) (pi, p2) = 1 and for all dt e Db q^^d^/p^ # q2a2(d2)/p2.

Proof. Since (1) implies (2) is well known, we begin with (2) implies (3). Because
there exists a finite common factor containing (pi,p2) points, {pl,p2) = l. Now,
suppose there exist dx e Dx and d2 e D2 such that

Because (p1,p2) = l,Pi\qi<*i{dl) and p2\q2a2{d2). Set

= Pi P2

It follows that

(X, 7") = *(1 , r, 1) = xiPi/Pi, qMdd/Pi, 1),

j = 1, 2, and is a common non-trivial factor because xip* q» «< I{d,}) is a Cartesian
factor of x(Pb q» «.), ' = 1, 2.

To complete the proof we show that (3) implies (1). Set D = Dx u D2 and define
a e 1° by

a|D1=/72?ia1 and a | D2 = P\q2a2.

Because {p\,p2) = \, the disjointness is equivalent to the minimality of (XD, a)
which follows from proposition 2.3. (In fact, we have also shown that xiPtiQu ai)x

i, q2-,
 a

2) is isomorphic to x(PiP2> 1> a) where (3) holds.) •

One of the striking theorems in Rudolph's paper [9, theorem 3.1] says that if
U{ir, a) and U(TT', a') are ergodic, measure theoretically isomorphic, and the
underlying transformation has MSJ, then the isomorphism is the composition of a
P e ZD followed by a rearranging of the coordinates. The author does not know
whether or not such a result holds for TMSJ. In fact, it is unknown whether or not
(X2,1) and (X3, T) can be isomorphic when (X, T) is a POD flow.
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We conclude this section with some necessary conditions for U(v, a) to be
isomorphic to U(TT', a') in the TMSJ setting. Given TT and a, set

Ave(ir, a) =

In other words, for de D, we calculate the average use of T over the IT orbit of d
and let Ave (TT, a) be the set of all rational numbers obtained this way as d runs
through D.

THEOREM 4.11 Let v and TT' have finite orders p and p' respectively, and suppose
U{ir,a) and U(n',a') are weak mixing. If (XD', U{ir', a')) is a factor of
(XD, U(IT, a)), then p divides p and Ave (n', a') <= Ave (IT, a).

Proof. If (XD>, U(n', a')) is a factor of (XD, U(n, a)), then x(p', 1, A') is a factor
of x(p, 1, A), where as usual A and A' denote the canonical injections determined
by an and <*'„•. Clearly, p' divides p, and by theorem 4.8, x(p\ 1> A') Mis into one
of four categories. It is easy to verify the following:

(i) If x(p> I* A) is a Cartesian extension of x(p'-> 1> A')» then

Ave(-7r', a')<= Ave(7r, a),

(ii) If x(p, 1. A) is a finite group extension of x(p'> 1> A ' )> t n e n

Ave (TT', a') = Ave (w, a).

These facts combined with the next proposition complete the proof. •

PROPOSITION 4.12. / / (Y, S) is a factor of the minimal flow x(p,1, «)> then the
following are incompatible:

(a) x(P< Qi a) 's a proper proximal extension of a distal extension of (Y, S);
(b) (Y, S) is isomorphic to some x(p'> 9'. «')•

Proof. Let 6: xip, q, a)-* x(p'> ?'» a>) be a homomorphism such that the equivalence
relation R determined by 6 satisfies A ̂  Roc p. in the light of the proof of theorem
4.8, this amounts to (a) and (b) holding simultaneously. Clearly, p'\p and
(XD',(p/p')q'a') is the factor of (XD,qa) determined by Ro. Using the idea of
the proof of proposition 4.1, we can show that, without loss of generality, D' <= £) and

p'qa(Ld')=pq'a'(d') for all d' € D'.

If D = D', then Ro determines an endomorphism of (XD,qa). Since every
endomorphism of (XD, qa) is an automorphism (proposition 2.4), Ro would equal
the diagonal, contrary to our assumption. Therefore, we can select doeD\D'.

Choose x, y e XD such that x(d) = y(d) for all d * d0 and x(d0) = Ty(d0). Then
(x, y) £ P and {x,y)i Ro. Notice that

(XD'xX,pq'a'Xp'qa(d0))
is minimal. Using 6 also to denote the homomorphism of (XD, qa) onto (XD, q'a')
and letting

y = pq'a'xp'qa(d0),

there exists a sequence of positive integers kt such that

kiy(0(x),x(do))^(e(y),x(do)).
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By taking a subsequence, we can assume

Then (y, y') € jR0 <= p. It follows that y'(d0) = x(d0) which produces the contradiction

(y(d0), Ty(d0)) = (y(d0), x(d0)) = (y(d0), y'(d0)) e P. •

5. U(n, a) minimal sets: infinite order case
Let v be a compact permutation of the countable set D. Assume IT has infinite
order. It follows that D is infinite and l(D) is an infinite subset of Z. We will write

Now define the sequence of integers {pk} inductively as follows:

Po = «o,
pk = least common multiple of pk-x and ei(k) where i(k) is the smallest positive

integer such that the least common multiple of pk-i and c, does not equal
Pk-i-

Note i(k)>k, pk_x<pk, and pk-i\pk. Set

Dk={deD:l(d)\pk}, Trk = ir\Dk and ak = a\Dk.

Then irk is a permutation of Dk of order pk and the projection of XD onto XDk

is a homomorphism of (XD, U(v, a)) onto (X°k, U(wk, ak)). Moreover, projections
provide homomorphisms of (XDk, U(nk, ak)) onto {XDk-\ U(7rk-i, a*-i)) and
(XD, U{TT, a)) is isomorphic to the inverse limit of (XDk, U(nk, ak)) as k goes to
infinity.

It will again be assumed that (X, T) has TMSJ {PTMSJ} and that (XD, U(TT, a))
is weak mixing.

Remark 5.1. The flow (XD, U{TT, a)) is weak mixing if and only if

Kd)

i = l

for all deD.
Let M be a minimal subset of U(ir, a) and let Mk be its image in X°k. Clearly M
is isomorphic to the inverse limit of the Mk's and each Mk is a U(irk, ak) minimal
set. Since irk has finite order pk, for each k there exists a canonical x(Pk, 1> Afc)
which is a finite group extension of Mk. The idea is to study M via the sequence of
minimal sets x(pk, 1, Ak).

Let /3eZD such that (XD, )3) is minimal. Given a non-empty subset £ of D,
there is a natural homomorphism

oE--x(p,<i,P)^x(p,q,P\E),
namely

0E(x,i) = (x|£,i) .
If a divides p and </, then there is a natural homomorphism

*„: x(p, q, p)->x(p/<r, ql<*, P)
as defined in the proof of proposition 4.5. Homomorphisms of the form ^ ° $E
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where £ is a non-empty subset of D and a # 1 will be called increasing
homomorphisms.

Remark 5.2. Given a non-empty subset E of D and /3'eZE, there exists an
increasing homomorphism <p: x(p,q, P)-* x(p',q', P') if and only if p' divides p
and (p/p')q'p'=q(P\E).
By an increasing inverse limit system for (X, T), we shall mean a sequence

(x(Pk,qk,Pk),<Pk), k = 0,1,...,

of minimal flows x(Pk,qk,Pk) constructed from (X, T) and increasing
homomorphisms

<Pk- x(Pk+i, qk+u «k+i)-*x(Pk, qk, «*)•

Of course, the inverse limit of an increasing inverse limit system is a minimal flow.

Next we want to construct a set A such that the Ak's in x(Pk, 1, Ak) are naturally
defined on a sequence of subsets Afc satisfying

oo

Afc c Afc+1 and A= U A*.
k=0

For d e Dfc, set
n. Kd)

and note that

(Pt/Pk-l)«<c-l = «)c|A-l-

(In the notation of § 3, ak would have been written cumbersomely as ak with vk

as a subscript.) Then dk(d) = dk(d') for some k such that d,d'eDk defines an
equivalence relation on D. Let A be the set of equivalence classes, let

Ak = { feA: fn£> k *0} ,
and let

>ik(£) = ak(d) torde{nDk.

Observe that for each k there exists an increasing homomorphism

<Pk- xi.Pk+u 1. Ak+i)-»*(pto 1, Afc)

to produce an increasing inverse system.

PROPOSITION 5.3. Every minimal subset of (XD, U(v, a)) is a factor of the inverse
limit of the increasing inverse system (x(pk, 1. Afc), <pk) for (X, T). Moreover, the
inverse limit of this system does occur as a minimal subset of (XD, U(ir, a)).
Proof. The first statement follows from an easy diagram chase. The proof of theorem
3.4 shows how to construct A4, cycle-by-cycle using proposition 3.5. We apply
proposition 3.5 to each cycle in D, with k = (p;, /) = / the length of the cycle. This
produces a minimal subset M, isomorphic to x(Pp 1» A>).

Observe that if r is a positive integer, then every solution of the system (Lk) is
a solution of (Lrk). Consequently, when we go to construct Mj+l isomorphic to
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xiPj+\, 1, A,+1), everything we used for M, can be reused. In particular, Mj+i will
project onto M,- which completes the proof. •

Consider an increasing inverse system (x(Pk, Hk, Pk), <Pk)- Then Dk <= Dk+l for all k,

Pk<Pk+u Pk\Pk+i- Set

D=\jDk, p-1 = l, and ak=pk+l/pk.
k=0

Now let
Zla = {(z0, zu...,zk,...): z ,eZ and 0 < z k <

denote the group of a-adic integers associated with the sequence a =
(a0, a l 5 . . . , ak,...). Thus, Zlo is a compact monthetic group with generator 1 =
( 1 , 0 , . . . . , 0 , . . . ) . For each non-negative integer

Tk = {zeAa: zt = 0 fori</c}

is an open closed subgroup of Aa.
Define f:Aa->ZD by

f(z)(d) = -n .
10 otherwise.

If we put the product topology o n Z D coming from the discrete topology on Z,
then / is continuous and so is the natural action of ZD on XD. Consequently, we
can define a flow

by

For each positive integer k we define an invariant closed equivalence relation Rk

o n X D x z l f l b y U z)~(x ' , z') if and only if *(<*) = *'(<*) for all <*€ Dfc and z-z 'eT, , .

Clearly, XD x AJRk is homeomorphic to X°k x { 0 , 1 , . . . , pk}. The induced action
Fk is given by Fk{x, i) = (y,;) where

(a) j=i + \ iti+l<pk

7 = 0 if i +1 = /?k, and

(b) for deDyUVx, ;=£fc,

A:(^) otherwise.

Let (pfc denote the induced homomorphism of (XDk~' x { 0 , 1 , . . . , pk+i}, Fk+l) onto
(XD*x{0,l,..,PkhFk).

We can define a map 0k of x(pk, 1, )8k) to {X°k x { 0 , 1 , . . . , p j , Ffc) by

0t(x, i) = (y, 0

and for d&Dj\Dj-i

y(d) = 8q,pj(d)x(d),

where i = r + Spt and 0 < r < p;. It is easy to check that 6k is an isomorphism and
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Consequently, the inverse system

(XD"X{0,l,...,pk},Fk,$k)

is equivalent to the increasing inverse system (x(Pk, 1> /3fc), <pk) and (o(a,f) is
isomorphic to the inverse limit of the given increasing inverse system. This provides
us with a useful way to study these inverse limits.

PROPOSITION 5.4. Let R be a closed invariant equivalence relation on o(a,f). If
((x, z), (y, w)) e R implies z^ w, then w(a,f) is a group extension of w(a,f)/R.

Proof. Suppose {{x0, z0), (y0, w0)) e R with S = w0-z0^ 0. By minimality, for every
{x, z) there exists a unique <Pi(x, z) such that

((x,z),(<P1(x,z),z + 8)) eR.

The graph of cp(x, z) = ((pi(x, z), z + S) is

Rn{«x,z),(y,w)):z-w = 8}

and is thus closed. It follows that <p is an automorphism of <o(a,f) and
((x, z), (p(x, z))eR for all x and z. Moreover, since we began with an arbitrary
point of R, there exists a group G of automorphisms such that

R={((x,z),<p(x,z)):cpeG}.

The mapping <p to 5 provides a (group) isomorphism of G onto a closed subgroup
of Aa and hence a compact Hausdorff topology of G. Moreover, it is easy to see
that G now acts continuously on w(a,f) to complete the proof. D

Given the increasing inverse system (x(Pk, Qk, /3fc), (pk) for each k set

Ik={qkpk(d)/pk:deDk}

and observe that Ik<= Ik+1 for all k. Letting

/(«,/)= U h,
/c=0

it is easy to use theorem 4.10 to prove the following:

PROPOSITION 5.5. The following are equivalent:
(a) The minimal flows co(a, f) and x(p', q', )8'){w(a', /')} are disjoint.
(b) The minimal flows <o(a,f) and x(p',q', P'){to(a',f')} have no common

factor.

(c) Forallk,(p',pk) = l andq'l3'(d')/p'£l(a,f). (For all i and j , (p'i,Pj) = h
andl(a,f)nl(a',f') = 0.)

PROPOSITION 5.6. Two minimal flows co(a,f) and a>(a',f) constructed in the pre-
scribed way are isomorphic if and only if the topological groups Aa and Aa' are
isomorphic and I(a, f) = I(a', / ' ) .

Proof. Assume a>{a,f) and w(a',f') are isomorphic. Using [6, corollary 2.7] it is
straightforward to show that the proximal relation of w(a,/) is dense in
{((x, z), (y, z)): x, yeXD} for each zeAa. It follows that the maximal equicon-
tinuous factor of (o(a,f) is (Aa, 1) and the topological groups Aa and Aa' are
isomorphic (see [4, Chapter 4]).
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For convenience we will assume throughout the proof that q^ = 1 — q'k for all fc.
Fix d'eD'. Then d'eD'k for some k and xip'k, l,P'k IK}) is a factor of w(a,f),
and p'k divides pt for some i. Without loss of generality we can assume p'k \p0. Then
(X, p'k(d')) = x(l, l,P'k(d')) is a factor of (XD x Aa, Fp'«). The latter is not minimal,
but its minimal subsets are all isomorphic to the inverse limit of x(Pj/p'k,l, Pj)
which is some a>(b,g). We can now apply proposition 5.5 to conclude that there
exists i and deD{ satisfying p'k{d') = Pi{d)/{pjpk) or

Therefore, I(a'', / ') c I(a, f) and by the symmetry of the argument we have equality.
For the converse, we index the common /( , ) set, say {ru ..., rn,..} and

construct a third inverse system whose limit is isomorphic to both (o{a,f) and
(o(a',f). Let Ek = {l,2,..., k}. Starting with rt we can find i(l) and /(I) such that
PUD divides p'j(1) and

0,<i) (d,(1) )//>,(,) = rx = /8;(1) (d'Hl) )/p'm
for some d,(1)eDj(i) and d'Hr)&Dj(U. Define yieZ£ l by

and check that *(/>,«), 1, y j is a factor of both^(pi a ) , l,/3j(1))and^(/j;(1),l,)8;(1)).
For the next step choose i{2) > i(l) and/(2) >y'(l) such that p'j(2) divides pim and

Notice that we still have

Pim {di(D )/Pim =n = P'j(2) {d'm)/p'm.
Define y 2 e Z ^ by

Then xip'm), 1, 72) is a factor of both Af(ft<2)» l,/8,(2)) and A-(P>(2), l./3;(2)). In
addition, there is an increasing homomorphism

This alternating construction can be repeated infinitely often to produce an increasing
inverse system. Obviously, the inverse limit w(b, g) is a factor of both <o(a,f) and
(o(a',f). To complete the proof, one checks that these maps separate points. •

To conclude we apply the previous results to our study of the dynamics of weak
mixing flows of the form (XD, U(ir, a)).

THEOREM 5.7. Let (X, T) have TMSJ {PTMSJ}, let IT and IT' be compact permutations
of the countable sets D and D', and let a and a' be elements of ZD and ZD such
that U(TT, a) and U(ir', a') are weakly mixing. Then

(a) there exists a minimal set Mo of (XD, U{TT, a)) which is a group extension
of every other minimal subset of (XD, U(a, TT));

(b) the U{ir,a) minimal sets are dense in XD;
(c) minimal subsets Mand M' of (XD, U(ir, a)) and (XD', U(ir\ a')) respec-

tively are disjoint if and only if they have no common factor except the trivial flow.
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(d) if (XD, U(v, a)) and (XD', U(TT', a')) are isomorphic, then the orders of
•n and IT' are equal and

Ave(77, a) = Ave(7r', a ' ) .

Proof, (a) Use theorem 3.4, corollary 4.7, proposition 5.3, and proposition 5.5
(b) It suffices to carry out the proof for ir with finite order which can easily

be done using propositions 2.2, 2.3 and 2.7.
(c) Use theorem 4.10 and proposition 5.5.
(d) First observe that the orders of v and IT' must both be finite or must both

be infinite because a #(p, q, /3) has only finitely many finite factors while <o(a,f)
has infinitely many. The finite order case follows from theorem 4.11. For the infinite
order case, first check that if <o(a,f) is the inverse limit of (x(Pk, 1> Ak), <pk) as
constructed in the beginning of the section, then I(a,f) = Ave (v, a). Now apply
proposition 5.6. •

The author is indebted to the referee for some incisive observations which were
used to simplify and reorganize parts of this paper.
The author was supported by N.S.F. Grant MCS-8101708.
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