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Cohomology of Complex Projective
Stiefel Manifolds
L. Astey, S. Gitler, E. Micha and G. Pastor

Abstract. The cohomology algebra mod p of the complex projective Stiefel manifolds is determined for all
primes p. When p = 2 we also determine the action of the Steenrod algebra and apply this to the problem
of existence of trivial subbundles of multiples of the canonical line bundle over a lens space with 2-torsion,
obtaining optimal results in many cases.

1 Introduction

Let Wn,k denote the complex Stiefel manifold of orthonormal complex k-frames in complex
n-space. The complex projective Stiefel manifold PWn,k is the quotient space of the free
circle action on Wn,k given by z(v1, . . . , vk) = (zv1, . . . , zvk). For example, PWn,1 is (n−1)-
dimensional complex projective space and PWn,n is the projective unitary group PU(n). In
this paper we determine the cohomology algebra mod p of PWn,k for all primes p. It turns
out that the case of the prime 2 is the most interesting and difficult to understand. In this
case we also determine the action of the Steenrod algebra and apply this to the problem of
existence of trivial subbundles of multiples of the canonical line bundle over a lens space
(see (1.3) below).

In [5] C. Ruiz studied the integral cohomology ring of the complex projective Stiefel
manifolds, but unfortunately the theorem which states its structure is incorrect; according
to Ruiz’s description the top cohomology class is a torsion class, but PWn,k is a simply
connected closed manifold. Although in his paper Ruiz also provides a description of the
mod p cohomology which is correct in most cases, we feel that the result requires a correct
account.

Let x ∈ H2(PWn,k; Z/p) be the mod p Euler class of the complex line bundle associated
with the principal bundle π : Wn,k −→ PWn,k and let N be the smallest integer such that
N > n− k and

(n
N

)
6≡ 0 mod p. We shall prove the following theorems.

Theorem 1.1 Let p > 2 be prime. There exist classes y j ∈ H2 j−1(PWn,k; Z/p) for n − k <
j ≤ n such that

H∗(PWn,k; Z/p) = Z/p[x]/(xN )⊗ Λ(yn−k+1, . . . , yN−1, yN+1, . . . , yn).

Theorem 1.2 Let p = 2. There exist classes y j ∈ H2 j−1(PWn,k; Z/2) for n− k < j ≤ n that
satisfy the following conditions
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(i) If n 6≡ 2 mod 4 or k < n then

H∗(PWn,k; Z/2) = Z/2[x]/(xN )⊗ Λ(yn−k+1, . . . , yN−1, yN+1, . . . , yn).

(ii) If n ≡ 2 mod 4 and k = n then

H∗(PWn,k; Z/2) = Z/2[y1]/(y4
1)⊗ Λ(y3, . . . , yn)

and x = y2
1 .

(iii) We have
Sq1 y j =

1
2

(n
j

)
x j ,

where the right hand side makes sense because x j = 0 if
(n

j

)
is odd.

(iv) If i < j then

Sq2i y j =

i∑
r=0

( j−1−r
i−r

)(n
r

)
xr y j+i−r

+
(n

j

) N−1∑
s=0

( j−N
i−s

) s∑
t=0

(N−1−t
s−t

)(n
t

)
x j+i−N−s+t yN+s−t

where yN = 0.

Remark If k = n then PWn,k is the projective unitary group PU(n). This particular case
of Theorem 1.2 is due to Baum and Browder [1] and Borel [2]. For p > 2 the action of the
Steenrod algebra on Chern classes, knowledge of which is needed to compute its action on
the cohomology of PWn,k, is given by very complicated formulae [6]. We shall not enter
into this computation in this paper. We also remark that the integral cohomology of PWn,k

appears to be very difficult to calculate. For example, it is not too hard to see that

H∗(PWn,2; Z) = Z[u, y]/(nun−1, un, un−1 y, y2)

with u and y in degrees 2 and 2n− 1, so that H2n−2(PWn,2; Z) is cyclic of order n, and this
is the only torsion here. However, for k > 2 the cohomology of PWn,k seems to contain in-
creasingly complicated torsion, and to have a ring structure quite complicated to describe,
not at all like the simple structure claimed by Ruiz in [5]. We remark finally that other
questions about the manifolds PWn,k arise naturally, for example the question of their par-
allelizability. We settle this issue in a forthcoming paper to appear in the Proceedings of the
American Mathematical Society.

The space PWn,k is universal for n-fold Whitney multiples of complex line bundles that
admit trivial complex k-dimensional subbundles, in a sense that will be made precise at the
beginning of Section 5. As an application of this and of Theorem 1.2 we study the existence
of trivial complex subbundles of Whitney multiples of the canonical complex line bundle
over lens spaces with 2-torsion.

https://doi.org/10.4153/CJM-1999-039-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-039-2


Cohomology of Complex Projective Stiefel Manifolds 899

Let Ld(m) denote the quotient of the (2d + 1)-sphere by the standard action of the m-
th roots of unity. Let λ be the complex line bundle associated with the principal bundle
S2d+1 → Ld(m), and let ν be the numerical function defined by t = 2ν(t)· (odd integer).

Theorem 1.3 Assume there exists j such that ν
(n

j

)
= ν(m) > 0 and such that j is even if

n is even. Then the bundle nλ over L j+1(m) does not admit a trivial complex subbundle of
dimension n− j + 1.

An interesting special case is the following, in which the result of 1.3 is optimal.

Corollary 1.4 Let ν(n) > s > 0 and j = 2ν(n)−s. Then the bundle nλ over L j+1(2s) admits
a trivial complex subbundle of dimension n− j but not of a larger dimension.

To prove the existence of the subbundle mentioned in (1.4) we identify the relevant
obstruction with the value of a secondary cohomology operation in the manner of [7].

We wish to express our gratitude to the referee for meticulously reading our original
manuscript and for many helpful suggestions leading to a number of improvements in the
paper. In particular, we are indebted to the referee for the proof of Lemma 3.6.

2 The mod p Cohomology of PWn,k

In what follows cohomology will be understood to have coefficients in Z/p with p prime.
Consider the fibration

Wn,k
π
−→ PWn,k

g
−→ CP∞(2.1)

where CP∞ is infinite dimensional complex projective space and g classifies the principal
S1-bundle π. In analogy with (1.3) of [3] there is, up to homotopy, a pullback diagram

PWn,k

?

g

BU(n− k)

?

i

-f

CP∞ BU(n)-f0

(2.2)

where i is the canonical map, f0 classifies the Whitney sum of n copies of the Hopf bundle
over CP∞, and f classifies the bundle whose fibre over a point u in PWn,k is the orthogonal
complement in Cn of the subspace generated by a k-frame representing u.

It is well known [2] that

H∗(Wn,k) = Λ(zn−k+1, . . . , zn)

where z j has degree 2 j−1 and is characterized in the Serre spectral sequence of the universal
fibration

Wn,k −→ BU(n− k)
i
−→ BU(n)
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as the element that transgresses to (the mod p reduction of) the universal Chern class c j . It
follows from this, applying naturality of transgression to (2.2), that

τz j =
(n

j

)
w j

where τ denotes transgression in the fibration (2.1) and w is the generator in H2(CP∞). It
is now clear that the limit term E∞ of the Serre spectral sequence for (2.1) is

E∞ = Z/p[w]/(wN )⊗ Λ(zn−k+1, . . . , zN−1, zN+1, . . . , zn)(2.3)

where

N = min{ j | n− k < j ≤ n and
(n

j

)
6≡ 0 mod p}.(2.4)

Lemma 2.5 Let x ∈ H2(PWn,k) be the Euler class of the complex line bundle associated with
the principal bundle π : Wn,k −→ PWn,k and let N be as in (2.4), then

(i) The subalgebra of H∗(PWn,k) generated by x is a truncated polynomial algebra
Z/p[x]/(xN ).

(ii) If yn−k+1, . . . , yN−1, yN+1, . . . , yn are elements in H∗(PWn,k) such that π∗y j = z j then
there is an additive isomorphism

H∗(PWn,k) ∼= Z/p[x]/(xN )⊗ Λ(yn−k+1, . . . , yN−1, yN+1, . . . , yn).

Proof From standard properties of the Serre spectral sequence, we see that x projects to w
in E2,0

∞ and that the condition π∗y j = z j implies y j projects to z j in E0,2 j−1
∞ . The lemma

now follows from (2.3).

Proof of Theorem 1.1 Since squares of elements of odd degree are zero in mod p coho-
mology if p is odd, the additive isomorphism of (2.5) is an isomorphism of algebras.

A difficulty in the proof of Theorem 1.2 arises from the fact that the argument used to
derive the multiplicative structure in (1.1) is not valid when p = 2. To deal with this prob-
lem we shall make in Section 3 a careful choice of generators y j and compute in Section 4
the action of the Steenrod algebra on these y j .

3 A Choice of Generators for H∗(PWn,k; Z/2)

Until further notice cohomology should be taken with coefficients in Z/2. We construct
generators for H∗(PWn,k) by the method introduced by Massey and Peterson in [4].

Let E be a contractible space with a free right action of U (n). We have a commutative
diagram

Wn,k

?

pk

PWn,k

?

BU(n− k)

?

ik

-π -f

E CP∞ BU(n)-π0 -f0

(3.1)
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in which both squares are pullback squares (cf. (2.2)). To be very specific, embed S1 in U (n)
as its centre, and take CP∞ = E/S1 and BU(n) = E/U (n) and let π0 and f0 be the obvious
maps. Take BU(n− k) to be the space E×U (n)

(
U (n)/U (n− k)

)
. Then the spaces denoted

here by Wn,k and PWn,k are the pullbacks E×
(
U (n)/U (n−k)

)
and E×S1

(
U (n)/U (n−k)

)
which are canonically homotopy equivalent to the manifolds Wn,k and PWn,k.

We have, induced by (3.1), a commutative diagram with exact columns

0

?

Hodd(PWn,k) 0

δ

? ?
Hev(CP∞, PWn,k) Hev

(
BU(n),BU(n− k)

)f ∗�

i∗

? ?

Hev(CP∞) Hev
(

BU(n)
)f ∗0�

.(3.2)

We identify H∗
(
BU(n),BU(n−k)

)
with the ideal in H∗

(
BU(n)

)
generated by c j for n−k <

j ≤ n and write u j = f ∗c j . Recall that N denotes the smallest integer such that N > n− k
and
(n

N

)
is odd. Since f ∗0 c j =

(n
j

)
w j from (2.2), and noting that the expression

(n
j

)
w j−N uN

makes good sense because
(n

j

)
is even when j < N , we see that i∗

(
u j +
(n

j

)
w j−N uN

)
= 0.

Let y j be the unique element in H2 j−1(PWn,k) such that

δy j = u j +
(n

j

)
w j−N uN .

Note that yN = 0 and that δy j = u j if j < N .
We show that π∗y j = z j in H∗(Wn,k), if j 6= N , as follows. Consider the diagram

H∗−1(Wn,k) 0

∼= δ

? ?
H∗(E,Wn,k) H∗

(
BU(n),BU(n− k)

)( fπ)∗�

?
H∗
(
BU(n)

)

.(3.3)(k)
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By naturality of connecting homomorphisms and the definition of y j we have δ(π∗y j) =
( f π)∗c j . Consider the commutative diagram

U (n) E-

q �
�	

pn

�
�

�
�

�
�
�

�
�
��

�
�	

in

�
�
�
�

�
�
�

��

Wn,k BU(n− k)-

pk

?

ik

?

E BU(n)-

(3.4)

where q is the projection U (n)→ U (n)/U (n−k). It follows from this that diagram (3.3)(k)
maps into diagram (3.3)(n). Diagram (3.3)(n) is

H∗−1
(
U (n)

)
0

∼= δ

? ?
H∗
(
E,U (n)

)
H∗
(
BU(n), E

)( fπ)∗
�

?
H∗
(
BU(n)

)

and we have δ(q∗π∗y j) = ( fπ)∗c j here. Since fπ is the projection of the universal bundle
over BU(n), this equation shows, by definition of transgression, that q∗π∗y j transgresses to
c j in the universal bundle. Thus, q∗π∗y j = z j in H∗

(
U (n)

)
. Since q∗ is a monomorphism

and q∗z j = z j for n− k < j ≤ n, we conclude that π∗y j = z j in H∗(Wn,k).

Proof of (i) and (ii) of Theorem 1.2 By the previous paragraph and Lemma 2.5 we only
need to compute y2

j . Note first that δ(y2
j ) = Sq2 j−1 δy j = 0 because δ commutes with

Steenrod operations and Sq2 j−1 acts trivially on H∗
(
BU(n),BU(n − k)

)
, so y2

j must be a

multiple of x2 j−1, since

H4 j−2(CP∞)→ H4 j−2(PWn,k)
δ
−→ H4 j−1(CP∞, PWn,k)

is exact. Thus y2
j = 0 if 2 j − 1 ≥ N . If 2 j − 1 < N we have, assuming parts (iii) and (iv)
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of (1.2), which shall be proved in the next section, that

y2
j = Sq1 Sq2 j−2 y j

= Sq1
j−1∑
r=0

(n
r

)
xr y2 j−1−r

= 1
2

j−1∑
r=0

(n
r

)( n
2 j−1−r

)
x2 j−1.

Consider the expansion of (1 + a)2n = (1 + a)n(1 + a)n. Comparing the coefficients of a2 j−1

we find

( 2n
2 j−1

)
=

2 j−1∑
r=0

(n
r

)( n
2 j−1−r

)

= 2
j−1∑
r=0

(n
r

)( n
2 j−1−r

)
,

so that y2
j =

1
4

( 2n
2 j−1

)
x2 j−1. Recall the numerical functions ν and α defined by t =

2ν(t)· (odd integer) and α(t) = sum of coefficients in the binary expansion of t , and re-
call the well known formula

ν
(m

t

)
= α(t) + α(m− t)− α(m).(3.5)

This gives

ν
( 2n

2 j−1

)
= α
(
2( j − 1) + 1

)
+ α
(
2(n− j) + 1

)
− α(2n)

= α( j − 1) + α(n− j)− α(n) + 2

=
(
α(1) + α( j − 1)− α( j)

)
+
(
α( j) + α(n− j)− α(n)

)
+ 1

= ν
( j

1

)
+ ν
(n

j

)
+ 1

= ν
(

2 j
(n

j

))

and so y2
j =

1
2 j
(n

j

)
x2 j−1.

Since
(n

j

)
is even we see that y2

j = 0 unless j is odd and
(n

j

)
≡ 2 mod 4. Note that the

coefficients
(n

j

)
, . . . ,

( n
2 j−1

)
are all even since we assume that 2 j − 1 < N . Then parts (i)

and (ii) of Theorem 1.2 are a consequence of the following lemma, which will be proved in
the appendix.

Lemma 3.6 Let n and j be positive integers with j odd and
(n

j

)
≡ 2 mod 4. Assume(n

j

)
, . . . ,

( n
2 j−1

)
are all even. Then n ≡ 2 mod 4 and j = 1.
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4 The Action of the Steenrod Algebra on H∗(PWn,k; Z/2)

In this section we prove parts (iii) and (iv) of Theorem 1.2. We begin by proving a result
slightly more general than (iii) which we shall use in the proof of Theorem 1.3.

Lemma 4.1 Let β be the Bockstein operator associated with the exact sequence

0→ Z
2
→ Z

r
→ Z/2→ 0

and let x0 ∈ H2(PWn,k; Z) be the Euler class of the complex line bundle associated with
π : Wn,k → PWn,k. Then

βy j =
1
2

(n
j

)
x j

0

provided j < N.

Note that for j < N part (iii) of Theorem 1.2 follows from (4.1) because Sq1 = r∗β
and r∗x0 = x. When j ≥ N note that δ Sq1 y j = 0, because δ commutes with Steenrod
operations and Sq1 H∗

(
BU(n),BU(n− 1)

)
= 0, so the cohomology exact sequence shows

Sq1 y j must be a multiple of x j . Since x j is zero, part (iii) of (1.2) is also correct for j ≥ N .
To prove Lemma 4.1 observe first that with the integral Serre spectral sequence of fibra-

tion (2.1), arguing as in Section 2, one can show that for n − k < i ≤ n the order of xi
0 is

mi , the greatest common divisor of the binomial coefficients
(n

s

)
for n − k < s ≤ i. The

spectral sequence also shows that the image of

π∗ : H2 j−1(PWn,k; Z)→ H2 j−1(Wn,k; Z)

is generated by (m j−1/m j)z0
j if j > n−k + 1 and that H2 j−1(PWn,k; Z) = 0 if j = n−k + 1;

here z0
j is an exterior algebra generator of H∗(Wn,k; Z) analogous to z j and such that r∗z0

j =
z j ; cf. Section 2.

By the argument that showed δ Sq1 y j = 0 above we now have δβy j = 0, so βy j is a

multiple of x j
0, and since 2βy j = 0 we may write

βy j = c · 1
2 m jx

j
0(4.2)

for some integer c, because 1
2 m jx

j
0 is the element of order 2 in the subgroup of

H2 j(PWn,k; Z) generated by x j
0.

If j = n− k + 1 we have m j =
(n

j

)
and βy j 6= 0, because H2 j−1(PWn,k; Z) = 0 implies

y j is not the reduction of an integral class, so c in (4.2) is odd. This proves (4.1) when
j = n− k + 1.

If j > n− k + 1 we distinguish two cases. If m j−1/m j is even then
(n

j

)
/m j is odd, since

m j is the greatest common divisor of m j−1 and
(n

j

)
. Thus

βy j = c · 1
2

(n
j

)
x j

0

by (4.2). To finish the proof of (4.1) in this case we need only show that c is odd. If c is
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even, so that βy j = 0, consider the diagram

H2 j−1(PWn,k; Z) H2 j−1(PWn,k) H2 j(PWn,k; Z)r∗ - β -

π∗

?
π∗

?
H2 j−1(Wn,k; Z) H2 j−1(Wn,k)r∗ - .

Let u be such that r∗u = y j . Then π∗u is a multiple of (m j−1/m j)z0
j , and hence is even.

But then
z j = π

∗y j = π
∗r∗u = r∗π

∗u = 0;

this proves that c must be odd. If m j−1/m j is odd select integers αs such that

j−1∑
s=n−k+1

αs

(n
s

)
= m j−1

and consider the class

A =

j−1∑
s=n−k+1

αsw
j−1−sus

in H2 j−2(CP∞, PWn,k; Z). We have (cf. (3.2) with integral coefficients)

i∗A = m j−1w j−1

and so

i∗
(

(m j−1/m j)u j −
((n

j

)
/m j

)
wA

)
= 0

in H2 j(CP∞; Z). This determines an element a ∈ H2 j−1(PWn,k; Z) such that

δa = (m j−1/m j)u j −
((n

j

)
/m j

)
wA.

Then

δr∗a = u j +
((n

j

)
/m j

) j−1∑
s=n−k+1

αsw
j−sus

= δ

(
y j +
((n

j

)
/m j

) j−1∑
s=n−k+1

αsx
j−s ys

)
,

so that

r∗a = y j +
((n

j

)
/m j

) j−1∑
s=n−k+1

αsx
j−s ys
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in H2 j−1(PWn,k). Taking β we have

βy j =
((n

j

)
/m j

) j−1∑
s=n−k+1

αsx
j−s
0

(
1
2

(n
s

)
xs

0

)

=
((n

j

)
/m j

)(
1
2 m j−1

)
x j

0

= 1
2

(n
j

)
x j

0

because m j−1/m j is odd. This ends the proof of Lemma 4.1.
Now the proof of part (iv) of (1.2). From the Wu relations

Sq2i c j =

i∑
r=0

( j−1−r
i−r

)
crc j+i−r

in H∗
(
BU(n)

)
, valid for i < j, we obtain (recall (3.2))

Sq2i u j =
i∑

r=0

( j−1−r
i−r

)(n
r

)
wru j+i−r(4.3)

in H∗(CP∞, PWn,k).

Let λi, j
r denote

( j−1−r
i−r

)(n
r

)
. We have from the definition of y j ,

δ Sq2i y j = Sq2i u j +
(n

j

) N−1∑
s=0

Sq2(i−s) w j−N Sq2s uN +
(n

j

)
(Sq2(i−N) w j−N )wN uN(4.4)

where in the last term we have used the fact (cf. (3.2)) that

u2
N = f ∗0 cN f ∗cN =

(n
N

)
wNuN = wN uN .

Using (4.3) to expand Sq2i u j and Sq2s uN and adding

2
i∑

r=0

λi, j
r wr
( n

j+i−r

)
w j+i−r−NuN + 2

(n
j

) N−1∑
s=0

Sq2(i−s) w j−N
s∑

t=0

λs,N
t wt

( n
N+s−t

)
ws−t uN ,

which equals zero, to the right hand side of (4.4), we find, after rearranging terms, that

δ Sq2i y j =

i∑
r=0

λi, j
r wr
(

u j+i−r +
( n

j+i−r

)
w j+i−r−NuN

)

+
(n

j

) N−1∑
s=0

Sq2(i−s) w j−N
s∑

t=0

λs,N
t wt

(
uN+s−t +

( n
N+s−t

)
ws−t uN

)

+ αw j+i−N uN

= δ (right hand side of (iv) of (1.2)) + αw j+i−NuN

(4.5)

https://doi.org/10.4153/CJM-1999-039-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-039-2


Cohomology of Complex Projective Stiefel Manifolds 907

where we use the well known fact that Sq2m wl =
( l

m

)
wl+m and where α is the integer

i∑
r=0

λi, j
r

( n
j+i−r

)
+
(n

j

) N−1∑
s=0

( j−N
i−s

) s∑
t=0

λs,N
t

( n
N+s−t

)
+
(n

j

)( j−N
i−N

)
.

Since αw j+i−NuN lies in im δ, it goes to zero under i∗; but

i∗(αw j+i−N uN ) = αw j+i−N
(n

N

)
wN

= αw j+i

in H∗(CP∞), so we have α ≡ 0 mod 2. Now part (iv) of (1.2) follows from (4.5) and the
fact that δ is a monomorphism.

5 Application to Existence of Trivial Subbundles

The main idea behind the proof of Theorem 1.3 and of its corollary is as follows.
Let E be a complex n-plane bundle over a CW complex X. Then E admits a trivial

complex subbundle of dimension k if and only if its associated bundle of k-frames admits
a section. This condition is in turn equivalent to the existence of a lift in the diagram

BU(n− k)

�
�

�
�

��>

i

?

X BU(n)
fE -

(5.1)

where fE classifies E, because i is the bundle of k-frames associated with the universal n-
plane bundle on BU(n). If E = nλ, the Whitney sum of n copies of a complex line bundle
λ, then in view of (2.2) this lift must factor through a map f such that the composite

X
f
−→ PWn,k

g
−→ CP∞

classifies λ. Thus nλ admits a trivial complex subbundle of dimension k if and only if there
is a map

f : X → PWn,k(5.2)

such that f ∗x0 = c1(λ) in H2(X; Z), where x0 is the Euler class of the complex line bundle
associated with π : Wn,k → PWn,k.

The following lemma summarizes the facts concerning the cohomology of lens spaces
which we shall need.

Lemma 5.3 Let Ld(m) be a lens space as in (1.3) and λ the associated complex line bundle.
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(i) We have
Hev
(
Ld(m); Z

)
= Z[c1(λ)]/

(
mc1(λ), cd+1

1 (λ)
)
.

(ii) If m is even then

H∗
(
Ld(m)

)
= Z/2[u, v]/(ud+1, v2 − εu)

where u is the reduction mod 2 of c1(λ) and v has degree 1, and where ε = 1 if ν(m) =
1 and ε = 0 if ν(m) > 1.

(iii) If m is even then the Bockstein operator

β : H1
(
Ld(m)

)
→ H2

(
Ld(m); Z

)

is given by βv = 2ν(m)−1 · c1(λ).

The proof of parts (i) and (ii) of Lemma 5.3 is a straightforward calculation with the
Gysin sequence of the sphere bundle Ld(m) → CPd associated with the m-fold tensor
power of the Hopf bundle over CPd, while part (iii) follows easily from the Bockstein exact
sequence. We leave the details to the interested reader.

Suppose that f : Ld(m) → PWn,k is as in (5.2) with m even and n − k < d. Then
f ∗xd

0 = cd
1(λ) has order m by (5.3), so the order of xd

0, which is (see the proof of (4.1)) the
greatest common divisor of the coefficients

(n
j

)
for n− k < j ≤ d, must be divisible by m.

In particular,

(n
j

)
≡ 0 mod 2ν(m)(5.4)

for n− k < j ≤ d.

Proposition 5.5 If f : Ld(m)→ PWn,k is as in (5.2) with m even and n− k < d then

f ∗ : H∗(PWn,k)→ H∗
(
Ld(m)

)

satisfies f ∗x = u and

f ∗y j =
1

2ν(m)

(n
j

)
u j−1v(5.6)

for n− k < j ≤ d, where the right hand side makes sense by (5.4).

To prove (5.5) notice first that f ∗x = u follows from f ∗x0 = c1(λ) by reducing mod 2,
so we need only prove (5.6). Write s = ν(m) and note that from (4.1) and (5.2) we have

f ∗βy j =
1
2

(n
j

)
c j

1(λ)

in H2 j
(
Ld(m); Z

)
. Write f ∗y j = au j−1v for some integer a. Then

β(au j−1v) = 1
2

(n
j

)
c j

1(λ)
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by naturality of β. Since by (5.3)

β(u j−1v) = c j−1
1 (λ)β(v)

= 2s−1c j
1(λ),

we must have
2s−1a ≡ 1

2

(n
j

)
mod m,

because c j
1(λ) has order m, again by (5.3). Thus

a ≡ 1
2s

(n
j

)
mod m

2s−1 ,

and, since m/2s−1 is even, this implies (5.6).

Proof of Theorem 1.3 Assume that nλ does admit a trivial complex subbundle of dimen-
sion n− j + 1, so that we have a map

f : L j+1(m)→ PWn,n− j+1

as in (5.5). By (5.6) we have, with s = ν(m),

Sq2 f ∗y j =
1
2s

(n
j

)
Sq2(u j−1v)

= ( j − 1) · 1
2s

(n
j

)
u jv

where we use the fact that Sq1 u = 0 because u is the reduction mod 2 of an integral class.
We also have, from (iv) of Theorem 1.2 and from (5.6)

f ∗ Sq2 y j = f ∗
(

( j − 1)y j+1 + nxy j

)

=
(

( j − 1) · 1
2s

( n
j+1

)
+ n · 1

2s

(n
j

))
u jv.

Since u jv generates H2 j+1
(
L j+1(m)

)
∼= Z/2 we conclude that

(n + j − 1) · 1
2s

(n
j

)
+ ( j − 1) · 1

2s

( n
j+1

)
≡ 0 mod 2.(5.7)

If n is even then by hypothesis j is also even, so (5.7) becomes

1
2s

(n
j

)
+ 1

2s

( n
j+1

)
≡ 0 mod 2

or

1
2s

(n+1
j+1

)
≡ 0 mod 2.(5.8)

By (3.5) we see that ν
(n+1

j+1

)
= ν
(n

j

)
= s, which contradicts (5.8).
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If n is odd then using again the formula
(n

j

)
+
( n

j+1

)
=
(n+1

j+1

)
we have from (5.7)

1
2s

(n
j

)
+ ( j − 1) · 1

2s

(n+1
j+1

)
≡ 0 mod 2.(5.9)

Since ν
(n

j

)
= s we obtain a contradiction when j is odd. If j is even note that

(n+1
j+1

)
=(n

j

)
· n+1

j+1 implies

ν
(n+1

j+1

)
= ν
(n

j

)
+ ν(n + 1)− ν( j + 1) > s,

so the left hand side of (5.9) must be odd and again we obtain a contradiction, which ends
the proof of Theorem 1.3.

Before beginning the proof of (1.4) consider a complex k-plane bundle E over a finite
CW complex X, such that c1(E) = 0. Let f classify E and recall the standard Postnikov
obstruction scheme defined via the diagram

BSU(k− 1)

?
B2

?
B1 K(Z/2, 2k + 1)b1 -

p1
?

X BSU(k) K(Z, 2k)
f - ck -

(5.10)

in which B1 is the fibre of ck and b1 is the transgression of the fundamental class of the fibre
of BSU(k − 1) → B1, and B2 is the fibre of b1. If ck(E) = 0, so that f has a lift f1 to B1,
then the second obstruction to lifting f to BSU(k − 1) is defined; it is the element b(E) of
H2k+1(X)/ Sq2 H2k−1(X) represented by f ∗1 b1. If the dimension of X is no more than 2k + 1
then E admits a nonvanishing section, i.e., f lifts to BSU(k − 1), if and only if ck(E) = 0
and b(E) = 0, because BSU(k− 1)→ B2 is a (2k + 1)-equivalence. In this context we have
the following proposition (cf. Chapter VII of [7]).

Proposition 5.11 Let k ≥ 3 be odd. Consider a stable secondary cohomology operation
ϕ associated with the Adem relation Sq2 Sq2 = 0 valid on integral classes. If E is a k-plane
bundle over X with c1(E) = ck(E) = 0 thenϕ

(
ck−1(E)

)
is defined in H2k+1(X)/ Sq2 H2k−1(X)

and it coincides with the obstruction b(E).

The corollary below is a consequence of (5.11) and the preceding comments.

Corollary 5.12 If k ≥ 3 is odd and E is a complex k-plane bundle over a finite CW complex of
dimension at most 2k + 1, and if c1(E) = ck−1(E) = ck(E) = 0, then E admits a nonvanishing
section.
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Proof of (5.11) The operation ϕ is defined on classes in integral cohomology which go to
zero under Sq2 and takes values in mod 2 cohomology modulo the image of Sq2. Since

Sq2 ck−1 = c1ck−1 + ck

= ck

in H∗
(
BSU(k)

)
we have (cf. (5.10))

Sq2 p∗1 ck−1 = 0(5.13)

so ϕ(p∗1 ck−1) is defined.
Consider the diagram of fibrations

K(Z, 2k− 1) K(Z/2, 2k− 1)r-

j1

?

j

?
B1 B

g -

p1

? ?

BSU(k) K(Z, 2k− 2) K(Z/2, 2k)
ck−1- Sq2-

(5.14)

in which B is the fibre of Sq2 and g is a lift, which exists by (5.13), j and j1 are inclusions of
fibres, and r is induced by g. By the Serre exact sequence there is a class b ∈ H2k+1(B) such
that j∗b = Sq2 ι, where ι is the fundamental class of K(Z/2, 2k− 1), and

g∗b ∈ ϕ(p∗1 ck−1)(5.15)

by definition of ϕ. From (5.14) and naturality of transgression

τ r∗ι = Sq2 ck−1 = ck

in H∗
(
BSU(k)

)
, so r∗ιmust be the generator of H2k−1

(
K(Z, 2k− 1)

)
∼= Z/2. Then

j∗1 g∗b = r∗ j∗b = Sq2 r∗ι 6= 0,

and thus

g∗b = b1,(5.16)

because the Serre exact sequence easily shows that H2k+1(B1) ∼= Z/2 with generator b1.
Thus by (5.15) and (5.16)

ϕ(p∗1 ck−1) = b1(5.17)
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with zero indeterminacy, because H2k−1(B1) = 0 by the Serre exact sequence. Proposi-
tion 5.11 now follows from (5.17) by naturality of ϕ.

Proof of Corollary 1.4 To show that nλ does not admit a trivial complex subbundle of
dimension n− j + 1 we apply (1.3), noting that by (3.5)

ν
(n

j

)
= α( j) + α(n− 2ν(n) + 2ν(n) − j)− α(n)

= α( j) + α(n− 2ν(n)) + α(2ν(n) − j)− α(n)

= 1 + α(n)− 1 + α
(

j(2s − 1)
)
− α(n)

= α(2s − 1)

= s,

since j = 2ν(n)−s.
To prove that nλ does admit a trivial subbundle of dimension n − j note first that it

admits one of dimension n− j − 1 because

BU( j + 1)→ BU(n)

is a (2 j +3)-equivalence and L j+1(2s) is a CW complex of dimension 2 j +3 (cf. (5.1)). Write

nλ = E ⊕ (n− j − 1)(5.18)

where n − j − 1 denotes a trivial complex bundle and E is a complex subbundle of nλ of
dimension j + 1. The Chern classes of E coincide with those of nλ by (5.18) and it is easy
to verify that c1(E) = c j(E) = c j+1(E) = 0, so that E admits a nonvanishing section by
(5.12). This implies that nλ admits a trivial complex subbundle of dimension n− j, again
by (5.18), and that the proof of (1.4) is finished.

Appendix

Proof of Lemma 3.6 We shall deduce (3.6) from the following lemma, which we owe to
the referee.

Lemma Let a, b and c be nonnegative integers such that b < 2a and c < 2a + b, and let r and
s be positive integers. Then (r·2a+s+c

2a+b

)
≡ 0 mod 2s.

Proof From (3.5) we have

ν
(r·2a+s+c

2a+b

)
= 1 + α(b) + α(r · 2a+s + c − 2a − b)− α(r)− α(c).(A)

https://doi.org/10.4153/CJM-1999-039-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-039-2


Cohomology of Complex Projective Stiefel Manifolds 913

Since
r · 2a+s + c − 2a − b = (r − 1)2a+s + 2a+1(2s−1 − 1) + c + 2a − b,

and since 0 < c + 2a − b < 2a+1, we see that

α(r · 2a+s + c − 2a − b) = α(r − 1) + α(2s−1 − 1) + α(c + 2a − b)

= α(r − 1) + s− 1 + α(c + 2a − b)

so that (A) becomes

ν
(r·2a+s+c

2a+b

)
= α(b)− α(c) + 1 + α(r − 1)− α(r) + s− 1 + α(c + 2a − b)

= α(b)− α(c) + ν(r) + s− 1 + α(c + 2a − b).(B)

Taking r = s = 1 in (B) we obtain

α(b)− α(c) + α(c + 2a − b) = ν
(2a+1+c

2a+b

)

so (B) may be re-written as

ν
(r·2a+s+c

2a+b

)
= ν(r) + s− 1 + ν

(2a+1+c
2a+b

)
.(C)

If
(2a+1+c

2a+b

)
is odd then all powers of 2 in the binary expansion of 2a + b must appear in that

of 2a+1 + c, and, therefore, in that of c; in particular 2a + b ≤ c, contrary to hypotheses.

Thus
(2a+1+c

2a+b

)
must be even, so

ν
(r·2a+s+c

2a+b

)
≥ s

follows from (C), and this proves the Lemma.
To prove Lemma 3.6 write j = 2a + b with 0 ≤ b < 2a and let r be the nonnegative

integer such that n = r · 2a+2 + c for some 0 ≤ c < 2a+2. Since
(n

c

)
is odd, either c < j

or 2 j ≤ c. If c < j we note that r must be positive, because r = 0 implies n = c < j, so
the lemma above applies and shows

(n
j

)
≡ 0 mod 4, a contradiction. This implies 2 j ≤ c.

Then 2a+1 ≤ 2a+1 + 2b ≤ c < 2a+2, so that c = 2a+1 + c ′ with 0 ≤ c ′ < 2a+1, and so we have
n = r · 2a+2 + 2a+1 + c ′, and therefore

( n
2a+1

)
is odd. Since 2a+1 < j is impossible, we must

have 2 j ≤ 2a+1, which means that 2a+1 + 2b ≤ 2a+1. Then b = 0, so j = 2a. Since j is odd
we have that j = 1, and that n =

(n
1

)
≡ 2 mod 4, as claimed.
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