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THE TRANSPARENT DEAD LEAVES MODEL
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Abstract

In this paper we introduce the transparent dead leaves (TDL) random field, a new germ–
grain model in which the grains are combined according to a transparency principle.
Informally, this model may be seen as the superposition of infinitely many semitransparent
objects. It is therefore of interest in view of the modeling of natural images. Properties
of this new model are established and a simulation algorithm is proposed. The main
contribution of the paper is to establish a central limit theorem, showing that, when
varying the transparency of the grain from opacity to total transparency, the TDL model
ranges from the dead leaves model to a Gaussian random field.
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1. Introduction

In this paper we deal with the stochastic modeling of physical transparency. The main
contribution is the introduction and study of a new germ–grain model in which the grains are
combined according to a transparency principle. To the best of the authors’ knowledge, this
type of interaction between grains has not been studied before. Classical interactions between
grains include addition for shot noise processes [13], [22], union for Boolean models [24],
[26], occlusion for dead leaves models [5], [14], [18], or multiplication for compound Poisson
cascades [2], [8].

The proposed model, which we call the transparent dead leaves (TDL) model, is obtained
from a collection of grains (random closed sets) indexed by time, as for the dead leaves model
of G. Matheron. We assume that each grain is given a random gray level (intensity). Informally,
the TDL model may be seen as the superposition of transparent objects associated with the
grains. When adding a new grain, new values are obtained as a linear combination of former
values and the intensity of the added grain, as illustrated in Figure 1. More precisely, the
superposition of a transparent grain X with gray level a on an image (a function f : Rd → R)
results in a new image f̃ , defined for each y ∈ R

d by

f̃ (y) =
{
αa + (1− α)f (y) if y ∈ X,
f (y) otherwise,

(1)

where α ∈ (0, 1] is a transparency coefficient. The TDL model is defined as the sequential
superposition of grains of a marked Poisson point process

∑
i δ(ti ,xi ,Xi ,ai ), with

∑
i δ(ti ,xi ) a
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2 •SGSA B. GALERNE AND Y. GOUSSEAU

(a) A disc (b) Initial scene (c) Resulting scene

Figure 1: Addition of a transparent object. The transparency coefficient of the disc is α = 0.5.

homogeneous Poisson point process in (−∞, 0)×R
d , andXi andai independent and identically

distributed (i.i.d.) random sets and random variables, respectively. In particular, the value of
the TDL at each point results from the superposition of infinitely many semitransparent objects.

The main motivation to define such a model originates from the modeling of image formation.
Indeed, natural images are obtained from the light emitted by physical objects interacting
in various ways. In the case of opaque objects, the main interaction is occlusion. That is,
objects hide themselves depending on their respective positions with respect to the eye or the
camera. A simple stochastic model for occlusion is given by the dead leaves model, which is
therefore useful for the modeling of natural images [7], [11]. When objects are transparent, their
interaction may be modeled by (1). This is well known in the field of computer graphics; see [9]
where the same principle is used for the creation of synthetic scenes. In this case, transparency
is a source of heavy computations, especially in cases where objects are numerous (typically
of the order of several thousands), e.g. in the case of grass, fur, smoke, fabrics, etc. The
transparency phenomenon may also be encountered in other imaging modality where images
are obtained through successive reflection-transmission steps, as in microscopy or ultrasonic
imaging. A related nonlinear image formation principle is at work in the field of radiography.
In such cases, it is useful to rely on accurate stochastic texture models in order to be able to
detect abnormal images. The TDL may be an interesting alternative to Gaussian fields that are
traditionally used; see, e.g. [12] and [23]. A last motivation for the TDL is that, as explained in
the next paragraph, it is intermediate between the dead leaves model and Gaussian fields, two
models that have proven useful for the modeling of natural textures [7], [10].

In this paper, we first define the TDL in Section 2 and give some elementary properties
in Section 3, where we also address the problem of simulating the model and show some
realizations. The TDL covariance is then computed in Section 4. Eventually, the main result of
the paper is stated and proved in Section 5, namely that the normalized TDLs converge, as the
transparency coefficient α tends to 0, to a Gaussian random field having the same covariance
function as the shot noise associated with the grain X and with intensity 1. Thus, the TDLs
with varying transparency coefficient α provide us with a family of models ranging from the
dead leaves model to Gaussian fields.

2. Definition of the TDL model

As explained in the introduction, the TDL model is obtained as the superposition of trans-
parent shapes. Formally, it is defined from a marked Poisson point process, in a way similar to
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the dead leaves model [5]. Let F denote the set of closed subsets of R
d . On the state space

S = (−∞, 0)× R
d × F × R,

equipped with its natural product σ -algebra, we define the point process

� =
∑
i

δ(ti ,xi ,Xi ,ai ), (2)

where

• {(ti , xi)} is a stationary Poisson point process of intensity 1 in the half-space (−∞, 0)×
R
d ,

• (Xi)i is a sequence of i.i.d. random closed sets (RACSs) with distribution PX which is
independent of the other random objects,

• (ai)i is a sequence of i.i.d. real random variables with distribution Pa which is also
independent of the other random objects.

Equivalently, � is a Poisson point process with intensity measure µ = λ ⊗ νd ⊗ PX ⊗ Pa ,
where λ denotes the restriction of the one-dimensional Lebesgue measure to (−∞, 0) and νd
denotes the d-dimensional Lebesgue measure on R

d .
Each point (ti , xi, Xi, ai) of the Poisson process � is called a leaf. Having fixed a trans-

parency coefficient α ∈ (0, 1], the TDL process f is obtained by sequentially combining the
elements of � according to (1), which results in the following definition.

Definition 1. (TDL model.) The TDL model with transparency coefficient α associated with
the Poisson process � defined by (2) is the random field f : Rd → R defined by

f (y) =
∑
i∈N

1(y ∈ xi +Xi)αai(1− α)
∑
j∈N 1(tj∈(ti ,0) and y∈xj+Xj ). (3)

Let us justify that (3) agrees with the informal description of the TDL model. According to
(1), the impact of the leaf (ti , xi, Xi, ai) is to add αai and to attenuate the previous contributions
by a factor 1−α. Hence, the contribution of the leaf (ti , xi, Xi, ai) at a point y ∈ xi+Xi is αai
multiplied by 1− α to the number of leaves fallen on the point y after the leaf (ti , xi, Xi, ai),
that is, after time t = ti . This number is precisely the exponent of (1− α) in (3):∑

j∈N
1(tj ∈ (ti , 0) and y ∈ xj +Xj).

Remark 1. (Random functional.) Denoting by N (S) the set of point processes taking values
in the state space S, we remark that the TDL random field f (y) has the form

f (y) =
∑

(ti ,xi ,Xi ,ai )∈�
g(y, (ti , xi, Xi, ai),�),

where g : R
d × S × N (S) → R is a measurable function given by (3). Similar random

functionals interpreted as the sum of contributions from each point of a (possibly marked) point
process {xi} ⊂ R

d appear in several contexts in stochastic geometry. In particular, general
central limit theorems hold when the intensity of the point process {xi} tends to∞; see, e.g.
[3] and [21]. Note however that our framework is different since the Poisson process has an
additional time component ti , and, consequently, there is always an infinite number of leaves
(ti , xi, Xi, ai) influencing the value f (y) (as will be clarified in Proposition 2).
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Remark 2. (Variable transparency.) For the sake of simplicity, the transparency parameter α
is assumed to be the same for all objects. However, one may attach a random transparency αi
to every object in Definition 1 and generalize the results of Sections 3 and 4, as will be briefly
commented thereafter.

Since the distribution of the Poisson process � is invariant under shifts of the form

(t, x,X, a) �→ (t, x + y,X, a),
the TDL f is a strictly stationary random field.

Before establishing further properties of the TDL random field f , let us introduce some
notation and specify several assumptions.

Notation. We define β = 1 − α, and we respectively denote by X and a a RACS with
distribution PX and a random variable (RV) with distribution Pa which are both independent
of all the other random objects. In addition, γX denotes the mean geometric covariogram of
the RACS X, that is, the function defined by γX(τ) = E(νd(X ∩ (τ +X))), τ ∈ R

d (we refer
the reader to [17] and [19] for properties of the mean geometric covariogram).

Assumptions. Throughout the paper, it is assumed that

0 < E(νd(X)) < +∞.
This hypothesis ensures that each point y ∈ R

d is covered by a countably infinite number of
leaves of �, whereas the number of leaves falling on y during a finite time interval [s1, s2] is
almost surely (a.s.) finite. We also assume that E(a2) < +∞.

3. One-dimensional marginal distribution and simulation of the TDL model

3.1. The Poisson process of the leaves intersecting a set

As can be observed from (3), the only leaves which have a contribution to the sum defining
f (y) are the leaves (ti , xi, Xi, ai) such that y ∈ xi+Xi . When considering the restriction of f
to a Borel setG, the only leaves of interest are those intersectingG, i.e. the leaves (ti , xi, Xi, ai)
such that xi +Xi ∩G 	= ∅. The next proposition characterizes the distribution of such leaves,
a result to be used further in the paper. We first introduce the following notation. If A and B
are two Borel sets then Ǎ = {−x : x ∈ A} and A⊕ B = {x + y : x ∈ A and y ∈ B}. Note the
equivalence x +X ∩G 	= ∅⇔ x ∈ G⊕ X̌.

Proposition 1. (The Poisson process of the leaves intersecting a Borel set.) Let G ⊂ R
d

be a Borel set such that 0 < E(νd(X ⊕ Ǧ)) < +∞, and let � be the Poisson process on
S = (−∞, 0)× R

d × F × R with intensity measure µ = λ⊗ νd ⊗ PX ⊗ Pa . Denote by �G

the point process of the leaves of � which intersect G, that is,

�G = {(t, x,X, a) ∈ � : x +X ∩G 	= ∅},
and denote by AG ⊂ R

d ×F the set AG = {(x,X) : x +X ∩G 	= ∅}. Then�G is a Poisson
process on S with intensity measure

µG = λ⊗ (νd ⊗ PX)�AG ⊗ Pa.
It is an independently marked Poisson process with ground process 
G = {t : (t, x,X, a) ∈
�G}, a homogeneous Poisson process on (−∞, 0) of intensity E(νd(X ⊕ Ǧ)), and with mark
distribution

1

E(νd(X ⊕ Ǧ))
(νd ⊗ PX)�AG ⊗ Pa.
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Proof. The point process �G is the restriction of the Poisson process � to the measurable
set

{(t, x,X, a) ∈ (−∞, 0)× R
d × F × R : (x,X) ∈ AG};

thus, �G is a Poisson process and its intensity measure µG is the restriction of µ to the above
set. As for the interpretation of �G as an independently marked one-dimensional Poisson
process, it is based on the factorization of the intensity measure µG (see [1, Section 1.8] or [25,
Section 3.5]). Indeed, we have

0 < νd ⊗ PX(AG) =
∫

F

∫
Rd

1(y ∈ G⊕ Y̌ )νd(dy)PX(dY ) = E(νd(X ⊕ Ǧ)) < +∞,
and, thus, we can write

µG = E(νd(X ⊕ Ǧ))λ⊗
[

1

E(νd(X ⊕ Ǧ))
(νd ⊗ PX)�AG ⊗ Pa

]
,

where the measure between the square brackets is a probability distribution.

3.2. One-dimensional marginal distribution

Proposition 2. (One-dimensional marginal distribution.) Let y be a point in R
d . Then there

exists a sequence (a(y, k))k∈N of i.i.d. RVs with distribution Pa such that

f (y) = α
+∞∑
k=0

a(y, k)βk.

In particular, we have E(f (y)) = E(a) and var(f (y)) = α var(a)/(2− α).
Informally, a(y, k) is the color of the (k + 1)th leaf falling on y; (a(y, k))k∈N is thus an

ordered subfamily of the RV (ai)i∈N which depends on y.

Proof of Proposition 2. According to Proposition 1, the point process �{y} of the leaves
which cover y is an independently marked Poisson process, the ground process of which is a
Poisson process on (−∞, 0) with intensity 0 < E(νd(X)) < +∞. Hence, the falling times
of the leaves of �{y} are a.s. distinct and we can number (in a measurable way [25, p. 49]) the
leaves

(t (y, k), x(y, k),X(y, k), a(y, k)), k ∈ N,

according to an anti-chronological order:

0 > t(y, 0) > t(y, 1) > t(y, 2) > · · · .
Proposition 1 also gives the distribution of the marks (x(y, k),X(y, k), a(y, k)), and in partic-
ular it shows that the RVs a(y, k), k ∈ N, are i.i.d. with distribution Pa . As already mentioned,
the only leaves involved in the sum which defines f (y) are the leaves of �{y}. Besides, using
the above numbering, we have, for all k ∈ N,∑

(tj ,xj ,Xj ,aj )∈�
1(tj ∈ (t (y, k), 0) and y ∈ xj +Xj) = k.

Hence, (3) becomes

f (y) = α
+∞∑
k=0

a(y, k)βk,

and the result follows.
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Remark 3. (Influence of the transparency coefficient α.) Let us write fα for the TDL model
with transparency coefficient α ∈ (0, 1]. Proposition 2 shows that the expectation of fα does
not depend on α. In contrast, the variance var(fα(y)) = α var(a)/(2 − α) decreases as α
decreases. Besides, var(fα(y)) tends to 0 as α tends to 0 (recall that the model is not defined
for α = 0). However, a central limit theorem for random geometric series [6] shows that,
for all y ∈ R

d , the family of RVs ((fα(y)− E(fα))/
√

var(fα))α converges in distribution
to a standard normal distribution as α tends to 0. This pointwise convergence result will
be extended in Section 5, where it will be shown that the family of normalized random fields
(y �→ (fα(y)− E(fα))/

√
var(fα))α converges in the sense of finite-dimensional distributions.

3.3. Simulation of the TDL model

In this section we draw on Proposition 2 to obtain a simulation algorithm for the restriction of
the TDL model f to a finite set U ⊂ R

d (e.g. a finite grid of pixels). The algorithm is based on
a coupling-from-the-past procedure, as the algorithm developed by Kendall and Thönnes [15]
for simulating the dead leaves model (see also [14]). This algorithm consists in sequentially
superimposing transparent random objects, but, contrary to the forward procedure described by
(1), each new object is placed below the former objects. In the case of the dead leaves model,
this yields a perfect simulation algorithm. For the TDL model f , simulation is not perfect
since the values f (y) are the limits of convergent series. Nevertheless, supposing that the
intensities ai are bounded, we propose, for any precision ε > 0, an algorithm which produces
an approximation f̄ of f . This approximation satisfies

P
(

sup
y∈U
|f (y)− f̄ (y)| ≤ ε

)
= 1,

therefore providing a kind of perfect simulation with precision ε > 0.
In the remainder of this section we suppose that the colors ai are a.s. bounded by A > 0.

The control of the precision is based on the following elementary lemma.

Lemma 1. (Precision associated with the leaves layer.) Let y ∈ R
d , and let

f̄n(y) = α
n−1∑
k=0

a(y, k)βk

be the restriction of the sum defining f (y) to the n latest leaves which have fallen on y. Then

|f (y)− f̄n(y)| ≤ Aβn.
Lemma 1 shows that to approximate f (y) with a tolerance ε > 0, it is enough to cover the

point y with (at least)N(ε) leaves, whereN(ε) is the smallest integer n such thatAβn ≤ ε, that
is,N(ε) = �log(ε/A)/ log(β)�. The following simulation algorithm relies on this observation.

Algorithm 1. (Simulation of the TDL model with tolerance ε > 0.) LetU ⊂ R
d be a finite set.

Given a precision ε > 0, an approximation f̄ of the TDL model f is computed by controlling
the number of leaves L at each point.

• Initialization. For all y ∈ U , f̄ (y)← 0 and L(y)← 0.

• Computation of the required number of leaves.

N(ε) =
⌈

log(ε/A)

log(β)

⌉
.
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(a) Original shape (b) = 1 (occlusion)α (c) = 0.7α

(d) = 0.4α (e) = 0.05α (f) = 0.05, enhanced contrastα

Figure 2: TDL realizations with various transparency coefficients α. The RACSs Xi are all obtained
from the original shape (image (a)) by applying a rotation of angle θ ∼ Unif(0, 2π) and a homothety of
factor r ∼ Unif(0, 1), and Pa = Unif(0, 255). For α = 1, we obtain a colored dead leaves model. As
soon as the leaves are transparent (α < 1), one can distinguish several layers of leaves and not only the
leaves on top. For α = 0.05, the variance of the TDL model is nearly 0 (see Proposition 2). Enhancing

the contrast of the image reveals the structure of the image (see (f)).

• Iteration. While (infy∈U L(y) < N(ε)) add a new leaf.

(i) Draw a leaf (x,X, a) hitting U .

(a) Draw X ∼ PX.

(b) Draw x uniformly in U ⊕ X̌.

(c) Draw a ∼ Pa .

(ii) Add the leaf (x,X, a) to f̄ . For all y ∈ U , f̄ (y)← f̄ (y)+ 1(y ∈ x +X)αaβL(y).
(iii) Update the leaves layer L. For all y ∈ U , L(y)← L(y)+ 1(y ∈ x +X).

Clearly, Algorithm 1 a.s. terminates if every point of U is covered by N(ε) leaves in an a.s.
finite time. This is always the case since U is a finite set and E(νd(X)) > 0.

Several realizations of some TDL models are represented in Figure 2. Note that, as soon
as α < 1, the TDL random field is not piecewise constant: any region is intersected by the
boundaries of some leaves, producing discontinuities.

4. Covariance of the TDL model

This section is devoted to the computation of the covariance of the TDL. A classical way
to achieve this would be to use Palm calculus, leading to relatively heavy computations in this
case. Instead, we chose an alternative way relying on some memoryless property of the TDL,
as explained below.
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The following proposition is an extension of the fact that if 0 > t0 > t1 > t2 > · · · is a
homogeneous Poisson process on (−∞, 0) then the shifted process 0 > t1 − t0 > t2 − t0 >
t3 − t0 > · · · is also a Poisson process with the same distribution [16, Chapter 4].

Proposition 3. (Last hitting leaf and the Poisson process preceding the last hit.) Let F be a
locally compact topological space with a countable base [25]. Let � be a Poisson process
in (−∞, 0) × F with intensity measure of the form λ ⊗ η, where λ is the one-dimensional
Lebesgue measure on (−∞, 0) and η is a measure on F . Let A ⊂ F be an η-measurable set
satisfying 0 < η(A) < +∞. Define

t0 = sup{ti | (ti , yi) ∈ � ∩ ((−∞, 0)× A)},

y0 as the a.s. unique y ∈ F such that (t0, y) ∈ � ∩ ((−∞, 0)× A), and

�t0 =
∑

(ti ,yi )∈�
1(ti < t0)δ(ti−t0,yi ).

Then

• t0, y0, and �t0 are mutually independent,

• −t0 has an exponential distribution with parameter η(A),

• y0 has distribution QA defined, for all B ∈ B(F ), by QA(B) = η(B ∩ A)/η(A),
• �t0 is a Poisson process with intensity measure λ⊗ η, i.e. �t0 has the same distribution

as �.

Proposition 3 will be applied below to the Poisson process� of the colored leaves to compute
some statistics of the TDL model f . As a first example, let us reobtain the expectation of f by
using Proposition 3. Let y ∈ R

d , and let us denote by (t0, x0, X0, a0) the leaf which hits y at
the maximal time t0. Then we can decompose f (y) as

f (y) = αa0 + βft0(y), (4)

where ft0 is the TDL model associated with the time-shifted point process �t0 and, as before,
β = 1−α. According to Proposition 3, a0 has distribution Pa , and both point processes� and
�t0 have the same distribution. Consequently, f (y) and ft0(y) also have the same distribution,
and in particular the same expectation. Hence, the above decomposition of f (y) leads to the
equation

E(f (y)) = α E(a)+ β E(f (y)),

which gives E(f (y)) = E(a), in accordance with Proposition 2.
The same method is used below to compute the covariance of f . This method will also

be applied in Section 5.3 to derive a technical result useful for the central limit theorem of
Section 5.

We recall that γX(τ) = E(νd(X ∩ (τ +X))) is the mean covariogram of X. In addition, we
denote the covariance of f by

cov(f )(τ ) = cov(f (y), f (y + τ)) = E((f (y)− E(a))(f (y + τ)− E(a))).
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Proposition 4. (Covariance of the TDL model.) The TDL model f is a square-integrable
stationary random field and its covariance is given by

cov(f )(τ ) = αγX(τ)

2 E(νd(X))− αγX(τ) var(a), τ ∈ R
d .

Proof. Let y and z be such that z − y = τ , and write m = E(a) = E(f ) as a shorthand
notation. We have to compute cov(f )(τ ) = E((f (y)−m)(f (z)−m)).

Denote by (t0, x0, X0, a0) the last leaf which hits y or z at the maximal time t0, and let �t0
be the corresponding time-shifted Poisson process. According to Proposition 3, (x0, X0, a0)

is independent of �t0 . In addition, �t0
d= �, and, consequently, noting that ft0 is the TDL

associated with �t0 , (ft0(y), ft0(z))
d= (f (y), f (z)). Proposition 3 also shows that a0 has

distribution Pa . As for the distribution of (x0, X0), a straightforward computation shows that

νd ⊗ PX({(x,X), {y, z} ∩ x +X 	= ∅}) = E(νd(X ⊕ {−y,−z})) = 2γX(0)− γX(τ)
and

νd ⊗ PX({(x,X), {y, z} ⊂ x +X}) = E(νd(−y +X ∩ −z+X)) = γX(τ).
Hence, we have

P({y, z} ⊂ x0 +X0) = νd ⊗ PX({(x,X), {y, z} ⊂ x +X})
νd ⊗ PX({(x,X), {y, z} ∩ x +X 	= ∅}) =

γX(τ)

2γX(0)− γX(τ) ,

and, by symmetry,

P(y ∈ x0 +X0 and z /∈ x0 +X0) = P(z ∈ x0 +X0 and y /∈ x0 +X0) = γX(0)− γX(τ)
2γX(0)− γX(τ) .

Conditioning with respect to the coverage of the last leaf (t0, x0, X0, a0), we have

E((f (y)−m)(f (z)−m))
= E((f (y)−m)(f (z)−m) | {y, z} ⊂ x0 +X0)

γX(τ)

2γX(0)− γX(τ)
+ E((f (y)−m)(f (z)−m) | y ∈ x0 +X0 and z /∈ x0 +X0)

γX(0)− γX(τ)
2γX(0)− γX(τ)

+ E((f (y)−m)(f (z)−m) | z ∈ x0 +X0 and y /∈ x0 +X0)
γX(0)− γX(τ)

2γX(0)− γX(τ) .

By symmetry, it is clear that the two last terms of the above sum are equal. On the event
{{y, z} ⊂ x0 +X0} we have

f (y)−m = α(a0 −m)+ β(ft0(y)−m) and f (z)−m = α(a0 −m)+ β(ft0(z)−m),
so that

(f (y)−m)(f (z)−m) = α2(a0 −m)2 + β2(ft0(y)−m)(ft0(z)−m)
+ αβ(a0 −m)((ft0(y)−m)+ (ft0(z)−m)).

https://doi.org/10.1239/aap/1331216642 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1331216642


10 •SGSA B. GALERNE AND Y. GOUSSEAU

By Proposition 3, a0, (x0, X0), and (ft0(y), ft0(z)) are mutually independent; hence,

E((f (y)−m)(f (z)−m) | {y, z} ⊂ x0 +X0)

= α2 E((a0 −m)2)+ β2 E((ft0(y)−m)(ft0(z)−m))
= α2 var(a)+ β2 cov(f (y), f (z)).

On the event {y ∈ x0 +X0 and z /∈ x0 +X0} we have

f (y)−m = α(a0 −m)+ β(ft0(y)−m) and f (z)−m = ft0(z)−m.
Hence, by the same arguments,

E((f (y)−m)(f (z)−m) | y ∈ x0 +X0 and z /∈ x0 +X0) = β cov(f (y), f (z)).

Replacing the terms in the decomposition of E((f (y) − m)(f (z) − m)) leads to an equation
involving the covariance cov(f (y), f (z)), the values γX(0) and γX(τ) of the mean covariogram
of X, and the variance var(a). Simplifying this equation we obtain the enunciated formula.

Remark 4. (Variable transparency and the second-order property.) The technique used in
this section enables us to generalize second-order formulae to the case where the transparency
parameter α is assumed to be different for each object, that is, when it is assumed that each
object Xi is assigned a transparency αi distributed as a random variable α and independent of
other objects. First, it is straightforward to show that in this case we still have E(f (y)) = E(a).
Then, a simple application of (4) yields var f (y) = E(α2) var(a)(2 E(α)−E(α2))−1. Observe
that a direct computation starting from the definition of f would be much more arduous.
Eventually, applying the same technique, we can show that the covariance of the model with
variable transparency satisfies, for τ ∈ R

d ,

cov(f )(τ ) = E(α2)γX(τ)

2 E(α)E(νd(X))− E(α2)γX(τ)
var(a).

5. Gaussian convergence as the objects become fully transparent

Recall that the TDL model with transparency coefficient α is denoted by fα .

Theorem 1. (Normal convergence of the TDL model.) Suppose that var(a) > 0. Then, as the
transparency coefficient α tends to 0, the family of random fields ((fα − E(fα))/

√
var(fα))α

converges in the sense of finite-dimensional distributions to a stationary Gaussian random field
with covariance function

C(τ) = γX(τ)

E(νd(X))
= γX(τ)

γX(0)
.

Before provingTheorem 1, we illustrate in Figure 3 the normal convergence of the normalized
family of RVs ((fα − E(fα))/

√
var(fα))α . The five first images of Figure 3 are normalized

TDL realizations obtained from the same random colored leaves but with various transparency
coefficients α. The last image is a realization of the limit Gaussian random field given by
Theorem 1. Observe that this Gaussian field is also the limit of the normalized shot noise
associated with X when the intensity of germs tends to∞ [13].

The remainder of this section is devoted to the proof of Theorem 1. The proof consists
in showing that the finite moments of the normalized TDL random fields converge to the

https://doi.org/10.1239/aap/1331216642 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1331216642


The transparent dead leaves model SGSA • 11

(a) = 1α (b) = 0.5α (c) = 0.2α

(d) = 0.1α (e) = 0.01α (f) Limit Gaussian random field

Figure 3: From colored dead leaves to Gaussian random fields. Visual illustration of the normal
convergence of the normalized TDL random fields ((fα − E(fα))/

√
var(fα))α (see Theorem 1). As

α decreases to 0, the normalized TDL realizations look more and more similar to the Gaussian texture
(see (f)).

corresponding moments of the limit Gaussian random field. As for the computation of the
covariance (see Section 4), this convergence is established by conditioning with respect to the
coverage of the last leaf hitting the considered set of points (see below for details).

5.1. Some classical results of probability theory

This section gathers two classical theoretical results needed to prove Theorem 1.

5.1.1. Moments and convergence in distribution.

Proposition 5. (Moments and convergence in distribution.) Let (fn) be a sequence of random
fields having finite moments of all orders, and let fG be a Gaussian random field. If, for all
p ∈ N and all (not necessarily distinct) y1, . . . , yp ∈ R

d ,

lim
n→+∞E

( p∏
j=1

fn(yj )

)
= E

( p∏
j=1

fG(yj )

)
,

then (fn) converges to fG in the sense of finite-dimensional distributions.

5.1.2. A recurrence relation for the moments of a multivariate normal distribution. Explicit
expressions for the moments of a multivariate normal distribution are given by Isserlis’ theorem,
which we recall below (see, e.g. [20] and the references therein).

Theorem 2. (Isserlis’ theorem.) Let Y1, . . . , Y2N+1, N ≥ 1, be normalized (i.e. E(Yi) = 0
and var(Yi) = E(Y 2

i ) = 1), jointly Gaussian RVs. Then

E(Y1Y2 · · ·Y2N) =
∑ ∏

E(YiYj ) =
∑ ∏

cov(Yi, Yj )
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and
E(Y1Y2 · · ·Y2N+1) = 0,

where the notation
∑ ∏

means summation over all distinct ways of partitioning the set
{Y1, . . . , Y2N } into N pairs {Yi, Yj } and taking the product of the N terms

E(YiYj ) = cov(Yi, Yj ).

From Isserlis’ theorem we deduce a recurrence relation for the moments of a multivariate
normal distribution.

Proposition 6. (A recurrence relation for the moments of a multivariate normal distribution.)
Let Y = (Y1, . . . , Yp), p ≥ 2, be a normalized Gaussian vector. Then,

E

( p∏
j=1

Yj

)
= 2

p

∑
{j,k}⊂{1,...,p}

cov(Yj , Yk)E

( ∏
l∈{1,...,p}\{j,k}

Yl

)
.

Proof. If p ≥ 2 is odd then, by Isserlis’ theorem, the above formula is trivial. Hence, in the
following we suppose that p is even. First, let j ∈ {1, . . . , p}. Factorizing with all the pairs
containing j in Isserlis’ identity, we obtain

E

( p∏
j=1

Yj

)
=

p∑
k=1
k 	=j

cov(Yj , Yk)E

( ∏
l∈{1,...,p}\{j,k}

Yl

)
.

The above identity is valid for all j ∈ {1, . . . , p}. Summing these p identities gives

E

( p∏
j=1

Yj

)
= 1

p

p∑
j=1

p∑
k=1
k 	=j

cov(Yj , Yk)E

( ∏
l∈{1,...,p}\{j,k}

Yl

)
.

Now note that in this double sum over (j, k), the terms cov(Yj , Yk)E(
∏
l Yl) depend only on

the pair {j, k}, not on the order. Hence, the above expression simplifies to

E

( p∏
j=1

Yj

)
= 2

p

∑
{j,k}⊂{1,...,p}

cov(Yj , Yk)E

( ∏
l∈{1,...,p}\{j,k}

Yl

)
.

5.2. Notation and plan of the proof of Theorem 1

Let s be a real number such that 0 < s < 1
6 (this choice for s will become clear later). For

all α ∈ (0, 1], we define the truncation operator

Tα(b) =

⎧⎪⎨
⎪⎩
b if b ∈ [−α−s , α−s],
α−s if b > α−s ,
−α−s if b < −α−s .

For all α ∈ (0, 1], fα denotes the TDL model with transparency coefficient α and

gα(y) = fα(y)− E(a)√
var(fα)
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denotes its normalization. For all α ∈ (0, 1], f Tα denotes the TDL model with transparency
coefficient α associated with the Poisson process

�T = {(ti , xi, Xi, Tα(ai)), (ti , xi, Xi, ai) ∈ �},
that is, the TDL model obtained by truncating the colors ai of the leaves of �. We have

E(f Tα ) = E(Tα(a)) and var(f Tα ) =
α

2− α var(Tα(a)).

As for the TDL fα , we define

gTα (y) =
f Tα (y)− E(Tα(a))√

var(f Tα )
.

Thanks to the truncation, f Tα is bounded by α−s . In particular, for all α ∈ (0, 1], f Tα and gTα
have finite moments of all orders.

We will denote by fG a centered stationary Gaussian random field with covariance function
C : τ �→ γX(τ)/γX(0).

The proof of Theorem 1 is divided into two steps.

1. We show that the normalized TDL with truncated colors gTα converges in distribution to
fG by the method of moments. More precisely, the sufficient condition of Proposition 5
will be shown to be true by induction on the number of points p.

2. We show that the family gα − gTα converges to 0 in L2.

By Slutsky’s theorem (see, e.g. [4]), these two steps ensure that gα converges in distribution
to fG.

5.3. Normal convergence of the normalized TDL having truncated colors

With the above notation, by Proposition 5, it is enough to show the following lemma.

Lemma 2. (Convergence of moments.) For all p ∈ N and all (not necessarily distinct)
y1, . . . , yp ∈ R

d ,

lim
α→0

E

( p∏
j=1

gTα (yj )

)
= E

( p∏
j=1

fG(yj )

)
.

We will show this lemma by induction on p. First note that, by the definition of gTα (yj ), the
statement is true for p = 0 and p = 1.

For the proof by induction, we now consider an integer p ≥ 2 and p points y1, . . . , yp of
R
d , and we suppose that the convergence of moments holds for all moments of order k < p.

5.3.1. Decomposition of the multivariate characteristic function by conditioning with respect
to the coverage of the last hitting leaf. We consider the random vector

(gTα (y1), . . . , g
T
α (yp)) =

(
f Tα (y1)− E(Tα(a))

σTα
, . . . ,

f Tα (yp)− E(Tα(a))

σTα

)
,

where σTα =
√

var(f Tα ). We denote by φα(t1, . . . , tp) the multivariate characteristic function
of this random vector, that is,

φα(t1, . . . , tp) = E(exp[i(t1gTα (y1)+ · · · + tpgTα (yp))]).
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We denote by ψα the characteristic function of the random variable Tα(a)− E(Tα(a)), where
a follows the color distribution Pa , that is,

ψα(t) = E(exp[it (Tα(a)− E(Tα(a)))]).
In addition, we introduce the shorthand notation Y for the set Y = {y1, . . . , yp}.

In what follows we apply Proposition 3 when considering the leaves of �T which hit the
set Y. Hence, let (t0, x0, X0, Tα(a0)) denote the last leaf covering at least one point of Y, and
denote by gTα,t0 the corresponding time-shifted random field. Then, for all yj ∈ Y, we have the
decomposition

gTα (yj ) =
⎧⎨
⎩α

Tα(a0)− E(Tα(a))

σTα
+ βgTα,t0(yj ) if yj ∈ x0 +X0,

gα,t0(yj ) otherwise,

which can also be written as

gTα (yj ) = α 1(yj ∈ x0 +X0)
Tα(a0)− E(Tα(a))

σTα
+ β1(yj∈x0+X0)gTα,t0(yj ).

Besides, by Proposition 3, gTα,t0 , (x0, X0), and a0 are mutually independent.
To obtain a decomposition of the characteristic function φα , we will condition with respect

to the coverage of the last leaf x0 + X0. Hence, for all subsets X ⊂ Y, X 	= ∅, let us denote
by AX ⊂ � the event

AX = {(x0 +X0) ∩ Y = X}
and

pX = P(AX).

The events AX, X 	= ∅, form a partition of the probability space �, and, in particular,∑
X⊂Y,X	=∅

pX = 1.

Note that on the event AX, the above decomposition of gTα (yj ) becomes

gTα (yj ) = α 1(yj ∈ X)
Tα(a0)− E(Tα(a))

σTα
+ β1(yj∈X)gTα,t0(yj ).

Hence, using the mutual independence of the different random variables,

φα(t1, . . . , tp) = E(exp[i(t1gTα (y1)+ · · · + tpgTα (yp))])
=

∑
X⊂Y
X	=∅

E(exp[i(t1gTα (y1)+ · · · + tpgTα (yp))] | AX)pX

=
∑
X⊂Y
X	=∅

ψα

(
α

σTα

p∑
j=1

1(yj ∈ X)tj

)
φα(β

1(y1∈X)t1, . . . , β1(yp∈X)tp)pX. (5)

The next step of the proof consists in differentiating the above decomposition of the mul-
tivariate characteristic function in order to obtain a recurrence relation for the moments of
(gTα (y1), . . . , g

T
α (yp)).
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5.3.2. A recurrence relation for the moments of gTα . We compute below the partial derivative
∂pφα(t1, . . . , tp)/∂t1 · · · ∂tp of the characteristic function φα to obtain an expression for the
moment E(

∏p
j=1 g

T
α (yj )). Starting from (5), to compute ∂pφα(t1, . . . , tp)/∂t1 · · · ∂tp, we need

to differentiate, with respect to each variable tj , functions of the form

FX(t1, . . . , tp) = ψα
(
α

σTα

p∑
j=1

1(yj ∈ X)tj

)
φα(β

1(y1∈X)t1, . . . , β1(yp∈X)tp).

First let us introduce some notation. In what follows, for every subset I = {i1, . . . , ik} ⊂
{1, . . . , p}, we write #I = k for the cardinality of I, and

∂kf

∂tI
(t1, . . . , tp) = ∂kf

∂ti1∂ti1 · · · ∂tik
(t1, . . . , tp).

Let Ic denote the complementary set of indices Ic = {1, . . . , p} \ I. With this notation,

∂pFX

∂t1 · · · ∂tp (t1, . . . , tp)

=
p∑
k=0

∑
I⊂{1,...,p}

#I=k

∂k

∂tI

[
ψα

(
α

σTα

p∑
j=1

1(yj ∈ X)tj

)]

× ∂
p−k

∂tIc
[φα(β1(y1∈X)t1, . . . , β1(yp∈X)tp)]

=
p∑
k=0

(
α

σTα

)k ∑
I⊂{1,...,p}

#I=k

(∏
i∈I

1(yi ∈ X)

)
ψ(k)α

(
α

σTα

p∑
j=1

1(yj ∈ X)tj

)

×
(∏
i∈Ic

β1(yi∈X)
)
∂p−k

∂tIc
φα(β

1(y1∈X)t1, . . . , β1(yp∈X)tp).

Summing over all subsets X, we have the identity

∂pφα

∂t1 · · · ∂tp (t1, . . . , tp)

=
p∑
k=0

(
α

σTα

)k ∑
I⊂{1,...,p}

#I=k

∑
X⊂Y
X	=∅

(∏
i∈I

1(yi ∈ X)

)
ψ(k)α

(
α

σTα

p∑
j=1

1(yj ∈ X)tj

)

×
(∏
i∈Ic

β1(yi∈X)
)

× ∂
p−k

∂tIc
φα(β

1(y1∈X)t1, . . . , β1(yp∈X)tp)pX.
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Evaluating at (t1, . . . , tp) = (0, . . . , 0), we obtain

∂pφα

∂t1 · · · ∂tp (0, . . . , 0)

=
p∑
k=0

(
α

σTα

)k ∑
I⊂{1,...,p}

#I=k

∑
X⊂Y
X	=∅

(∏
i∈I

1(yi ∈ X)

)
ψ(k)α (0)

(∏
i∈Ic

β1(yi∈X)
)

× ∂
p−k

∂tIc
φα(0, . . . , 0)pX

=
p∑
k=0

(
α

σTα

)k
ψ(k)α (0)

∑
I⊂{1,...,p}

#I=k

∂p−k

∂tIc
φα(0, . . . , 0)

×
( ∑

X⊂Y
X	=∅

(∏
i∈I

1(yi ∈ X)

)(∏
i∈Ic

β1(yi∈X)
)
pX

)
.

In the above sum, note that, for k = 0, I = ∅ and, thus, all the terms are proportional to
∂pφα(0, . . . , 0)/∂t1 · · · ∂tp. Besides, since Tα(a) − E(Tα(a)) is centered, ψ(1)α (0) = 0, and,
thus, for k = 1, all the terms are 0. Hence, we have the following equation:

∂pφα

∂t1 · · · ∂tp (0, . . . , 0)

(
1−

∑
X⊂Y
X	=∅

( p∏
j=1

β1(yj∈X)
)
pX

)

=
p∑
k=2

(
α

σTα

)k
ψ(k)α (0)

∑
I⊂{1,...,p}

#I=k

∂p−k

∂tIc
φα(0, . . . , 0)

×
( ∑

X⊂Y
X	=∅

(∏
i∈I

1(yi ∈ X)

)(∏
i∈Ic

β1(yi∈X)
)
pX

)
. (6)

5.3.3. Recurrence relation for the limit of the moments. The next step of the proof consists in
dividing by α and letting α tend to 0 in (6). First, recalling that β = 1− α, and using the fact
that

∑
pX = 1, we have

1−
∑
X⊂Y
X	=∅

( p∏
j=1

β1(yj∈X)
)
pX =

∑
X⊂Y
X	=∅

pX −
∑
X⊂Y
X	=∅

β#XpX =
∑
X⊂Y
X	=∅

(1− (1− α)#X)pX.

Hence,

lim
α→0

1

α

∑
X⊂Y
X	=∅

(1− (1− α)#X)pX =
∑
X⊂Y
X	=∅

(#X)pX,
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and, by the definition of pX,∑
X⊂Y
X	=∅

(#X)pX = E(#((x0 +X0) ∩ Y))

= E

( p∑
j=1

1(yj ∈ x0 +X0)

)

= p E(νd(X))

E(νd(Y ⊕ X̌))
	= 0.

Let us now turn to the limit of the right-hand side of (6) when dividing by α and letting α tend
to 0. First let us show that all the terms for which k ≥ 3 will tend to 0. By induction, for all
k ≥ 2, the terms ∂p−kφα(0, . . . , 0)/∂tIc have a finite limit when α tends to 0. Besides, for all
k ≥ 3, |ψ(k)α (0)| = |ik E((Tα(a)− E(Tα(a)))k)| ≤ E(|Tα(a)− E(Tα(a))|k) ≤ 2kα−sk and

σTα =
√

α

2− α var(Tα(a)) ∼
α→0

√
var(a)

2
α1/2,

where u(α)∼α→0 v(α) means that u(α)/v(α) tends to 1 as α tends to 0. Using the classic
notation u(α) = Oα→0 v(α) (meaning that there exists some constant � such that |u(α)| ≤
�v(α) in the neighborhood of 0), we observe that, for all k ≥ 3,

1

α

(
α

σTα

)k
ψ(k)α (0)

∑
I⊂{1,...,p}

#I=k

∂p−k

∂tIc
φα(0, . . . , 0)

( ∑
X⊂Y
X	=∅

(∏
i∈I

1(yi ∈ X)

)(∏
i∈Ic

β1(yi∈X)
)
pX

)

= O
α→0

(αk/2−sk−1).

But, since s < 1
6 , the above exponent 1

2k− sk−1 is positive for all k ≥ 3. Hence, all the terms
for which k ≥ 3 tend to 0.

Now, for k = 2, we have ψ(2)α (0) = i2 var(Tα(a)). Besides, by induction,

lim
α→0

∂p−2

∂t{j1,j2}c
φα(0, . . . , 0) = (i)p−2 E

( p∏
l∈{1,...,p}\{j1,j2}

fG(yl)

)
.

Hence, considering subsets I of {1, . . . , p} with two elements,

lim
α→0

1

α

(
α

σTα

)2

ψ(2)α (0)
∑

I⊂{1,...,p}
#I=2

∂p−2

∂tIc
φα(0, . . . , 0)

×
( ∑

X⊂Y
X	=∅

(∏
i∈I

1(yi ∈ X)

)(∏
i∈Ic

β1(yi∈X)
)
pX

)

= (i)p2
∑

{j1,j2}⊂{1,...,p}
E

( p∏
l∈{1,...,p}\{j1,j2}

fG(yl)

)( ∑
X⊂Y
X	=∅

1(yj1 ∈ X) 1(yj2 ∈ X)pX

)
.
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In addition, note that

∑
X⊂Y
X	=∅

1(yj1 ∈ X) 1(yj2 ∈ X)pX = P({yj1 , yj2} ⊂ x0 +X0) = γX(yj1 − yj2)

E(νd(Y ⊕ X̌))
.

Returning to (6), we see that ∂pφα(0, . . . , 0)/∂t1 · · · ∂tp admits a finite limit when α tends
to 0. Writing ipL the value of this finite limit, that is,

L = lim
α→0

E

( p∏
j=1

gTα (yj )

)
,

we have the expression

L = E(νd(Y ⊕ X̌))
p E(νd(X))

2
∑

{j1,j2}⊂{1,...,p}
E

( p∏
l∈{1,...,p}\{j1,j2}

fG(yl)

)
γX(yj1 − yj2)

E(νd(Y ⊕ X̌))

= 2

p

∑
{j1,j2}⊂{1,...,p}

γX(yj1 − yj2)

E(νd(X))
E

( p∏
l∈{1,...,p}\{j1,j2}

fG(yl)

)
.

This is exactly the recursive formula for the moments of a Gaussian vector given in Proposition 6.
Hence,

L = lim
α→0

E

( p∏
j=1

gTα (yj )

)
= E

( p∏
j=1

fG(yj )

)
,

which completes the proof of Lemma 2.

5.4. Convergence in L2 of the difference of the normalized random fields

To conclude the proof of Theorem 1, we require the following lemma.

Lemma 3. (Convergence to 0 inL2 of gα − gTα .) Let gα and gTα respectively be the normalized
TDL model and the normalized TDL model with truncated colors. Then, for all y ∈ R

d ,

gα(y)− gTα (y) L2−−−→
α→0

0.

Proof. Since a ∈ L2, and, for all b ∈ R, |Tα(b)| ≤ |b| and limα→0 Tα(b) = b, by dominated
convergence,

lim
α→0

var(a − Tα(a)) = 0

and, in particular,

lim
α→0

var(Tα(a)) = var(a).

Let y ∈ R
d . Recall that

var(fα) = α

2− α var(a) and var(f Tα ) =
α

2− α var(Tα(a)).
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We have

gα(y)− gTα (y) =
fα(y)− E(a)√

var(fα)
− f

T
α (y)− E(Tα(a))√

var(f Tα )

= fα(y)− E(a)√
var(fα)

− f
T
α (y)− E(Tα(a))√

var(fα)
+ f

T
α (y)− E(Tα(a))√

var(fα)

− f
T
α (y)− E(Tα(a))√

var(f Tα )

= fα(y)− f Tα (y)− E(a − Tα(a))√
var(fα)︸ ︷︷ ︸
I1(α)

+
(√

var(f Tα )√
var(fα)

− 1

)
gTα (y)︸ ︷︷ ︸

I2(α)

.

Note that the numerator of I1(α) is a TDL model with color distributiona−Tα(a)−E(a−Tα(a)).
Hence, we have

E(I1(α)
2) = α/ var(a − Tα(a))/(2− α)

α var(a)/(2− α) = var(a − Tα(a))
var(a)

−−−→
α→0

0.

In addition,

E(I2(α)
2) =

(√
var(f Tα )√
var(fα)

− 1

)2

=
(√

var(Tα(a))√
var(a)

− 1

)2

−−−→
α→0

0.

Hence, gα(y)− gTα (y) is the sum of two RVs which tends to 0 inL2. This completes the proof.
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