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Abstract
This paper develops the estimation method of mean and covariance functions of functional data with additional
covariate information. With the strength of both local linear smoothing modeling and general weighing scheme, we
are able to explicitly characterize the mean and covariance functions with incorporating covariate for irregularly
spaced and sparsely observed longitudinal data, as typically encountered in engineering technology or biomedical
studies, as well as for functional data which are densely measured. Theoretically, we establish the uniform conver-
gence rates of the estimators in the general weighing scheme. Monte Carlo simulation is conducted to investigate
the finite-sample performance of the proposed approach. Two applications including the children growth data and
white matter tract dataset obtained from Alzheimer’s Disease Neuroimaging Initiative study are also provided.

1. Introduction

The estimation of mean and covariance functions plays a fundamental role in the analysis of functional
data. How to appropriately model these functions is fascinating but challenging and has drawn much
attention from statisticians in the past several decades. Influential works in this area include, but are
not limited to, Rice and Silverman [19], James et al. [9], Yao et al. [23], Li and Hsing [12], Peng and
Paul [17], Cai and Yuan [2], Ogden and Greene [16], Chen and Müller [4], Xiao et al. [22], Zhou et
al. [26], Meister [15] and the references therein. Well-known monographs by Ramsay and Silverman
[18], Ferraty and Vieu [7] and Kokoszka and Reimherr [11] provided comprehensive discussions on the
methods and applications.

Nowadays, an important question is how to estimate mean and covariance function with available
covariate information. Such covariate information is commonly encountered in biomedical studies
and informational sciences, which requires us to use the additional covariates to model the trajectory
realistically. They have been receiving increasing attention recently [3,20,21]. Specifically, Chiou and
Wang [6] discussed the influence of covariates on a sample of response curves through a semiparametric
model under the framework of dense functional data. Jiang and Wang [10] described a general approach
incorporating a covariate effect to model the mean and covariance function for sparse longitudinal data.
Liebl [14] considered inference problem for the mean and covariance functions of covariate adjusted
functional data. Zhang et al. [25] proposed a new functional regression model with covariate-dependent
mean and covariance structures to analyze the Avon Longitudinal Study of Parents and Children datasets.
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However, the aforementioned works only address the sparse or dense functional data. Little is known
on how to incorporate covariate information in modeling for a general type of functional data, so our
goal in this paper is to provide a general weighing approach to incorporate the covariate information
that is applicable to both dense and sparse functional data. For the sake of simplicity and convenience,
throughout this article, we consider the case of a one-dimensional covariate 𝑍𝑖 for 𝑖 = 1, . . . , 𝑛. Let𝑌𝑖 𝑗 be
the 𝑗 th observation of the random function 𝑋𝑖 (𝑇𝑖 𝑗 , 𝑍𝑖), made at a discrete time points 𝑇𝑖 𝑗 ∈ [0, 1] with a
covariate 𝑍𝑖 ∈ [0, 1] and independent identically distributed measurement errors 𝜀𝑖 𝑗 for 𝑗 = 1, . . . , 𝑚𝑖 .
Thus, the observed data are often written as

𝑌𝑖 𝑗 = 𝑋𝑖 (𝑇𝑖 𝑗 , 𝑍𝑖) + 𝜀𝑖 𝑗 for 𝑖 = 1, . . . , 𝑛, (1)

where the sampling locations 𝑇𝑖 𝑗 and 𝑍𝑖 are independently drawn from a distribution of random
variables 𝑇 and 𝑍 with density function 𝑓 (·) and 𝑔(·) on bounded support [0, 1], respectively. One
is generally interested in estimating mean function 𝐸{𝑋𝑖 (𝑡, 𝑧)} = 𝜇(𝑡, 𝑧) and covariance function
cov{𝑋𝑖 (𝑡, 𝑧), 𝑋𝑖 (𝑠, 𝑧)} = 𝐾 (𝑡, 𝑠, 𝑧) based on the observation of 𝑌𝑖 𝑗 for 𝑗 = 1, . . . , 𝑚𝑖 , 𝑖 = 1, . . . , 𝑛.

To broaden the applicability of the aforementioned model, we propose to estimate the mean and
covariance functions not only by allowing the functions to depend on the additional scalar covariate but
also in the framework of the general weighted local linear smoothing. We further carefully demonstrate
the uniform convergence rate for the proposed estimators. The derived convergence rates of mean and
covariance functions provide an essential theoretical result for the future research, such as functional
principal component analysis and functional regression issues.

The rest of the article is organized as follows. We would introduce the proposed estimation procedure
in Section 2.1 and present theoretical results in Section 2.2. Regularity conditions and technical proofs
are delegated to the Appendix. Simulation studies are conducted to verify the theoretical results. The
approach is applied to analyze the growth curves of children dataset and produce meaningful and
interesting results. Both are shown in Section 3. The concluding remarks are given in Section 4.

2. Methodology

2.1. Estimation procedure

This section describes the method of estimation of mean and covariance functions. To obtain mean
function 𝜇(𝑡, 𝑧) and covariance function 𝐾 (𝑠, 𝑡, 𝑧), we apply the weighted local linear smoothing method
[24]. Specifically, the weight𝜔𝑖 is attached to each observation for the 𝑖th subject such that

∑𝑛
𝑖=1 𝑚𝑖𝜔𝑖 = 1,

we define the weighted local linear smoother for 𝜇(𝑡, 𝑧) by minimizing

�̂� = arg min
𝜷

𝑛∑
𝑖=1

𝜔𝑖

𝑚𝑖∑
𝑗=1

𝐾ℎ𝜇𝑡 (𝑇𝑖 𝑗 − 𝑡)𝐾ℎ𝜇𝑧 (𝑍𝑖 − 𝑧)

× {𝑌𝑖 𝑗 − 𝛽0 − 𝛽1 (𝑇𝑖 𝑗 − 𝑡) − 𝛽2 (𝑍𝑖 − 𝑧)}2, (2)

with respect to 𝜷 = (𝛽0, 𝛽1, 𝛽2)T. The estimate of 𝜇(𝑡, 𝑧) is then 𝜇(𝑡, 𝑧) = 𝛽0. Once the 𝜇(·, ·) is obtained,
we are then ready to estimate the covariance function 𝐺 (𝑡, 𝑠, 𝑧). Let 𝐺𝑖 𝑗𝑘 = {𝑌𝑖 𝑗 − 𝜇(𝑇𝑖 𝑗 , 𝑍𝑖)}{𝑌𝑖𝑘 −
𝜇(𝑇𝑖𝑘 , 𝑍𝑖)} be the input data, and the weight 𝜈𝑖 is attached to each 𝐺𝑖 𝑗𝑘 for the 𝑖th subject such that∑𝑛
𝑖=1 𝑚𝑖 (𝑚𝑖 − 1)𝜈𝑖 = 1. The weighted local linear smoother for the covariance function 𝐺 (𝑡, 𝑠, 𝑧) is

𝐺 (𝑡, 𝑠, 𝑧) = 𝛽0 where 𝜷 = (𝛽0, 𝛽1, 𝛽2, 𝛽3)T,

�̂� = arg min
𝜷

𝑛∑
𝑖=1

𝜈𝑖
∑

1≤ 𝑗≠𝑘≤𝑚𝑖

𝐾ℎ𝐺𝑡
(𝑇𝑖 𝑗 − 𝑡)𝐾ℎ𝐺𝑡

(𝑇𝑖𝑘 − 𝑠)𝐾ℎ𝐺𝑧
(𝑍𝑖 − 𝑧)

× {𝐺𝑖 𝑗𝑘 − 𝛽0 − 𝛽1(𝑇𝑖 𝑗 − 𝑡) − 𝛽2(𝑇𝑖𝑘 − 𝑠) + 𝛽3(𝑍𝑖 − 𝑧)}2. (3)
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The bandwidths ℎ𝜇𝑡 and ℎ𝜇𝑧 for the estimated mean function are chosen via the leave-one-curve-out cross
validation and the bandwidths ℎ𝐺𝑡 and ℎ𝐺𝑧 of the covariance function estimators are chosen via a 10-fold
cross-validation procedure to save computing time throughout this article. More details about choices of
𝜔𝑖 and 𝜈𝑖 of (2) and (3) can be found in Huang et al. [8] and Zhang and Wang [24]. In general, when the
observation is sparse, assignment 𝜔𝑖 = 1/∑𝑛

𝑖=1 𝑚𝑖 along with 𝜈𝑖 = 1/∑𝑛
𝑖=1 𝑚𝑖 (𝑚𝑖 − 1) leads to the same

weight to each observation scheme (OBS); often in the dense observation, assignment 𝜔𝑖 = 1/(𝑛𝑚𝑖)
along with 𝜈𝑖 = 1/𝑛𝑚𝑖 (𝑚𝑖 −1) leads to the same weight to each subject scheme (SUBJ). Although OBS
and SUBJ are the most commonly used schemes, for some cases, Zhang and Wang [24] suggested using
a mixture of the OBS and SUBJ schemes (MIX). That is, 𝜔𝑖 = 𝛼1/(

∑𝑛
𝑖=1 𝑚𝑖) + (1 − 𝛼1)/(𝑛𝑚𝑖) and

𝜈𝑖 = 𝛼2/{
∑𝑛
𝑖=1 𝑚𝑖 (𝑚𝑖 − 1)} + (1− 𝛼2)/{𝑛𝑚𝑖 (𝑚𝑖 − 1)} for some 0 ≤ 𝛼1, 𝛼2 ≤ 1. Moreover, they showed

that the MIX scheme was likely to achieve a better performance. In our simulation part, we will see
that this weighing scheme is also likely to be better than OBS and SUBJ with incorporating covariate
information.

2.2. Asymptotic results

In this section, we establish the uniform convergence rates for the estimates. Our results cover the case
of sparse designs, where the number of design points 𝑚𝑖 is bounded, and the case of dense designs,
where 𝑚𝑖 → ∞. The additional assumptions and proof of these results are relegated to Appendix. Based
on the general weighing scheme, we provide the uniform convergence rates of mean and covariance
function estimators in Theorems 1 and 2, respectively.

Theorem 1. Under conditions (A1)–(A5) and (B1)–(B4) in the Appendix,

sup
𝑡 ,𝑧∈[0,1]

|𝜇(𝑡, 𝑧) − 𝜇(𝑡, 𝑧) | = 𝑂 (ℎ2
𝜇𝑡 + ℎ2

𝜇𝑧 + ℎ𝜇𝑡ℎ𝜇𝑧 + 𝛿𝑛1) a.s.,

where

𝛿𝑛1 =

[
log(𝑛)

{∑𝑛
𝑖=1 𝑚𝑖𝜔

2
𝑖

ℎ𝜇𝑡ℎ𝜇𝑧
+

∑𝑛
𝑖=1 𝑚𝑖 (𝑚𝑖 − 1)𝜔2

𝑖

ℎ𝜇𝑧

}]1/2
.

Theorem 2. Under conditions (A1)–(A6) and (C1)–(C4) in the Appendix,

sup
𝑠,𝑡 ,𝑧∈[0,1]

|𝐺 (𝑡, 𝑠, 𝑧) − 𝐺 (𝑡, 𝑠, 𝑧) |

= 𝑂 (ℎ2
𝜇𝑡 + ℎ2

𝜇𝑧 + ℎ𝜇𝑡ℎ𝜇𝑧 + 𝛿𝑛1 + ℎ2
𝐺𝑡 + ℎ2

𝐺𝑧 + ℎ𝐺𝑡ℎ𝐺𝑧 + 𝛿𝑛2) a.s.,

where

𝛿𝑛2 =

[
log(𝑛)

{∑𝑛
𝑖=1 𝑚𝑖 (𝑚𝑖 − 1)𝜈2

𝑖

ℎ2
𝐺𝑡ℎ𝐺𝑧

+
∑𝑛
𝑖=1 𝑚𝑖 (𝑚𝑖 − 1)(𝑚𝑖 − 2)𝜈2

𝑖

ℎ𝐺𝑡ℎ𝐺𝑧

+
∑𝑛
𝑖=1 𝑚𝑖 (𝑚𝑖 − 1)(𝑚𝑖 − 2)(𝑚𝑖 − 3)𝜈2

𝑖

ℎ𝐺𝑧

}]1/2
.

The results in Theorems 1 and 2 are natural extensions of Theorems 5.1 and 5.2 of Zhang and Wang
[24] for the case of additional covariate information available, respectively. Similar conclusion for the
OBS scheme was established by Chen and Müller [4].
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3. Numerical studies

3.1. Simulation results

To assess which weighing scheme is better in the case where covariate information is incorporated,
we evaluate the finite-sample numerical performances of the most commonly used OBS and SUBJ
schemes, together with the weighing schemes based on their mixture as defined in Section 2. The
simulation is set as follows: for each subject 𝑖, the covariate-adjusted true trajectories are generated as
𝑌𝑖 (𝑡) = 𝜇(𝑡, 𝑧) + ∑2

𝑘=1 𝜉𝑖𝑘𝜓𝑘 (𝑡, 𝑧) + 𝜖𝑖 (𝑡), where the covariate 𝑧 is generated from 𝑈 (0, 1), and mean
function is 𝜇(𝑡, 𝑧) = (1 + 𝑧)(𝑡 + sin(𝑡)). The principal component scores are 𝜉𝑖𝑘 ∼ N{0, 𝜆𝑘 (𝑧)} for
𝑘 = 1, 2 and the eigenfunctions are 𝜓1(𝑡, 𝑧) =

√
2 sin(𝜋(𝑡 + 𝑧/2)) and 𝜓2(𝑡, 𝑧) = −

√
2 cos(𝜋(𝑡 + 𝑧/2)),

respectively. We set {𝜆1(𝑧), 𝜆2(𝑧)} = (𝑧/9, 𝑧/36) and 𝜖𝑖 (𝑡) ∼ N (0, 0.2).
For more generality in practice, we provide the simulation studies under different number of

observation points setting, which include sparse, dense and mixture of them shown as follows:

Case 1: 𝑚𝑖 is sampled with equal probability from {2, . . . , 6}.
Case 2: 𝑚𝑖 is sampled from a discrete uniform distribution on the interval [𝑛/6, 𝑛/3].
Case 3: 𝑚𝑖 = 𝑛/4 with probability 1/2, and follows Case 1 with probability 1/2.

We compare the performance of three different weighing scheme using the corresponding mean
integrated square errors (MISE) for the 𝜇 defined as below

MISE(𝜇, ℎ𝜇) = 1
𝑛

𝑛∑
𝑖=1

∫
{𝜇(𝑡, 𝑧𝑖) − 𝜇(𝑡, 𝑧𝑖)}2 𝑑𝑡.

To evaluate the covariance estimators, we assume that the mean function 𝜇 is known so that the
covariance estimation is disentangled from the mean estimation and define the MISE of 𝐺 as follows:

MISE(𝐺, ℎ𝐺) = 1
𝑛

𝑛∑
𝑖=1

∬
{𝐺 (𝑠, 𝑡, 𝑧𝑖) − 𝐺 (𝑠, 𝑡, 𝑧𝑖)}2 𝑑𝑠 𝑑𝑡.

In each case, the sample size is 50, 100 and 200, respectively. We present the mean and standard
deviation (in parentheses) of the MISE over 200 repetitions for each case. Hereafter, estimators with the
subscript “obs,” “subj” and “mix” represent the OBS, SUBJ and MIX estimators, respectively.

In Table 1, similar to the case where covariate information is not incorporated, the OBS scheme
outperforms the SUBJ scheme in Case 1 and Case 3, while the SUBJ scheme is superior in Case 2.
Moreover, as expected, the performance improves as the number of subjects increases. With respect
to MISE of covariance function from Table 2, we have similar results to their counterparts in Table 1,
which conforms with the case of ignoring the covariate information.

As shown in Tables 1 and 2, both 𝜇mix and 𝐺mix performed equally well or better than the counterparts
of OBS and SUBJ estimators. This provides the numerical evidence for the benefit of using a mixture
of the OBS and SUBJ schemes as discussed in Section 2.

3.2. Application to children growth data

We apply the proposed methodology to analyze a real medical study dataset about the growth curves
of children, which is publicly available on https://content.sph.harvard.edu/fitzmaur/ala/fev1.txt. This
dataset was presented by Brunekreef et al. [1] and was commonly used as an example for a longitudinal
study designed to characterize lung growth as measured by changes in pulmonary function in children
and adolescents.

The dataset consists of 300 children, with a minimum of 1 and a maximum of 12 observations over
time. The following four variables are included: age (ranging from 6 to 18 years old), height, FEV1
(forced expiratory volume in one second) and initial height, which is obtained from a randomly selected
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Table 1. MISE of the estimator of mean function, where 𝜇obs is the OBS scheme, 𝜇subj refers to SUBJ
scheme, 𝜇mix denotes the mixture of the above two weighing scheme (𝛼1 = 1/2).

𝑛 Method Case 1 Case 2 Case 3

50 𝜇obs 0.0563 (0.0185) 0.0450 (0.0163) 0.0495 (0.0164)
𝜇subj 0.0567 (0.0191) 0.0450 (0.0161) 0.0519 (0.0178)
𝜇mix 0.0555 (0.0186) 0.0449 (0.0162) 0.0495 (0.0166)

100 𝜇obs 0.0465 (0.0080) 0.0392 (0.0085) 0.0489 (0.0124)
𝜇subj 0.0475 (0.0092) 0.0387 (0.0081) 0.0419 (0.0104)
𝜇mix 0.0460 (0.0084) 0.0388 (0.0082) 0.0426 (0.0105)

200 𝜇obs 0.0376 (0.0124) 0.0325 (0.0112) 0.0320 (0.0108)
𝜇subj 0.0384 (0.0127) 0.0323 (0.0110) 0.0373 (0.0079)
𝜇mix 0.0371 (0.0123) 0.0323 (0.0110) 0.0366 (0.0093)

The corresponding standard errors are in parentheses.

Table 2. MISE of the estimator of covariance function, where 𝐺obs is the OBS scheme, 𝐺subj refers to
SUBJ scheme, 𝐺mix denotes the mixture of the above two weighing scheme (𝛼2 = 1/2).

𝑛 Method Case 1 Case 2 Case 3

50 𝐺obs 0.0316 (0.0081) 0.0225 (0.0074) 0.0279 (0.0063)
𝐺subj 0.0318 (0.0085) 0.0224 (0.0070) 0.0296 (0.0075)
𝐺mix 0.0304 (0.0079) 0.0223 (0.0072) 0.0276 (0.0063)

100 𝐺obs 0.0229 (0.0053) 0.0186 (0.0052) 0.0212 (0.0042)
𝐺subj 0.0236 (0.0059) 0.0183 (0.0045) 0.0215 (0.0063)
𝐺mix 0.0221 (0.0051) 0.0183 (0.0048) 0.0195 (0.0042)

200 𝐺obs 0.0182 (0.0041) 0.0167 (0.0037) 0.0175 (0.0036)
𝐺subj 0.0195 (0.0041) 0.0163 (0.0034) 0.0186 (0.0034)
𝐺mix 0.0179 (0.0036) 0.0164 (0.0035) 0.0167 (0.0025)

The corresponding standard errors are in parentheses.

subset of the participants living in Topeka, Kansas in USA. What we are interested in is to explore
the influence of children’s initial height on the shape changes of the mean functions of height’s curve.
Therefore, the adjusted covariate is initial height and we exclude the children whose observations are
less than two times, such that the sample size 𝑛 = 258. Since the range of children’s age is sparse (the
maximum is 12 observations), we adopt OBS weighing scheme to model the height curve.

To compare the developed approach with the approach that does not incorporate the initial height
information, we also display the fitted curves by using the conventional OBS weighing scheme estimation
procedure [24]. We randomly select four estimated mean height curves shown in Figure 1. The overall
trend of the height curve as shown is incremental with a decreasing rate of growth, which is consistent
with common knowledge. Specifically, the left top plot shows that our estimation procedure is closer to
the observed height’s curve compared with the approach without the initial height adjusted. According to
other plots, we have similar results. This demonstrates that the data support the simple covariate-adjusted
approach when modeling curves. The differences between the two estimated methods may somewhat
claim that the proposed method is more efficient numerically than conventional approaches without
incorporating covariate information. Such an extension in this paper could be valuable for doctors who
study how the children’s height changes with their age when covariate information is available.
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Figure 1. Plots of an estimated mean function of children’s height. The black dashed lines are the
observed height’s curve. The blue solid lines are the estimated mean function of height by Zhang and
Wang [24] and the red solid lines denote the curve estimated by our estimation procedure.

3.3. Application to diffusion tensor imaging study

The proposed method is also applied to a real data set of diffusion tensor imaging (DTI). In diffusion
data analysis, fractional anisotropy (FA), which quantifies the directional strength of white matter tract
structure, at a particular location, is one of the most used measures and has been widely applied to
statistical analyses in many imaging studies, see, such as Zhu et al. [27], Li et al. [13] and reference
therein. The data can be downloaded from the ADNI publicly available database (https://adni.loni.usc.
edu/) or http://www.nitrc.org/projects/fadtts/.

We are interested in delineating the trend of the variability of these functional FA with a set of
available covariates of interest, such as age. In particular, we use 64 healthy infants from the neonatal
project on early brain development. The gestational ages of these infants range from 262 to 433 days, and
their mean gestational age is 298 days with standard deviation 17.6 days. The dataset was preprocessed
by Zhu et al. [27]. Finally, we fit model (1) to the FA values from 64 subjects at 75 grid points along the
genu tract of the corpus callosum, in which 𝑍𝑖 = Age. Since the data are dense, SUBJ is adopted.

Figure 2 presents the three randomly selected estimated FA trajectories with age information adjusted,
as well as the traditional non-information adjusted estimation curves. It also shows that the proposed
method is more efficient. Moreover, the results confirm that neonatal microstructural development of
FA correlates with age. Such findings are consistent with those of previous works. This shows that the
proposed estimate is more reasonable in describing the true characteristic of the mean function.
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Figure 2. Plots of the estimated mean function of functional FA. The black dashed lines are the observed
FA values. The blue solid lines are the estimated mean function of FA without age adjusted and the red
solid lines denote the trajectory estimated by our estimation procedure.

4. Discussion

In this paper, we focused on covariate adjusted local linear smoothers when estimating the mean
and covariance functions. This is an important extension for the study of functional mean-covariance
model, because we incorporate the available covariate information that may improve the accuracy of
estimation. Moreover, we are particularly interested in the framework of general weighing scheme which
incorporates the commonly used OBS and SUBJ schemes. The carefully derived convergence rates in
the framework of general weighing scheme expanded the results that ignore the covariate information.
Numerical performances of OBS and SUBJ schemes are also systematically compared.

It is also of great interest to establish the asymptotic distribution and optimal convergence rate of
𝜇(𝑡, 𝑧) and 𝐺 (𝑡, 𝑧) under the general weighing framework, which we left for future work. Furthermore,
the general weighing framework may be used in functional data regression, classification, clustering,
etc., and hence the theoretical results here could be extended to those cases as well. This will also be
pursued in future work.
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Appendix

Conditions
Similar to the conditions in Chen and Müller [4], Chen et al. [5] and Zhang and Wang [24], the following
conditions are imposed to facilitate the proofs.

Conditions for kernel function and time points

(A1) 𝐾 (·) is a symmetric probability density function on [−1, 1] and

𝜎2
𝐾 =

∫
𝑢2𝐾 (𝑢) 𝑑𝑢 < ∞, ‖𝐾 ‖2 =

∫
𝐾 (𝑢)2 𝑑𝑢 < ∞

(A2) 𝐾 (·) is Lipschitz continuous and there exists 0 < 𝐿 < ∞ such that

|𝐾 (𝑢) − 𝐾 (𝑣) | ≤ 𝐿 |𝑢 − 𝑣 |, for any 𝑢, 𝑣 ∈ [0, 1] .

This implies 𝐾 (·) ≤ 𝑀𝐾 for a constant 𝑀𝐾 .
(A3) {𝑇𝑖 𝑗 : 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚𝑖}, are i.i.d. copies of a random variable 𝑇 defined on [0,1]. The
density 𝑓 (·) of 𝑇 is bounded from below and above: 0 < 𝑚 𝑓 ≤ min𝑡 ∈[0,1] 𝑓 (𝑡) ≤ max𝑡 ∈[0,1] 𝑓 (𝑡) ≤
𝑀 𝑓 < ∞.
(A4) 𝑓 (2) (·) and 𝑔 (2) (·), the second derivatives of 𝑓 (·) and 𝑔(·), are bounded, respectively.
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(A5) 𝜕2𝜇(𝑡, 𝑧)/𝜕𝑡 and 𝜕2𝜇(𝑡, 𝑧)/𝜕𝑧, the second derivatives of 𝜇(𝑡, 𝑧) with respect to 𝑡 and 𝑧, are bounded
on [0, 1]2, respectively.
(A6) 𝜕2𝐺 (𝑠, 𝑡, 𝑧)/𝜕𝑠2, 𝜕2𝐺 (𝑠, 𝑡, 𝑧)/𝜕𝑡2, 𝜕2𝐺 (𝑠, 𝑡, 𝑧)/𝜕𝑧2, 𝜕2𝐺 (𝑠, 𝑡, 𝑧)/𝜕𝑠𝜕𝑡, 𝜕2𝐺 (𝑠, 𝑡, 𝑧)/𝜕𝑠𝜕𝑧, and
𝜕2𝐺 (𝑠, 𝑡, 𝑧)/𝜕𝑡𝜕𝑧 are bounded on [0, 1]3.

Conditions for mean function estimation

(B1) ℎ𝜇𝑡 → 0. For some finite 𝜌𝜇, ℎ𝜇𝑡/ℎ𝜇𝑧 → 𝜌𝜇.
(B2) log(𝑛)∑𝑛

𝑖=1 𝑚𝑖𝜔
2
𝑖 /ℎ𝜇𝑡ℎ𝜇𝑧 → 0, and log(𝑛)∑𝑛

𝑖=1 𝑚𝑖 (𝑚𝑖 − 1)𝜔2
𝑖 /ℎ𝜇𝑧 → 0.

(B3) For some 𝛼 > 2, 𝐸{sup𝑡 ,𝑧∈[0,1] |𝑈 (𝑡, 𝑧) |𝛼} < ∞, 𝐸 |𝜀 |𝛼 < ∞ and

𝑛

{
𝑛∑
𝑖=1

𝑚𝑖𝜔
2
𝑖 ℎ𝜇𝑡ℎ𝜇𝑧 +

𝑛∑
𝑖=1

𝑚𝑖 (𝑚𝑖 − 1)𝜔2
𝑖 ℎ

2
𝜇𝑡ℎ𝜇𝑧

} {
log(𝑛)

𝑛

}2/𝛼−1

→ ∞.

(B4) sup𝑛 (𝑛max𝑖 𝑚𝑖𝜔𝑖) ≤ 𝐵 < ∞.

Conditions for covariance function estimation

(C1) ℎ𝐺𝑡 → 0 and ℎ𝐺𝑡/ℎ𝐺𝑧 → 𝜌𝐺 for some 0 < 𝜌𝐺 < ∞.
(C2) log(𝑛)∑𝑛

𝑖=1 𝑚𝑖 (𝑚𝑖 − 1)𝜈2
𝑖 /ℎ2

𝐺𝑡ℎ𝐺𝑧 → 0, log(𝑛)∑𝑛
𝑖=1 𝑚𝑖 (𝑚𝑖 − 1)(𝑚𝑖 − 2)𝜈2

𝑖 /ℎ𝐺𝑡ℎ𝐺𝑧 → 0,
log(𝑛)∑𝑛

𝑖=1 𝑚𝑖 (𝑚𝑖 − 1)(𝑚𝑖 − 2)(𝑚𝑖 − 3)𝜈2
𝑖 /ℎ𝐺𝑧 → 0.

(C3) For some 𝛽 > 2, 𝐸{sup𝑡 ,𝑧∈[0,1] |𝑈 (𝑡, 𝑧) |2𝛽} < ∞, 𝐸 |𝜀 |2𝛽 < ∞, and

𝑛

{
𝑛∑
𝑖=1

𝑚𝑖 (𝑚𝑖 − 1)𝜈2
𝑖 ℎ

2
𝐺𝑡ℎ𝐺𝑧 +

𝑛∑
𝑖=1

𝑚𝑖 (𝑚𝑖 − 1)(𝑚𝑖 − 2)𝜈2
𝑖 ℎ

3
𝐺𝑡ℎ𝐺𝑧

+
𝑛∑
𝑖=1

𝑚𝑖 (𝑚𝑖 − 1)(𝑚𝑖 − 2)(𝑚𝑖 − 3)𝜈2
𝑖 ℎ

4
𝐺𝑡ℎ𝐺𝑧

} {
log(𝑛)

𝑛

}2/𝛽−1

→ ∞.

(C4) sup𝑛 (𝑛max𝑖 𝑚𝑖 (𝑚𝑖 − 1)𝜈𝑖) ≤ 𝐵′ < ∞.

Conditions (A1)–(A6) are standard in the literature of functional data analysis (FDA) and nonpara-
metric smoothing such as Yao et al. [23]. Conditions (B1)–(B4) are used to guarantee the consistency of
the estimator of the mean function. Their counterparts for the OBS and SUBJ schemes are commonly
used in FDA, similar versions can refer to Chen and Müller [4]. Likewise, the Conditions (C1)–(C4) are
used to establish the consistency of the estimated covariance function. Condition (C1) is a mild con-
dition that requires the bandwidth ℎ𝐺𝑡 and ℎ𝐺𝑧 to converge to zero at the same rate. Conditions (C2)
and (C3) impose restrictions on 𝑚𝑖 , 𝑛 and ℎ𝐺𝑡 (ℎ𝐺𝑧) in theory. Condition (C4) allows 𝑚𝑖 is different for
each subject 𝑖 but not too irregular. More detailed demonstration can refer to Zhang and Wang [24].

Auxiliary results and proofs
In this subsection, we provide detailed proofs for the estimators in this paper. Below, for any square
matrix A, |A| denotes the determinant. We denote

𝐿(𝑡, 𝑧) =
𝑛∑
𝑖=1

𝜔𝑖

𝑚𝑖∑
𝑗=1

𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝜇𝑡

)
𝐾

(
𝑍𝑖 − 𝑧

ℎ𝜇𝑧

)
𝑈+
𝑖 𝑗 ,

where 𝑈+
𝑖 𝑗 is the positive part of 𝑈𝑖 𝑗 and 𝑈𝑖 𝑗 := 𝑈 (𝑇𝑖 𝑗 , 𝑍𝑖) = 𝑌𝑖 𝑗 − 𝜇(𝑇𝑖 𝑗 , 𝑍𝑖).

The following lemma is used to prove Theorem 1.
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Lemma A.1. Under the assumptions for Theorem 1,

sup
𝑡 ,𝑧∈[0,1]

|𝐿(𝑡, 𝑧) − 𝐸𝐿(𝑡, 𝑧) | = 𝑂 (𝑎𝑛) a.s.,

where

𝑎𝑛 =

[
log(𝑛)

{
𝑛∑
𝑖=1

𝑚𝑖𝜔
2
𝑖 ℎ𝜇𝑡ℎ𝜇𝑧 +

𝑛∑
𝑖=1

𝑚𝑖 (𝑚𝑖 − 1)𝜔2
𝑖 ℎ

2
𝜇𝑡ℎ𝜇𝑧

}]1/2

.

Proof. For the sake of simplicity, we denote 𝐴𝑛 = 𝑎𝑛{𝑛/log(𝑛)}. By (B2), we can choose 𝜌 such that
𝑛𝜌ℎ𝜇𝑡𝑎𝑛 → ∞ (i.e., 𝑛𝜌ℎ𝜇𝑧𝑎𝑛 → ∞ by (B1)) and let 𝜒(𝜌) be an equally sized mesh on [0, 1]2 with grid
𝑛−𝜌 by 𝑛−𝜌. Observe that

sup
𝑡 ,𝑧∈[0,1]

|𝐿(𝑡, 𝑧) − 𝐸𝐿(𝑡, 𝑧) | ≤ sup
𝑡 ,𝑧∈𝜒 (𝜌)

sup
𝑡 ,𝑠,𝑧,𝑧′ ∈ [0,1]

|𝑡−𝑠 |, |𝑧−𝑧′ | ≤𝑛−𝜌
|𝐿(𝑡, 𝑧) − 𝐿(𝑠, 𝑧′) |

+ sup
𝑡 ,𝑧∈𝜒 (𝜌)

|𝐿(𝑡, 𝑧) − 𝐸𝐿(𝑡, 𝑧) |

+ sup
𝑡 ,𝑧∈𝜒 (𝜌)

sup
𝑡 ,𝑠,𝑧,𝑧′ ∈ [0,1]

|𝑡−𝑠 |, |𝑧−𝑧′ | ≤𝑛−𝜌
|𝐸𝐿(𝑡, 𝑧) − 𝐸𝐿(𝑠, 𝑧′) |

≡ 𝑄1 +𝑄2 +𝑄3.

We first consider 𝑄1 and 𝑄3. For all 𝑡 and 𝑧, by (A2) and Hölder inequality, it follows that

𝑄1 = sup
|𝑡−𝑠 |, |𝑧−𝑧′ | ≤𝑛−𝜌

|𝐿(𝑡, 𝑧) − 𝐿(𝑠, 𝑧′) |

≤ sup
|𝑡−𝑠 |, |𝑧−𝑧′ | ≤𝑛−𝜌

����� 𝑛∑
𝑖=1

𝜔𝑖

𝑚𝑖∑
𝑗=1

𝑈+
𝑖 𝑗𝐾

(
𝑍𝑖 − 𝑧

ℎ𝜇𝑧

) {
𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝜇𝑡

)
− 𝐾

(
𝑇𝑖 𝑗 − 𝑠

ℎ𝜇𝑡

)}�����
+ sup

|𝑡−𝑠 |, |𝑧−𝑧′ | ≤𝑛−𝜌

����� 𝑛∑
𝑖=1

𝜔𝑖

𝑚𝑖∑
𝑗=1

𝑈+
𝑖 𝑗𝐾

(
𝑇𝑖 𝑗 − 𝑠

ℎ𝜇𝑡

) {
𝐾

(
𝑍𝑖 − 𝑧

ℎ𝜇𝑧

)
− 𝐾

(
𝑍𝑖 − 𝑧′

ℎ𝜇𝑧

)}�����
≤

(
𝑛∑
𝑖=1

𝜔𝑖

𝑚𝑖∑
𝑗=1

𝑈+
𝑖 𝑗

)
𝑀𝐾 𝐿𝑛−𝛾 (1/ℎ𝜇𝑡 + 1/ℎ𝜇𝑧)

≤
(
𝑛∑
𝑖=1

𝜔𝑖

𝑛∑
𝑗=1

1𝛼/(𝛼−1)
) (𝛼−1)/𝛼 (

𝑛∑
𝑖=1

𝜔𝑖

𝑛∑
𝑗=1

𝑈𝛼
𝑖 𝑗

)1/𝛼

𝑀𝐾 𝐿𝑛−𝛾 (1/ℎ𝜇𝑡 + 1/ℎ𝜇𝑧)

≤
{
𝑛∑
𝑖=1

𝑚𝑖𝜔𝑖 sup
𝑡 ,𝑧∈[0,1]

|𝑈𝑖 (𝑡, 𝑧) |𝛼
}1/𝛼

𝑀𝐾 𝐿𝑛−𝛾 (1/ℎ𝜇𝑡 + 1/ℎ𝜇𝑧).

Combing the Conditions (B3) and (B4), and the strong law of large numbers, we have{
𝑛∑
𝑖=1

𝑚𝑖𝜔𝑖 sup
𝑡 ,𝑧∈[0,1]

|𝑈𝑖 (𝑡, 𝑧) |𝛼
}1/𝛼

≤
(
𝑛max

𝑖
𝑚𝑖𝜔𝑖

) 1
𝑛

𝑛∑
𝑖=1

sup
𝑡 ,𝑧∈[0,1]

|𝑈𝑖 (𝑡, 𝑧) |𝛼

≤ 𝐵
1
𝑛

𝑛∑
𝑖=1

sup
𝑡 ,𝑧∈[0,1]

|𝑈𝑖 (𝑡, 𝑧) |𝛼
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→ 𝐵𝐸 sup
𝑡 ,𝑧∈[0,1]

|𝑈𝑖 (𝑡, 𝑧) |𝛼

< ∞, a.s..

𝑛𝜌ℎ𝜇𝑡𝑎𝑛 → ∞ and 𝑛𝜌ℎ𝜇𝑧𝑎𝑛 → ∞ lead to 𝑛−𝜌/ℎ𝜇𝑡 = 𝑜(𝑎𝑛) and 𝑛−𝜌/ℎ𝜇𝑧 = 𝑜(𝑎𝑛), respectively, which
implies that 𝑄1 = 𝑜(𝑎𝑛), a.s.. The term 𝑄3 can be dealt with similarly and we skip the details here. We
now consider the 𝑄2. Observe that

𝑄2 ≤ sup
𝑡 ,𝑧∈𝜒 (𝜌)

|𝐿(𝑡, 𝑧)∗−𝐸𝐿(𝑡, 𝑧)∗ |

+ sup
𝑡 ,𝑧∈𝜒 (𝜌)

𝑛∑
𝑖=1

𝜔𝑖

𝑚𝑖∑
𝑗=1

𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝜇𝑡

)
𝐾

(
𝑍𝑖 − 𝑧

ℎ𝜇𝑧

)
𝑈+
𝑖 𝑗 𝐼 (𝑈+

𝑖 𝑗>𝐴𝑛)

+ sup
𝑡 ,𝑧∈𝜒 (𝜌)

𝑛∑
𝑖=1

𝜔𝑖

𝑚𝑖∑
𝑗=1

𝐸

{
𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝜇𝑡

)
𝐾

(
𝑍𝑖 − 𝑧

ℎ𝜇𝑧

)
𝑈+
𝑖 𝑗 𝐼 (𝑈+

𝑖 𝑗>𝐴𝑛)
}
,

where 𝐿(𝑡, 𝑧)∗ is the truncation of 𝐿(𝑡, 𝑧), that is

𝐿(𝑡, 𝑧)∗=
𝑛∑
𝑖=1

𝜔𝑖

𝑚𝑖∑
𝑗=1

𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝜇𝑡

)
𝐾

(
𝑍𝑖 − 𝑧

ℎ𝜇𝑧

)
𝑈+
𝑖 𝑗 𝐼 (𝑈+

𝑖 𝑗 ≤ 𝐴𝑛),

where 𝐼 (·) is the indicator function. Combing the Conditions (A2), (B3)–(B4) and 𝐴𝑛 = 𝑎𝑛{𝑛/log(𝑛)},
for every 𝑡, 𝑧 ∈ 𝜒(𝜌), we have

𝑛∑
𝑖=1

𝜔𝑖

𝑚𝑖∑
𝑗=1

𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝜇𝑡

)
𝐾

(
𝑍𝑖 − 𝑧

ℎ𝜇𝑧

)
𝑈+
𝑖 𝑗 𝐼 (𝑈+

𝑖 𝑗>𝐴𝑛)

≤ 𝑀𝐾 𝐴1−𝛼
𝑛

𝑛∑
𝑖=1

𝜔𝑖

𝑚𝑖∑
𝑗=1

��𝑈𝑖 𝑗 ��𝛼
≤ 𝐵𝑀𝐾 𝐴1−𝛼

𝑛

{
𝑛−1

𝑛∑
𝑖=1

sup
𝑡 ,𝑧∈[0,1]

|𝑈𝑖 (𝑡, 𝑧) |𝛼
}

= 𝑜(𝑎𝑛) a.s.,

where 𝑜(·)a.s. is uniform in 𝑡, 𝑧 ∈ 𝜒(𝜌). Similarly,

sup
𝑡 ,𝑧∈𝜒 (𝜌)

𝑛∑
𝑖=1

𝜔𝑖

𝑚𝑖∑
𝑗=1

𝐸

{
𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝜇𝑡

)
𝐾

(
𝑍𝑖 − 𝑧

ℎ𝜇𝑧

)
𝑈+
𝑖 𝑗 𝐼 (𝑈+

𝑖 𝑗>𝐴𝑛)
}
= 𝑜(𝑎𝑛), a.s.

Note that 𝐿(𝑡, 𝑧)∗ − 𝐸𝐿(𝑡, 𝑧)∗ = ∑𝑛
𝑖=1(𝑉𝑖 − 𝐸𝑉𝑖), where

𝑉𝑖 = 𝜔𝑖

𝑚𝑖∑
𝑗=1

𝐾 ((𝑇𝑖 𝑗 − 𝑡)/ℎ𝜇𝑡 )𝐾 ((𝑍𝑖 − 𝑧)/ℎ𝜇𝑧)𝑈+
𝑖 𝑗 𝐼 (𝑈+

𝑖 𝑗≤𝐴𝑛).
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It is easy to check that, for some constant 𝑀𝑈 > 0,

var𝑉𝑖 ≤ 𝐸𝑉2
𝑖

≤
𝑛∑
𝑖=1

𝑚𝑖𝜔
2
𝑖 𝐸

{
𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝜇𝑡

)
𝐾

(
𝑍𝑖 − 𝑧

ℎ𝜇𝑧

)
𝑈+
𝑖 𝑗

}2

+
𝑛∑
𝑖=1

𝑚𝑖 (𝑚𝑖 − 1)𝜔2
𝑖 𝐸

{
𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝜇𝑡

)
𝐾

(
𝑇𝑖 𝑗′ − 𝑡

ℎ𝜇𝑡

)
𝐾2

(
𝑍𝑖 − 𝑧

ℎ𝜇𝑧

)
𝑈+
𝑖 𝑗𝑈

+
𝑖 𝑗′

}
≤ 𝑀𝑈

{
𝑛∑
𝑖=1

𝑚𝑖𝜔
2
𝑖 ℎ𝜇𝑡ℎ𝜇𝑧 +

𝑛∑
𝑖=1

𝑚𝑖 (𝑚𝑖 − 1)𝜔2
𝑖 ℎ

2
𝜇𝑡ℎ𝜇𝑧

}

and |𝑉𝑖 −𝐸𝑉𝑖 | ≤ 2𝑚𝑖𝜔𝑖𝑀2
𝐾 𝐴𝑛 ≤ 2𝐵𝑀2

𝐾 𝐴𝑛/𝑛 implied by (B4). By Bernstein inequality, for any 𝑀 > 0,

𝑃

(
sup

𝑡 ,𝑧∈𝜒 (𝜌)
|𝐿(𝑡, 𝑧)∗−𝐸𝐿(𝑡, 𝑧)∗ | > 𝑀𝑎𝑛

)
= 𝑃

���
⋃

𝑡 ,𝑧∈𝜒 (𝜌)
|𝐿(𝑡, 𝑧)∗−𝐸𝐿(𝑡, 𝑧)∗ | > 𝑀𝑎𝑛

���
≤ 𝑛𝜌𝑃

(����� 𝑛∑
𝑖=1

(𝑉𝑖 − 𝐸𝑉𝑖)
����� > 𝑀𝑎𝑛

)
≤ 2𝑛𝜌 exp

(
−𝑀2𝑎2

𝑛/2
/ [

𝑀𝑈

{
𝑛∑
𝑖=1

𝑚𝑖𝜔
2
𝑖 (ℎ𝜇𝑡ℎ𝜇𝑧 + ℎ3

𝜇𝑡ℎ𝜇𝑧 + ℎ𝜇𝑡ℎ
3
𝜇𝑧)

+
𝑛∑
𝑖=1

𝑚𝑖 (𝑚𝑖 − 1)𝜔2
𝑖 ℎ

2
𝜇𝑡ℎ𝜇𝑧

}
+ 2𝐵𝑀2

𝐾 𝐴𝑛𝑀𝑎𝑛/3𝑛
])

= 2𝑛𝜌 exp

(
− 𝑀2

2𝑀𝑈/log 𝑛 + 4𝐵𝑀2
𝐾𝑀/3 log 𝑛

)
= 2𝑛𝜌−𝑀 ∗

,

where 𝑀∗ = 𝑀2/(2𝑀𝑈+4𝐵𝑀2
𝑘𝑀/3). So𝑃(sup𝑡 ,𝑧∈𝜒 (𝜌) |𝐿(𝑡, 𝑧)∗−𝐸𝐿(𝑡, 𝑧)∗ | > 𝑀𝑎𝑛) is summable in 𝑛 if

we select 𝑀 enough such that 𝑀∗−𝜌 > 1. By Borel–Cantelli’s lemma, sup𝑡 ,𝑧∈𝜒 (𝜌) |𝐿(𝑡, 𝑧)∗−𝐸𝐿(𝑡, 𝑧)∗ | =
𝑂 (𝑎𝑛) a.s.. This completes the proof. �

Proof of Theorem 1. Denote

𝑆𝑝𝑞 =
𝑛∑
𝑖=1

𝜔𝑖

𝑚𝑖∑
𝑗=1

𝐾ℎ𝜇𝑡 (𝑇𝑖 𝑗 − 𝑡)𝐾ℎ𝜇𝑧 (𝑍𝑖 − 𝑧)
(
𝑇𝑖 𝑗 − 𝑡

ℎ𝜇𝑡

) 𝑝 (
𝑍𝑖 − 𝑧

ℎ𝜇𝑧

)𝑞
and

𝑅𝑝𝑞 =
𝑛∑
𝑖=1

𝜔𝑖

𝑚𝑖∑
𝑗=1

𝐾ℎ𝜇𝑡 (𝑇𝑖 𝑗 − 𝑡)𝐾ℎ𝜇𝑧 (𝑍𝑖 − 𝑧)
(
𝑇𝑖 𝑗 − 𝑡

ℎ𝜇𝑡

) 𝑝 (
𝑍𝑖 − 𝑧

ℎ𝜇𝑧

)𝑞
𝑌𝑖 𝑗 ,
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for 𝑝, 𝑞 = 0, . . . , 2. It is easy to check that

𝜇(𝑡, 𝑧) − 𝜇(𝑡, 𝑧)

= (𝑆20𝑆02 − 𝑆2
11)

{
𝑅00 − 𝜇(𝑡, 𝑧)𝑆00 − ℎ𝜇𝑡

𝜕𝜇

𝜕𝑡
(𝑡, 𝑧)𝑆10 − ℎ𝜇𝑧

𝜕𝜇

𝜕𝑧
(𝑡, 𝑧)𝑆01

}
/
𝑆20𝑆02 − 𝑆2

11)𝑆00 − (𝑆10𝑆02 − 𝑆01𝑆11)𝑆10 + (𝑆10𝑆11 − 𝑆01𝑆20)𝑆01}

− (𝑆10𝑆02 − 𝑆01𝑆11)
{
𝑅10 − 𝜇(𝑡, 𝑧)𝑆10 − ℎ𝜇𝑡

𝜕𝜇

𝜕𝑡
(𝑡, 𝑧)𝑆20 − ℎ𝜇𝑧

𝜕𝜇

𝜕𝑧
(𝑡, 𝑧)𝑆11

}
/
{(𝑆20𝑆02 − 𝑆2

11)𝑆00 − (𝑆10𝑆02 − 𝑆01𝑆11)𝑆10 + (𝑆10𝑆11 − 𝑆01𝑆20)𝑆01}

+ (𝑆10𝑆11 − 𝑆01𝑆20)
{
𝑅01 − 𝜇(𝑡, 𝑧)𝑆01 − ℎ𝜇𝑡

𝜕𝜇

𝜕𝑡
(𝑡, 𝑧)𝑆11 − ℎ𝜇𝑧

𝜕𝜇

𝜕𝑧
(𝑡, 𝑧)𝑆02

}
/
{(𝑆20𝑆02 − 𝑆2

11)𝑆00 − (𝑆10𝑆02 − 𝑆01𝑆11)𝑆10 + (𝑆10𝑆11 − 𝑆01𝑆20)𝑆01}, (A.1)

where

𝑅00 − 𝜇(𝑡, 𝑧)𝑆00 − ℎ𝜇𝑡
𝜕𝜇

𝜕𝑡
(𝑡, 𝑧)𝑆10 − ℎ𝜇𝑧

𝜕𝜇

𝜕𝑧
(𝑡, 𝑧)𝑆01

=
𝑛∑
𝑖=1

𝜔𝑖

𝑚𝑖∑
𝑗=1

𝐾ℎ𝜇𝑡 (𝑇𝑖 𝑗 − 𝑡)𝐾ℎ𝜇𝑧 (𝑍𝑖 − 𝑧)

×
[
𝛿𝑖 𝑗 + 𝜇(𝑇𝑖 𝑗 , 𝑍𝑖) − 𝜇(𝑡, 𝑧) − (𝑇𝑖 𝑗 − 𝑡) 𝜕𝜇

𝜕𝑡
(𝑡, 𝑧) − (𝑍𝑖 − 𝑧) 𝜕𝜇

𝜕𝑧
(𝑡, 𝑧)

]
=

𝑛∑
𝑖=1

𝜔𝑖

𝑚𝑖∑
𝑗=1

𝐾ℎ𝜇𝑡 (𝑇𝑖 𝑗 − 𝑡)𝐾ℎ𝜇𝑧 (𝑍𝑖 − 𝑧)𝛿𝑖 𝑗 +𝑂 (ℎ2
𝜇𝑡 ) +𝑂 (ℎ2

𝜇𝑧) +𝑂 (ℎ𝜇𝑡ℎ𝜇𝑧) a.s..

By Lemma A.1, sup𝑡 ,𝑧∈[0,1] |
∑𝑛
𝑖=1 𝜔𝑖

∑𝑚𝑖

𝑗=1 𝐾ℎ𝜇𝑡 (𝑇𝑖 𝑗 − 𝑡)𝐾ℎ𝜇𝑧 (𝑍𝑖 − 𝑧)𝛿𝑖 𝑗 | = 𝑂 (𝑎𝑛/ℎ𝜇𝑡ℎ𝜇𝑧), which yields
that

𝑅00 − 𝜇(𝑡, 𝑧)𝑆00 − ℎ𝜇𝑡
𝜕𝜇

𝜕𝑡
(𝑡, 𝑧)𝑆10 − ℎ𝜇𝑧

𝜕𝜇

𝜕𝑧
(𝑡, 𝑧)𝑆01

= 𝑂 (ℎ2
𝜇𝑡 + ℎ2

𝜇𝑧 + ℎ𝜇𝑡ℎ𝜇𝑧 + 𝑎𝑛/ℎ𝜇𝑡ℎ𝜇𝑧) a.s..

We also note that 𝐸𝑆20 = 𝑓 (𝑡) 𝑓 (𝑧)𝜎2
𝐾 + 𝑂 (ℎ𝜇𝑡 + ℎ𝜇𝑧), 𝐸𝑆02 = 𝑓 (𝑡) 𝑓 (𝑧)𝜎2

𝐾 + 𝑂 (ℎ𝜇𝑡 + ℎ𝜇𝑧) and
𝐸𝑆11 = 𝑂 (ℎ𝜇𝑡ℎ𝜇𝑧), which imply that 𝑆20𝑆02 − 𝑆2

11 is positive and bounded away from 0 on [0, 1]2a.s.
and it is easy to see that sup𝑡 ,𝑧∈[0,1] |𝑆20𝑆02 − 𝑆2

11 | = 𝑂 𝑝 (1), sup𝑡 ,𝑧∈[0,1] |𝑆10𝑆02 − 𝑆01𝑆11 | = 𝑂 𝑝 (1) and
sup𝑡 ,𝑧∈[0,1] |𝑆10𝑆11 − 𝑆01𝑆20𝑡 | = 𝑂 𝑝 (1). Therefore, the order of the first term of (A.1) is

(𝑆20𝑆02 − 𝑆2
11)

{
𝑅00 − 𝜇(𝑡, 𝑧)𝑆00 − ℎ𝜇𝑡

𝜕𝜇

𝜕𝑡
(𝑡, 𝑧)𝑆10 − ℎ𝜇𝑧

𝜕𝜇

𝜕𝑧
(𝑡, 𝑧)𝑆01

}
/
{(𝑆20𝑆02 − 𝑆2

11)𝑆00 − (𝑆10𝑆02 − 𝑆01𝑆11)𝑆10 + (𝑆10𝑆11 − 𝑆01𝑆20)𝑆01}
= 𝑂 (ℎ2

𝜇𝑡 + ℎ2
𝜇𝑧 + ℎ𝜇𝑡ℎ𝜇𝑧 + 𝑎𝑛/ℎ𝜇𝑡ℎ𝜇𝑧) a.s..

The same rate can also be similarly seen to hold for the other two terms of (A.1). This completes the
proof. �
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In the following, we present the convergence rate of covariance function. Firstly, let

𝐿(𝑡, 𝑠, 𝑧) =
𝑛∑
𝑖=1

𝜈𝑖
∑

1≤ 𝑗≠𝑘≤𝑚𝑖

𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝐺𝑡

)
𝐾

(
𝑇𝑖𝑘 − 𝑠

ℎ𝐺𝑡

)
𝐾

(
𝑍𝑖 − 𝑧

ℎ𝐺𝑧

)
𝑈+
𝑖 𝑗𝑘 ,

where 𝑈+
𝑖 𝑗𝑘 is the positive part of 𝑈𝑖 𝑗𝑈𝑖𝑘 .

Lemma A.2. Under the assumptions for Theorem 2,

sup
𝑠,𝑡 ,𝑧∈[0,1]

|𝐿(𝑡, 𝑠, 𝑧) − 𝐸𝐿(𝑡, 𝑠, 𝑧) | = 𝑂 (𝑏𝑛), a.s.

where

𝑏𝑛 =

[
log(𝑛)

{
𝑛∑
𝑖=1

𝑚𝑖 (𝑚𝑖 − 1)𝜈2
𝑖 ℎ

2
𝐺𝑡ℎ𝐺𝑧 +

𝑛∑
𝑖=1

𝑚𝑖 (𝑚𝑖 − 1)(𝑚𝑖 − 2)𝜈2
𝑖 ℎ

3
𝐺𝑡ℎ𝐺𝑧

+
𝑛∑
𝑖=1

𝑚𝑖 (𝑚𝑖 − 1)(𝑚𝑖 − 2)(𝑚𝑖 − 3)𝜈2
𝑖 ℎ

4
𝐺𝑡ℎ𝐺𝑧

}]1/2

.

Proof. Denotes 𝐵𝑛 = 𝑏𝑛{𝑛/log(𝑛)}. Using (C2), we can also choose 𝛾 > 0 such that 𝑛𝛾ℎ𝐺𝑡𝑏𝑛 → ∞ (and
𝑛𝛾ℎ𝐺𝑧𝑏𝑛 → ∞ by (C1)). Let 𝜒(𝛾) be a three-dimensional grid on [0, 1]3 with grid size 𝑛−𝛾 ×𝑛−𝛾 ×𝑛−𝛾 .
Therefore, by (C3) and (C4), we have

sup
𝑡 ,𝑠,𝑧∈[0,1]

|𝐿(𝑡, 𝑠, 𝑧) − 𝐸𝐿(𝑡, 𝑠, 𝑧) | ≤ sup
𝑡 ,𝑠,𝑧∈𝜒 (𝛾)

|𝐿(𝑡, 𝑠, 𝑧) − 𝐸𝐿(𝑡, 𝑠, 𝑧) | +𝑄1 +𝑄2 (A.2)

where
𝑄1 = sup

|𝑡−𝑡′ |, |𝑠−𝑠′ |, |𝑧−𝑧′ | ≤𝑛−𝛾
|𝐿(𝑡, 𝑠, 𝑧) − 𝐿(𝑡 ′, 𝑠′, 𝑧′) |,

and
𝑄2 = sup

|𝑡−𝑡′ |, |𝑠−𝑠′ |, |𝑧−𝑧′ | ≤𝑛−𝛾
|𝐸𝐿(𝑡, 𝑠, 𝑧) − 𝐸𝐿(𝑡 ′, 𝑠′, 𝑧′) |.

We note that

𝑄1 ≤ sup
|𝑡−𝑡′ |, |𝑠−𝑠′ |, |𝑧−𝑧′ | ≤𝑛−𝛾

𝑛∑
𝑖=1

𝜈𝑖

𝑚𝑖∑
𝑗≠𝑘

𝐾

(
𝑇𝑖𝑘 − 𝑠

ℎ𝐺𝑡

)
𝐾

(
𝑍𝑖 − 𝑧

ℎ𝐺𝑧

)
×𝑈+

𝑖 𝑗𝑘

����𝐾 (
𝑇𝑖 𝑗 − 𝑡

ℎ𝐺𝑡

)
− 𝐾

(
𝑇𝑖 𝑗 − 𝑡 ′

ℎ𝐺𝑡

)����
+ sup

|𝑡−𝑡′ |, |𝑠−𝑠′ |, |𝑧−𝑧′ | ≤𝑛−𝛾

𝑛∑
𝑖=1

𝜈𝑖

𝑚𝑖∑
𝑗≠𝑘

𝐾

(
𝑇𝑖 𝑗 − 𝑡 ′

ℎ𝐺𝑡

)
𝐾

(
𝑍𝑖 − 𝑧

ℎ𝐺𝑧

)
×𝑈+

𝑖 𝑗𝑘

����𝐾 (
𝑇𝑖 𝑗 − 𝑠

ℎ𝐺𝑡

)
− 𝐾

(
𝑇𝑖 𝑗 − 𝑠′

ℎ𝐺𝑡

)����
+ sup

|𝑡−𝑡′ |, |𝑠−𝑠′ |, |𝑧−𝑧′ | ≤𝑛−𝛾

𝑛∑
𝑖=1

𝜈𝑖

𝑚𝑖∑
𝑗≠𝑘

𝐾

(
𝑇𝑖 𝑗 − 𝑡 ′

ℎ𝐺𝑡

)
𝐾

(
𝑇𝑖𝑘 − 𝑠′

ℎ𝐺𝑡

)
×𝑈+

𝑖 𝑗𝑘

����𝐾 (
𝑇𝑖 𝑗 − 𝑧

ℎ𝐺𝑧

)
− 𝐾

(
𝑇𝑖 𝑗 − 𝑧′

ℎ𝐺𝑡

)����
≡ 𝐴𝑛1 + 𝐴𝑛2 + 𝐴𝑛3.
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Now, by (A2), (C4), Hölder inequality and strong law of large numbers,

𝐴𝑛1 ≤ sup
|𝑡−𝑡′ |, |𝑠−𝑠′ |, |𝑧−𝑧′ | ≤𝑛−𝛾

𝑀2
𝐾

𝑛∑
𝑖=1

𝜈𝑖

𝑚𝑖∑
𝑗≠𝑘

𝑈+
𝑖 𝑗𝑘𝐿𝑛

−𝛾/ℎ𝐺𝑡

≤
{
𝑛∑
𝑖=1

𝜈𝑖

𝑚𝑖∑
𝑗≠𝑘

(𝑈+
𝑖 𝑗𝑘 )𝛽

}1/𝛽

𝑀2
𝐾 𝐿𝑛−𝛾/ℎ𝐺𝑡

≤
{
𝑛∑
𝑖=1

𝑚𝑖 (𝑚𝑖 − 1)𝜈𝑖 sup
𝑡 ,𝑧∈[0,1]

|𝑈𝑖 (𝑡, 𝑧) |2𝛽
}1/𝛽

𝐿𝑛−𝛾/ℎ𝐺𝑡

= 𝑜(𝑏𝑛) a.s..

The similar demonstration can be obtained for 𝐴𝑛2, 𝐴𝑛3 and 𝑄2. So, 𝑄1, 𝑄2 = 𝑜(𝑏𝑛)a.s.. Let the
truncated 𝐿(𝑠, 𝑡, 𝑧) be

𝐿(𝑠, 𝑡, 𝑧)∗ =
𝑛∑
𝑖=1

𝜈𝑖
∑

1≤ 𝑗≠𝑘≤𝑚𝑖

𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝐺𝑡

)
𝐾

(
𝑇𝑖𝑘 − 𝑠

ℎ𝐺𝑡

)
𝐾

(
𝑍𝑖 − 𝑧

ℎ𝐺𝑧

)
𝑈+
𝑖 𝑗𝑘 𝐼 (𝑈+

𝑖 𝑗𝑘 ≤ 𝐵𝑛),

where 𝐼 (·) is the indicator function. Then,

sup
𝑡 ,𝑠,𝑧∈𝜒 (𝛾)

|𝐿(𝑡, 𝑠, 𝑧) − 𝐸𝐿(𝑡, 𝑠, 𝑧) | ≤ sup
𝑡 ,𝑠,𝑧∈𝜒 (𝛾)

|𝐿(𝑡, 𝑠, 𝑧)∗ − 𝐸𝐿(𝑡, 𝑠, 𝑧)∗ | +𝑄∗
1 +𝑄∗

2, (A.3)

where

𝑄∗
1 = sup

𝑡 ,𝑠,𝑧∈𝜒 (𝛾)

𝑛∑
𝑖=1

𝜈𝑖
∑

1≤ 𝑗≠𝑘≤𝑚𝑖

𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝐺𝑡

)
𝐾

(
𝑇𝑖𝑘 − 𝑠

ℎ𝐺𝑡

)
𝐾

(
𝑍𝑖 − 𝑧

ℎ𝐺𝑧

)
𝑈+
𝑖 𝑗𝑘 𝐼 (𝑈+

𝑖 𝑗𝑘 > 𝐵𝑛),

𝑄∗
2 = sup

𝑡 ,𝑠,𝑧∈𝜒 (𝛾)

𝑛∑
𝑖=1

𝜈𝑖
∑

1≤ 𝑗≠𝑘≤𝑚𝑖

𝐸

{
𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝐺𝑡

)
𝐾

(
𝑇𝑖𝑘 − 𝑠

ℎ𝐺𝑡

)
𝐾

(
𝑍𝑖 − 𝑧

ℎ𝐺𝑧

)
𝑈+
𝑖 𝑗𝑘 𝐼 (𝑈+

𝑖 𝑗𝑘 > 𝐵𝑛)
}
.

Combing the Conditions (A2), (C3)–(C4) and 𝐵𝑛 = 𝑏𝑛{𝑛/log(𝑛)}, it follows that 𝑄∗
1, 𝑄

∗
2 = 𝑜(𝑏𝑛), 𝑎.𝑠..

Now, we rewrite 𝐿(𝑠, 𝑡, 𝑧)∗ − 𝐸𝐿(𝑠, 𝑡, 𝑧)∗ = ∑𝑛
𝑖=1(𝑉𝑖 − 𝐸𝑉𝑖), where

𝑉𝑖 = 𝜈𝑖
∑
𝑗≠𝑘

𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝐺𝑡

)
𝐾

(
𝑇𝑖𝑘 − 𝑠

ℎ𝐺𝑡

)
𝐾

(
𝑍𝑖 − 𝑧

ℎ𝐺𝑧

)
𝑈+
𝑖 𝑗𝑘 𝐼 (𝑈+

𝑖 𝑗𝑘 ≤ 𝐵𝑛).

Notice that

𝐸 (𝑉𝑖 − 𝐸𝑉𝑖)2 ≤ 𝐸𝑉2
𝑖

≤ 𝑚𝑖 (𝑚𝑖 − 1)𝐸
{
𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝐺𝑡

)
𝐾

(
𝑇𝑖𝑘 − 𝑠

ℎ𝐺𝑡

)
𝐾

(
𝑍𝑖 − 𝑧

ℎ𝐺𝑧

)
𝑈+
𝑖 𝑗𝑘

}2
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+ 𝑚𝑖 (𝑚𝑖 − 1)(𝑚𝑖 − 2)𝐸
{
𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝐺𝑡

)
𝐾

(
𝑇𝑖 𝑗′ − 𝑡

ℎ𝐺𝑡

)
×𝐾2

(
𝑇𝑖𝑘 − 𝑠

ℎ𝐺𝑡

)
𝐾2

(
𝑍𝑖 − 𝑧

ℎ𝐺𝑧

)
𝑈+
𝑖 𝑗𝑘𝑈

+
𝑖 𝑗′𝑘

}
+ 𝑚𝑖 (𝑚𝑖 − 1)(𝑚𝑖 − 2)(𝑚𝑖 − 3)𝐸

{
𝐾

(
𝑇𝑖 𝑗 − 𝑡

ℎ𝐺𝑡

)
𝐾

(
𝑇𝑖𝑘 − 𝑠

ℎ𝐺𝑡

)
×𝐾

(
𝑇𝑖 𝑗′ − 𝑡

ℎ𝐺𝑡

)
𝐾

(
𝑇𝑖𝑘′ − 𝑠

ℎ𝐺𝑡

)
𝐾2

(
𝑍𝑖 − 𝑧

ℎ𝐺𝑧

)
𝑈+
𝑖 𝑗𝑘𝑈

+
𝑖 𝑗′𝑘′

}
≤ 𝑀𝑈

{
𝑛∑
𝑖=1

𝑚𝑖 (𝑚𝑖 − 1)𝜈2
𝑖 ℎ

2
𝐺𝑡ℎ𝐺𝑧 +

𝑛∑
𝑖=1

𝑚𝑖 (𝑚𝑖 − 1)(𝑚𝑖 − 2)𝜈2
𝑖 ℎ

3
𝐺𝑡ℎ𝐺𝑧

+
𝑛∑
𝑖=1

𝑚𝑖 (𝑚𝑖 − 1)(𝑚𝑖 − 2)(𝑚𝑖 − 3)𝜈2
𝑖 ℎ

4
𝐺𝑡ℎ𝐺𝑧

}
,

for some constant 𝑀𝑈 > 0 and |𝑉𝑖 − 𝐸𝑉𝑖 | ≤ 2𝑀3
𝐾𝑚𝑖 (𝑚𝑖 − 1)𝜈𝑖𝐵𝑛 ≤ 2𝐵𝑀3

𝐾 𝐵𝑛/𝑛. Similar to the proof
of Lemma A.1, by Bernstein inequality, we have

sup
𝑡 ,𝑠,𝑧∈𝜒 (𝛾)

|𝐿(𝑠, 𝑡, 𝑧)∗ − 𝐸𝐿(𝑠, 𝑡, 𝑧)∗ | = 𝑂 (𝑏𝑛) a.s..

Together with (A.2) and (A.3), the proof is completed. �

Now, we give the proof of Theorem 2.

Proof of Theorem 2. We denote that

𝑆𝑝𝑞ℓ =
𝑛∑
𝑖=1

∑
1≤ 𝑗≠𝑘≤𝑚𝑖

𝐾ℎ𝐺𝑡
(𝑇𝑖 𝑗 − 𝑡)𝐾ℎ𝐺𝑡

(𝑇𝑖𝑘 − 𝑠)𝐾ℎ𝐺𝑧
(𝑍𝑖 − 𝑧)

×
(
𝑇𝑖 𝑗 − 𝑡

ℎ𝐺𝑡

) 𝑝 (
𝑇𝑖 𝑗 − 𝑠

ℎ𝐺𝑡

)𝑞 (
𝑍𝑖 − 𝑧

ℎ𝐺𝑧

)ℓ
,

and

𝑅𝑝𝑞ℓ =
𝑛∑
𝑖=1

∑
1≤ 𝑗≠𝑘≤𝑚𝑖

𝐾ℎ𝐺𝑡
(𝑇𝑖 𝑗 − 𝑡)𝐾ℎ𝐺𝑡

(𝑇𝑖𝑘 − 𝑠)𝐾ℎ𝐺𝑧
(𝑍𝑖 − 𝑧)

×
(
𝑇𝑖 𝑗 − 𝑡

ℎ𝐺𝑡

) 𝑝 (
𝑇𝑖 𝑗 − 𝑠

ℎ𝐺𝑡

)𝑞 (
𝑍𝑖 − 𝑧

ℎ𝐺𝑧

)ℓ
𝐶𝑖 𝑗𝑘 ,

where 𝐶𝑖 𝑗𝑘 = {𝑌𝑖 𝑗 − 𝜇(𝑇𝑖 𝑗 , 𝑍𝑖)}{𝑌𝑖𝑘 − 𝜇(𝑇𝑖𝑘 , 𝑍𝑖)}, 𝑝, 𝑞, ℓ = 0, 1, 2. Let

S =
�����
𝑆000 𝑆100 𝑆010 𝑆001
𝑆100 𝑆200 𝑆110 𝑆101
𝑆010 𝑆110 𝑆020 𝑆011
𝑆001 𝑆101 𝑆011 𝑆002

����� , R =
�����
𝑅000
𝑅100
𝑅010
𝑅001

����� ,
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and note that the algebraic cofactors of S are

S∗=
�����
𝐶11 𝐶21 𝐶31 𝐶41
𝐶12 𝐶22 𝐶32 𝐶42
𝐶13 𝐶23 𝐶33 𝐶43
𝐶14 𝐶24 𝐶34 𝐶44

����� ,
where 𝐶 𝑗𝑘 are the cofactors of the ( 𝑗 , 𝑘) element of S. Then,

𝐺 (𝑡, 𝑠, 𝑧) = (𝐶11𝑅000 + 𝐶21𝑅100 + 𝐶31𝑅010 + 𝐶41𝑅001)
|S| ,

𝐺 (𝑡, 𝑠, 𝑧) = 𝐶11𝑆000 + 𝐶21𝑆100 + 𝐶31𝑆010 + 𝐶41𝑆001

|S| 𝐺.

By Cramer’s rule,

𝐺 (𝑡, 𝑠, 𝑧) − 𝐺 (𝑡, 𝑠, 𝑧) = |S|−1
{
(𝐶11𝑅000 + 𝐶21𝑅100 + 𝐶31𝑅010 + 𝐶41𝑅001)

− (𝐶11𝑆000 + 𝐶21𝑆100 + 𝐶31𝑆010 + 𝐶41𝑆001)𝐺

− (𝐶11𝑆010 + 𝐶21𝑆110 + 𝐶31𝑆010 + 𝐶41𝑆011) 𝜕𝐺
𝜕𝑠

ℎ𝐺𝑡

− (𝐶11𝑆001 + 𝐶21𝑆101 + 𝐶31𝑆011 + 𝐶41𝑆002) 𝜕𝐺
𝜕𝑧

ℎ𝐺𝑧

−(𝐶11𝑆100 + 𝐶21𝑆200 + 𝐶31𝑆110 + 𝐶41𝑆101) 𝜕𝐺
𝜕𝑡

ℎ𝐺𝑡

}
=

4∑
𝑘=1

𝒞𝑘 ,

where

𝒞1 = |S|−1𝐶11

(
𝑅000 − 𝐺𝑆000 − ℎ𝐺𝑡

𝜕𝐺

𝜕𝑠
𝑆010 − ℎ𝐺𝑧

𝜕𝐺

𝜕𝑧
𝑆001 − ℎ𝐺𝑡

𝜕𝐺

𝜕𝑡
𝑆100

)
,

𝒞2 = |S|−1𝐶21

(
𝑅100 − 𝐺𝑆100 − ℎ𝐺𝑡

𝜕𝐺

𝜕𝑠
𝑆110 − ℎ𝐺𝑧

𝜕𝐺

𝜕𝑧
𝑆101 − ℎ𝐺𝑡

𝜕𝐺

𝜕𝑡
𝑆200

)
,

𝒞3 = |S|−1𝐶31

(
𝑅010 − 𝐺𝑆010 − ℎ𝐺𝑡

𝜕𝐺

𝜕𝑠
𝑆010 − ℎ𝐺𝑧

𝜕𝐺

𝜕𝑧
𝑆011 − ℎ𝐺𝑡

𝜕𝐺

𝜕𝑡
𝑆110

)
,

and

𝒞4 = |S|−1𝐶41

(
𝑅001 − 𝐺𝑆001 − ℎ𝐺𝑡

𝜕𝐺

𝜕𝑠
𝑆011 − ℎ𝐺𝑧

𝜕𝐺

𝜕𝑧
𝑆002 − ℎ𝐺𝑡

𝜕𝐺

𝜕𝑡
𝑆101

)
.

We will focus on 𝒞1. The other three terms are of the same order and can be dealt with similarly.
Specifically,

𝒞1 = |S|−1𝐶11

(
𝑅000 − 𝐺 (𝑠, 𝑡, 𝑧)𝑆000 − ℎ𝐺𝑡

𝜕𝐺 (𝑠, 𝑡, 𝑧)
𝜕𝑠

𝑆010

−ℎ𝐺𝑧 𝜕𝐺 (𝑠, 𝑡, 𝑧)
𝜕𝑧

𝑆001 − ℎ𝐺𝑡
𝜕𝐺 (𝑠, 𝑡, 𝑧)

𝜕𝑡
𝑆100

)
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= |S|−1𝐶11

[
𝑛∑
𝑖=1

∑
1≤ 𝑗≠𝑘≤𝑚𝑖

𝐾ℎ𝐺𝑡
(𝑇𝑖 𝑗 − 𝑡)𝐾ℎ𝐺𝑡

(𝑇𝑖𝑘 − 𝑠)𝐾ℎ𝐺𝑧
(𝑍𝑖 − 𝑧)

×
{
𝐶𝑖 𝑗𝑘 − 𝐺 (𝑠, 𝑡, 𝑧) − 𝜕𝐺 (𝑠, 𝑡, 𝑧)

𝜕𝑠
(𝑇𝑖𝑘 − 𝑠)

−𝜕𝐺 (𝑠, 𝑡, 𝑧)
𝜕𝑧

(𝑍𝑖 − 𝑧) − 𝜕𝐺 (𝑠, 𝑡, 𝑧)
𝜕𝑡

(𝑇𝑖 𝑗 − 𝑡)
}]

= |S|−1𝐶11

[
𝑛∑
𝑖=1

∑
1≤ 𝑗≠𝑘≤𝑚𝑖

𝐾ℎ𝐺𝑡
(𝑇𝑖 𝑗 − 𝑡)𝐾ℎ𝐺𝑡

(𝑇𝑖𝑘 − 𝑠)𝐾ℎ𝐺𝑧
(𝑍𝑖 − 𝑧)

× {𝐶𝑖 𝑗𝑘 − 𝐺 (𝑇𝑖𝑘 , 𝑇𝑖 𝑗 , 𝑍𝑖) + ℎ2
𝐺𝑡 + ℎ2

𝐺𝑧 + ℎ𝐺𝑡ℎ𝐺𝑧}
]
,

where

𝐶𝑖 𝑗𝑘 = 𝛿𝑖 𝑗𝛿𝑖𝑘 + 𝛿𝑖 𝑗 {𝜇(𝑇𝑖𝑘 , 𝑍𝑖) − 𝜇(𝑇𝑖𝑘 , 𝑍𝑖)} + 𝛿𝑖𝑘 {𝜇(𝑇𝑖 𝑗 , 𝑍𝑖) − 𝜇(𝑇𝑖 𝑗 , 𝑍𝑖)}
+ {𝜇(𝑇𝑖 𝑗 , 𝑍𝑖) − 𝜇(𝑇𝑖 𝑗 , 𝑍𝑖)}{𝜇(𝑇𝑖𝑘 , 𝑍𝑖) − 𝜇(𝑇𝑖𝑘 , 𝑍𝑖)},

and 𝛿𝑖 𝑗 = 𝑌𝑖 𝑗 − 𝜇(𝑇𝑖 𝑗 , 𝑍𝑖). By Lemma A.1, for all 𝑇𝑖 𝑗 and 𝑇𝑖𝑘 ,

𝜇(𝑇𝑖 𝑗 , 𝑍𝑖) − 𝜇(𝑇𝑖 𝑗 , 𝑍𝑖), 𝜇(𝑇𝑖𝑘 , 𝑍𝑖) − 𝜇(𝑇𝑖𝑘 , 𝑍𝑖) = 𝑂 (ℎ2
𝜇𝑡 + ℎ2

𝜇𝑧 + ℎ𝜇𝑡ℎ𝜇𝑧 + 𝛿𝑛1) a.s.

Similar to Lemma 2 in Zhang and Wang [24], the 𝑆𝑝𝑞ℓ converges almost surely to their respective means
in supremum norm and are thus bounded almost surely for 𝑝, 𝑞, ℓ = 0, 1, 2, so that𝐶𝑝1 is bounded almost
surely for 𝑝 = 1, 2, 3, 4 Then |S|−1 is bounded away from 0 by the almost sure supremum convergence
of 𝑆𝑝𝑞ℓ and Slutsky’s theorem. Then using Lemma A.2 and Theorem 5.2 in Zhang and Wang [24], we
can obtain that

sup
𝑠,𝑡 ,𝑧∈[0,1]

|𝐺 (𝑡, 𝑠, 𝑧) − 𝐺 (𝑡, 𝑠, 𝑧) |

= 𝑂 (ℎ2
𝜇𝑡 + ℎ2

𝜇𝑧 + ℎ𝜇𝑡ℎ𝜇𝑧 + 𝛿𝑛1 + ℎ2
𝐺𝑡 + ℎ2

𝐺𝑧 + ℎ𝐺𝑡ℎ𝐺𝑧 + 𝛿𝑛2) a.s..

This completes the proof. �

Cite this article: Yan X, Wang H, Sun H and Zhao P (2024). Incorporating covariate into mean and covariance function estimation of functional data
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