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RIGIDITY OF LINEAR STRANDS AND GENERIC

INITIAL IDEALS

SATOSHI MURAI and POOJA SINGLA

Abstract. Let K be a field, S a polynomial ring and E an exterior al-

gebra over K, both in a finite set of variables. We study rigidity proper-

ties of the graded Betti numbers of graded ideals in S and E when pass-

ing to their generic initial ideals. First, we prove that if the graded Betti

numbers βS
ii+k(S/I) = βS

ii+k

`

S/Gin(I)
´

for some i > 1 and k ≥ 0, then

βS
qq+k(S/I) = βS

qq+k

`

S/Gin(I)
´

for all q ≥ i, where I ⊂ S is a graded ideal.

Second, we show that if βE
ii+k(E/I) = βE

ii+k

`

E/ Gin(I)
´

for some i > 1 and

k ≥ 0, then βE
qq+k(E/I) = βE

qq+k

`

E/ Gin(I)
´

for all q ≥ 1, where I ⊂ E is

a graded ideal. In addition, it will be shown that the graded Betti numbers

βR
ii+k(R/I) = βR

ii+k

`

R/Gin(I)
´

for all i ≥ 1 if and only if I〈k〉 and I〈k+1〉 have

a linear resolution. Here I〈d〉 is the ideal generated by all homogeneous ele-

ments in I of degree d, and R can be either the polynomial ring or the exterior

algebra.

Introduction

In this paper we study rigidity properties of graded Betti numbers of a

graded ideal when passing to its generic initial ideal.

Let S = K[x1, . . . , xn] be the polynomial ring in n variables over a

field K with char(K) = 0 and I ⊂ S a graded ideal. Let βSi (M) =

dimK TorSi (K,M) and βSij(M) = dimK TorSi (K,M)j denote respectively the

i-th total and i, j-th graded Betti number of a finitely generated graded S-

module M .

The generic initial ideal Gin(I) plays a fundamental role in investigat-

ing various homological, algebraic, combinatorial and geometric properties

of I. By definition, the generic initial ideal Gin(I) is, after performing a

generic change of coordinates, the initial ideal of I with respect to the re-

verse lexicographic order. Here we consider the reverse lexicographic order

induced by x1 > · · · > xn.

Received August 28, 2006.
2000 Mathematics Subject Classification: 13D02.
The first author is supported by JSPS Research Fellowships for Young Scientists.

https://doi.org/10.1017/S0027763000009557 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009557


36 S. MURAI AND P. SINGLA

The following inequality of the graded Betti numbers is well-known:

βij(S/I) ≤ βij
(

S/Gin(I)
)

,

for all i, j (see [9, Theorem 1.1]). Equality holds for all i and j if and only

if I is componentwise linear (see [4, Theorem 1.1]). In his paper [9] Conca

asked whether the equality βi(S/I) = βi
(

S/Gin(I)
)

for some i ≥ 1 of the

total Betti numbers implies βj(S/I) = βj
(

S/Gin(I)
)

for all j ≥ i. This

question of Conca was positively answered in 2004 by Conca, Herzog and

Hibi in [10].

One of the main results of our paper is to extend this result of Conca-

Herzog-Hibi to graded Betti numbers. In Corollary 2.3 we show the follow-

ing: If for some i > 1 and k ≥ 0, we have βSii+k(S/I) = βSii+k
(

S/Gin(I)
)

,

then

βSqq+k(S/I) = βSqq+k
(

S/Gin(I)
)

for all q ≥ i.

We also study the same property for generic initial ideals over an exte-

rior algebra. Let K be an infinite field, V an n-dimensional K-vector space

with basis e1, . . . , en and E =
⊕n

k=0

∧k V the exterior algebra of V . For a

graded ideal J ⊂ E, we write Gin(J) for the generic initial ideal of J with

respect to the reverse lexicographic order induced by e1 > · · · > en and de-

note by βEij (E/J) the i, j-th graded Betti number of E/J over E. Somewhat

surprisingly, the following stronger property is true in the exterior algebra:

If βEii+k(E/J) = βEii+k
(

E/Gin(J)
)

for some i > 1 and k ≥ 0, then one has

βEqq+k(E/J) = βEqq+k
(

E/Gin(J)
)

for all q ≥ 1.

Let R be either a polynomial ring over a field K with char(K) = 0 or an

exterior algebra over an infinite field and I a graded ideal of R. The above

property leads us to ask when a graded ideal I ⊂ R satisfies βRii+k(R/I) =

βRii+k
(

R/Gin(I)
)

for all i ≥ 1, where we fix an integer k ≥ 0. We will prove

the following result answering this question.

Theorem 0.1. Let R be either a polynomial ring over a field K with

char(K) = 0 or an exterior algebra over an infinite field, I ⊂ R a graded

ideal and k ≥ 0 an integer. The following conditions are equivalent.

(i) βRii+k(R/I) = βRii+k
(

R/Gin(I)
)

for all i ≥ 1;

(ii) I〈k〉 and I〈k+1〉 have a linear resolution;

(iii) βR1k+1(R/I) = βR1k+1

(

R/Gin(I)
)

and βR1k+2(R/I) = βR1k+2

(

R/Gin(I)
)

,
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where I〈k〉 denotes the ideal of R generated by all homogeneous elements in

I of degree k.

The above result is a generalization of [4, Theorem 1.1], where it was

shown that βRij(R/I) = βRij
(

R/Gin(I)
)

for all i, j if and only if I is compo-

nentwise linear.

In the end of the paper, we study the Cancellation Principle for generic

initial ideals [13]. We find the relation between our results for Betti numbers

of a graded ideal in a polynomial ring and the Cancellation Principle for

generic initial ideals.

This paper is organized as follows: In Section 1, we will give an upper

bound for graded Betti numbers in terms of generic annihilator numbers

by using the technique developed in [10]. In Section 2, we will generalize

Conca-Herzog-Hibi’s theorem for graded Betti numbers over a polynomial

ring. In Section 3, some basic facts about Cartan complexes and generic

annihilator numbers over an exterior algebra are studied. In Section 4,

we will generalize Conca-Herzog-Hibi’s theorem for graded Betti numbers

over an exterior algebra. In Section 5, we will study when I〈d〉 has a linear

resolution from the viewpoint of generic initial ideals and give a proof of

Theorem 0.1. In Section 6, we will study the Cancellation Principle. The

results in the last section are closely related to the results in Section 1.

§1. An upper bound for the graded Betti numbers

In this section, we will give an upper bound for graded Betti numbers in

terms of generic graded annihilator numbers, which were introduced in [10].

Note that most of the results in this section are refinements of the results

in [10, §1]. Though these results seem to be somewhat technical, they are

of crucial importance for the proof of one of our main theorems in the next

section.

Let S = K[x1, . . . , xn] be the standard graded polynomial ring over

an arbitrary field K and m = (x1, . . . , xn) the graded maximal ideal. Let

M be a finitely generated graded S-module. For each nonnegative integer

i, the modules TorSi (K,M) are finitely generated K-vector spaces. The

numbers βSi (M) = dimK TorSi (K,M) and βSij(M) = dimK TorSi (K,M)j are

called Betti numbers and graded Betti numbers of M , respectively. As βSij
are invariants under base field extensions, from now on we may assume the

field K to be infinite.
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Let y1, . . . , yn be a sequence of generic linear forms for the module M .

For each p = 1, . . . , n, the modules

Ap = (y1, . . . , yp−1)M :M yp/(y1, . . . , yp−1)

are Z-graded S-modules of finite length. We define αp(M) = dimK Ap,

which we call the generic annihilator numbers of M . We denote by αp,j(M)

the vector space dimension of the jth graded component (Ap)j of Ap which

we call the generic graded annihilator numbers of M .

Let Hi(p,M) be the Koszul homology Hi(y1, . . . , yp;M) of the partial

sequence y1, . . . , yp. We set hi(p,M) = dimK Hi(p,M) and hij(p,M) =

dimK Hi(p,M)j . We omit M and simply write βSij , β
S
i , αi,j, αi, Hi(p)j ,

Hi(p), hij(p), hi(p) for the above defined terms, if the module under con-

sideration is fixed. Then we have the following long exact sequence (see [6,

Corollary 1.6.13]):

(1)
· · · −→ Hi(p− 1)

ϕi,p−1
−−−−→ Hi(p − 1) −→ Hi(p) −→ Hi−1(p− 1)

· · · −→ H0(p − 1)
ϕ0,p−1
−−−−→ H0(p− 1) −→ H0(p) −→ 0.

In the above sequence ϕi,p−1 is the multiplication map on Hi(p − 1) with

multiplication by ±yp. One may notice that Ap is given by the kernel of the

map ϕ0,p−1. Hence we get the following exact sequences with all the maps

of degree zero:

0 −→ Imϕ1,p−1 −→ H1(p− 1) −→ H1(p) −→ Ap(−1) −→ 0

for all p, and

0 −→ Imϕi,p−1 −→ Hi(p − 1) −→ Hi(p) −→ Hi−1(p − 1)(−1)

−→ Imϕi−1,p−1 −→ 0,

for all p and i > 1.

Let δi,j,k = dimK(Imϕi,j)k. From the above exact sequences, we obtain

the following equations for each integer k ≥ 0:

(2) h1k(p) = h1k(p− 1) + αp,k−1 − δ1,p−1,k,

and for all i > 1,

(3) hi,i+k(p) = hi,i+k(p− 1) + hi−1,i−1+k(p− 1) − δi,p−1,i+k − δi−1,p−1,i+k.

By using (2) and (3), we obtain
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Proposition 1.1. For all nonnegative integers i ≥ 1 and k, one has

(4) hi,i+k(p) =

p−i+1
∑

j=1

(

p− j

i− 1

)

αj,k

−
∑

(a,b)∈Ai,p

[(

p− b− 1

i− a

)

δa,b,a+k +

(

p− b− 1

i− a− 1

)

δa,b,a+k+1

]

,

where the set Ai,p =
{

(a, b) ∈ N
2 : 1 ≤ b ≤ p − 1 and max{i − p + b, 1} ≤

a ≤ i
}

.

Proof. We will prove the above formula by induction on p. For p = 1,

we have from Equation (2) and Equation (3):

hi,i+k(1) =

{

α1,k if i = 1,

0 i ≥ 2.

which is what the formula given in the statement of the proposition suggests.

Now we assume p > 1 and we assume the result to be true for p− 1.

Let first i = 1. By induction hypothesis and from Equation (2), we get:

h1,1+k(p) = h1,1+k(p− 1) + αp,k − δ1,p−1,1+k

=

p−1
∑

j=1

(

p− 1 − j

0

)

αj,k −
∑

(a,b)∈A1,p−1

(

p− b− 2

1 − a

)

δa,b,a+k + αp,k − δ1,p−1,1+k

=

p
∑

j=1

αj,k −
∑

(a,b)∈A1,p

[(

p− b− 1

1 − a

)

δa,b,a+k

]

which is what the formula suggests.

Now let i > 1. From Equation (3), we have:

hi,i+k(p) = hi,i+k(p− 1) + hi−1,i−1+k(p− 1) − δi,p−1,i+k − δi−1,p−1,i+k.

Note that one has
(

a
b

)

+
(

a
b+1

)

=
(

a+1
b+1

)

for all integers a ≥ b ≥ 0. Then,

using induction hypothesis, the right hand side of the above equation is a

sum of the following three terms:

(5)

p−i+1
∑

j=1

{(

p− j − 1

i− 1

)

+

(

p− j − 1

i− 2

)}

αj,k =

p−i+1
∑

j=1

(

p− j

i− 1

)

αj,k,
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(6) −

{

∑

(a,b)∈Ai,p−1

(

p− b− 2

i− a

)

δa,b,a+k + δi,p−1,i+k

+
∑

(a,b)∈Ai−1,p−1

(

p− b− 2

i− a− 1

)

δa,b,a+k

}

,

and

(7) −

{

∑

(a,b)∈Ai,p−1

(

p− b− 2

i− a− 1

)

δa,b,a+k+1 + δi−1,p−1,i+k

+
∑

(a,b)∈Ai−1,p−1

(

p− b− 2

i− a− 2

)

δa,b,a+k+1

}

.

The term (6) can be written as:

−

{

∑

(a,b)∈Ai,p−1

(

p− b− 2

i− a

)

δa,b,a+k

+
∑

(a,b)∈Ai,p−1

(

p− b− 2

i− a− 1

)

δa,b,a+k + δi,p−1,i+k

}

,

which is further equal to

−

{

∑

(a,b)∈Ai,p−1

(

p− b− 1

i− a

)

δa,b,a+k + δi,p−1,i+k

}

,

which in the end equals

(8) −
∑

(a,b)∈Ai,p

(

p− b− 1

i− a

)

δa,b,a+k.

Now we notice that the term (7) can be written as:

−

{

∑

(a,b)∈Ai,p−1

(

p− b− 2

i− a− 1

)

δa,b,a+k+1 +
∑

(a,b)∈Ai,p−1

(

p− b− 2

i− a− 2

)

δa,b,a+k+1

+

p−2
∑

b=p−i+1

δi−p+b,b,i−p+b+k+1 + δi−1,p−1,i+k

}

.
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This can be rewritten as:

−

{

∑

(a,b)∈Ai,p−1

(

p− b− 1

i− a− 1

)

δa,b,a+k+1

+

p−2
∑

b=p−i+1

δi−p+b,b,i−p+b+k+1 + δi−1,p−1,i+k

}

,

which then is equal to

(9) −
∑

(a,b)∈Ai,p

(

p− b− 1

i− a− 1

)

δa,b,a+k+1.

Hence hi,i+k(p) is the sum of (5), (8) and (9), as required.

Remark 1.2. Notice that summing the formula stated in Proposition

1.1 over k, gives us back the formula given in the proof of [10, Proposi-

tion 1.1].

Proposition 1.1 implies the following fact.

Corollary 1.3. We have

(a) hi,i+k(p) ≤
∑p−i+1

j=1

(

p−j
i−1

)

αj,k.

(b) For given integers i ≥ 1 and p ≥ 1, the following conditions are equiv-

alent :

(i) hi,i+k(p) =
∑p−i+1

j=1

(

p−j
i−1

)

αj,k

(ii) (Imϕa,b)(a+k) = 0 for all (a, b) ∈ Ai,p \
{

(i− p+ b, b) : b ≤ p− 1
}

and (Imϕa,b)(a+k+1) = 0 for all (a, b) ∈ Ai,p \
{

(i, b) : b ≤ p− 1
}

.

(iii)
(

mHa(b)
)

(a+k)
= 0 for all (a, b) ∈ Ai,p \

{

(i−p+ b, b) : b ≤ p−1
}

and
(

mHa(b)
)

(a+k+1)
= 0 for all (a, b) ∈ Ai,p\

{

(i, b) : b ≤ p−1
}

.

Proof. Statement (a) is clear from Proposition 1.1. The equivalence of

(i) and (ii) follows immediately from Proposition 1.1. Indeed, hi,i+k(p) =
∑p−i+1

j=1

(

p−j
i−1

)

αj,k if and only if all graded maps appearing in the formula

in Proposition 1.1 vanish whenever their binomial coefficients are nonzero.

And for the equivalence of (ii) and (iii), we may notice that a generic linear

form annihilates
(

Ha(b)
)

k
if and only if m annihilates

(

Ha(b)
)

k
.
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The next corollary is a special case (p = n) of the above corollary.

Corollary 1.4. (a) βSii+k ≤
∑n−i+1

j=1

(

n−j
i−1

)

αj,k for all i ≥ 1.

(b) For given i ≥ 1 the following are equivalent :

(i) βSii+k =
∑n−i+1

j=1

(

n−j
i−1

)

αj,k.

(ii) (Imϕa,b)(a+k) = 0 for all (a, b) ∈ Ai,n \
{

(i−n+ b, b), b ≤ n− 1
}

and (Imϕa,b)(a+k+1) = 0 for all (a, b) ∈ Ai,n \
{

(i, b), b ≤ n− 1
}

.

(iii)
(

mHa(b)
)

(a+k)
= 0 for all (a, b) ∈ Ai,n \

{

(i−n+ b, b), b ≤ n−1
}

and
(

mHa(b)
)

(a+k+1)
= 0 for all (a, b) ∈ Ai,n \

{

(i, b), b ≤ n−1
}

.

§2. Graded rigidity of resolutions and linear components

In this section we generalize [10, Theorem 2.3] of Conca-Herzog-Hibi.

They gave an upper bound of total Betti numbers in terms of generic an-

nihilator numbers, and proved that if the Betti number βSi (M) for some

i ≥ 1 reaches its upper bound, then the Betti numbers βSq (M) also reach

their upper bounds for all q ≥ i. We show that if a graded Betti number

βSii+k(M) for some i > 1 reaches its upper bound given in Corollary 1.4,

then so do all the graded Betti numbers βSqq+k(M) for q ≥ i. Here we need

the assumption i > 1 as we will see later in Remark 2.4.

We state the main theorem of this section:

Theorem 2.1. Let M be a finitely generated graded S-module. Suppose

for some i > 1, we have βSii+k(M) =
∑n−i+1

j=1

(

n−j
i−1

)

αj,k(M). Then

βSqq+k(M) =

n−q+1
∑

j=1

(

n− j

q − 1

)

αj,k(M) for all q ≥ i.

Before proving the theorem, we recall the following vanishing property

of Koszul homology. For a sequence of elements y1, . . . , yr ∈ S and a set

A ⊆ {1, . . . , r}, we set yA = {yj : j ∈ A}.

Lemma 2.2. Let I ⊇ (y1, . . . , yr) and assume that
(

IHi(yA;M)
)

i+k
=

0 for all A ⊆ {1, . . . , r} for some i, k. Then
(

IHi+1(yA,M)
)

i+k+1
= 0 for

all A ⊆ {1, . . . , r}.

The proof of Lemma 2.2 is the same as [10, Corollary 2.3]. Hence we

skip the proof.
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Proof of Theorem 2.1. First we notice that it is enough to prove the

claim in the case when q = i + 1. Therefore we only need to show that
(

mHa(b)
)

a+k
= 0 for all (a, b) ∈ Ai+1,n \

{

(i+ 1− n+ b, b) : b ≤ n− 1
}

and
(

mHa(b)
)

a+k+1
= 0 for all (a, b) ∈ Ai+1,n \

{

(i+1, b) : b ≤ n−1
}

, as is clear

from Corollary 1.3.

By assumption,
(

mHa(b)
)

a+k
= 0 for all (a, b) ∈ Ai,n \

{

(i − n + b, b) :

b ≤ n− 1
}

and
(

mHa(b)
)

a+k+1
= 0 for all (a, b) ∈ Ai,n \

{

(i, b) : b ≤ n− 1
}

.

Also a routine computation implies

Ai+1,n \
(

Ai,n \
{

(i− n+ b, b) : b ≤ n− 1
})

=
{

(i+ 1, b) : b ≤ n− 1
}

and

(

Ai+1,n \ {(i+ 1, b) : b ≤ n− 1}
)

\
(

Ai,n \ {(i, b) : b ≤ n− 1}
)

=
{

(i, b) : b ≤ n− 1
}

.

Therefore, we need to show that
(

mHi+1(b)
)

i+1+k
= 0 and

(

mHi(b)
)

i+k+1
=

0 for all b ≤ n − 1. However, from assumption
(

mHi(b)
)

i+k
= 0 and

(

mHi−1(b)
)

i+k
= 0 for all b ≤ n−1, now it follows from Lemma 2.2 that for

all b ≤ n− 1, we have
(

mHi+1(b)
)

i+1+k
= 0 and

(

mHi(b)
)

i+k+1
= 0. Hence

we are done.

A graded ideal I ⊂ S generated in degree d is said to have a linear

resolution if the regularity reg(I) = max
{

k : βSii+k(I) 6= 0
}

of I is equal

to d. Also, a graded ideal I is said to be componentwise linear if the ideal

I〈k〉 has linear resolution for each k. A monomial ideal I ⊂ S is said to be

strongly stable if uxq ∈ I implies uxp ∈ I for any 1 ≤ p < q ≤ n. Note that

generic initial ideals are strongly stable if char(K) = 0, and strongly stable

ideals are componentwise linear.

Theorem 2.1 has a nice meaning in the special case M = S/I where I is

a graded ideal in S. Let I ⊂ S be a graded ideal and Gin(I) its generic initial

ideal with respect to the reverse lexicographic order. It follows from [10,

Theorem 1.5] that a graded ideal I ⊂ S is componentwise linear if and only

if the Betti numbers of S/I reaches the upper bound given in Corollary 1.4.

Also, it is not hard to show that αi,j(S/I) = αi,j(S/Gin(I)) for all i and j

(see [10, Lemma 2.5]). Then, since Gin(I) is componentwise linear, we have

(10) βSii+k
(

S/Gin(I)
)

=

n−i+1
∑

j=1

(

n− j

i− 1

)

αj,k(S/I) for all i and k.
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This fact and Theorem 2.1 immediately imply

Corollary 2.3. Suppose char(K) = 0. Let I ⊂ S be a graded ideal.

If for some i > 1 and k ≥ 0, βSii+k(S/I) = βSii+k
(

S/Gin(I)
)

, then

βSqq+k(S/I) = βSqq+k
(

S/Gin(I)
)

for all q ≥ i.

Remark 2.4. The assumption i > 1 in Theorem 2.1 (and Corollary 2.3)

is necessary. In the case when i = 1, we notice from the proof that we need

to show that
(

mH2(b)
)

2+k
= 0 and

(

mH1(b)
)

2+k
= 0 for all b ≤ n − 1.

As the set A1,n \
{

(1, b), b ≤ n − 1
}

= ∅, the second equality does not

follow. Moreover in the case when M = S/I where I ⊂ S is a graded ideal,

we always have βS1d0(S/I) = βS1d0
(

S/Gin(I)
)

=
∑n+1

j=1 αj,d0−1(S/I) where

d0 is the minimum of the degrees of generators of I. So if Theorem 2.1

would have been true for i = 1, then it would follow that βSii+d0−1(S/I) =
∑n−i+1

j=1

(

n−j
i−1

)

αj,d0−1(S/I) for all i, which is false in general.

As we see in Remark 2.4, Corollary 2.3 is false for i = 1. However, the

following property is true for the first graded Betti numbers.

Corollary 2.5. Suppose char(K) = 0. Let I ⊂ S be a graded ideal.

Then, for a given integer k, the graded Betti numbers βSii+k(S/I) =

βSii+k
(

S/Gin(I)
)

for all i ≥ 1 if and only if βS1,k+1(S/I) = βS1,k+1

(

S/Gin(I)
)

and βS1,k+2(S/I) = βS1,k+2

(

S/Gin(I)
)

.

Proof. First, we will show the “if” part. Since βS1,k+1(S/I) =

βS1,k+1

(

S/Gin(I)
)

and βS1,k+2(S/I) = βS1,k+2

(

S/Gin(I)
)

, Corollary 1.4 says

that mH1(b)1+k = 0 and mH1(b)2+k = 0 for all b ≤ n− 1. Thus Lemma 2.2

says that mHa(b)a+k = 0 and mHa(b)a+k+1 = 0 for all (a, b) with a ∈ Z and

b ≤ n − 1. Then, by Corollary 1.4, we have βSii+k(S/I) = βSii+k
(

S/Gin(I)
)

for all i ≥ 1.

Next, we will show the “only if” part. Since βS1,k+1(S/I) =

βS1,k+1

(

S/Gin(I)
)

follows from the assumption, what we must prove is

βS1,k+2(S/I) = βS1,k+2

(

S/Gin(I)
)

. Since βS2,k+2(S/I) = βS2,k+2

(

S/Gin(I)
)

,

Corollary 1.4 says that mHa(b)(a+k+1) = 0 for all (a, b) ∈ A2,n \
{

(2, b) :

b ≤ n − 1
}

= A1,n. This fact and Corollary 1.4 imply βS1,k+2(S/I) =

βS1,k+2

(

S/Gin(I)
)

.
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For any monomial u ∈ S, write m(u) for the maximal integer i such

that xi divides u. We recall a result of Eliahou-Kervaire [12] which we need

in the proof of our next proposition. They proved that if I ⊂ S is a strongly

stable ideal then

(11) βii+j(I) =
∑

u∈G(I), deg(u)=j

(

m(u) − 1

i

)

for all i and j

where G(I) is the set of minimal monomial generators of I. Aramova-

Herzog-Hibi [4, Theorem 1.1] proved that a graded ideal I in S with

char(K) = 0 is componentwise linear if and only if βSij(I) = βSij(Gin(I))

for all i, j. We will refine this result in terms of the maximal degree of

minimal generators.

Proposition 2.6. Suppose char(K) = 0. Let I ⊂ S be a graded ideal,

and let d be the maximum of the degrees of the generators of I. Then the

following conditions are equivalent.

(i) I is componentwise linear ;

(ii) βSii+k(I) = βSii+k
(

Gin(I)
)

for all i ≥ 0 and all k ≤ d;

(iii) βS11+k(I) = βS11+k
(

Gin(I)
)

for all k ≤ d;

(iv) βS0k(I) = βS0k
(

Gin(I)
)

for all k ≤ d+ 1.

Proof. (i) ⇒ (ii) follows from [4, Theorem 1.1] and (ii) ⇒ (iii) is ob-

vious. On the other hand, we already proved that if βS1k(I) = βS1k
(

Gin(I)
)

,

then we have βS0k(I) = βS0k
(

Gin(I)
)

in the proof of Corollary 2.5. This fact

implies (iii) ⇒ (iv).

Now we show (iv) ⇒ (i). We have βS0d+1(I) = βS0d+1

(

Gin(I)
)

= 0,

by assumption. Now, since Gin(I) is strongly stable, by Eliahou-Kervaire

formula (11) we have βSi,i+d+1(I) = βSi,i+d+1

(

Gin(I)
)

= 0 for all i ≥ 0.

However, the equality of graded betti numbers βS1d+2(I) = βS1d+2

(

Gin(I)
)

=

0 implies the equality βS0d+2(I) = βS0d+2

(

Gin(I)
)

= 0 as we see in the proof

of Corollary 2.5. Then again we have βSi,i+d+2(I) = βSi,i+d+2

(

Gin(I)
)

= 0 for

all i ≥ 0. Arguing inductively, we have βS0j(I) = βS0j
(

Gin(I)
)

for all j ≥ 0.

Then Corollary 2.5 implies that βij(I) = βij
(

Gin(I)
)

for all i, j. Hence I is

componentwise linear.
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§3. The Cartan-complex and generic annihilator numbers

In this section, we recall some basic facts about Cartan complex intro-

duced by Cartan and consider generic annihilator numbers in an exterior

algebra.

Let K be an infinite field, V an n-dimensionalK-vector space with basis

e1, . . . , en and E =
⊕n

k=0

∧k V the exterior algebra of V . For any subset

S = {i1, . . . , id} with 1 ≤ i1 < · · · < id ≤ n, the element eS = ei1 ∧· · ·∧eid ∈
E is called a monomial of E of degree d. Let v1, . . . , vm ∈ E1 be linear forms.

The Cartan complex C•(v1, . . . , vm;E) of the sequence v1, . . . , vm is defined

as the complex whose i-chains Ci(v1, . . . , vm;E) are the elements of degree

i of the free divided power algebra E〈x1, . . . , xm〉. Thus C•(v1, . . . , vm;E)

is the polynomial ring over E in the set of variables

x
(j)
i , i = 1, 2, . . . ,m, j = 1, 2, . . . ,

modulo the relations

x
(j)
i x

(k)
i =

(j + k)!

j!k!
x

(k+j)
i ,

where we set x
(0)
i = 1 and x

(1)
i = xi for i = 1, . . . ,m. The algebra

C•(v1, . . . , vm;E) is a free E-module with basis x(a) = x
(a1)
1 · · · x

(am)
m with

a ∈ Z
m.

The E-linear differential ∂ on C•(v1, . . . , vm;E) is defined by

∂
(

x(a)
)

=
∑

ai>0

vi · x
(a1)
1 · · · x

(ai−1)
i · · · x(am)

m .

It is easily verified that ∂ ◦ ∂ = 0, so that C•(v1, . . . , vm;E) is indeed a

complex.

Let M be the category of finitely generated graded left and right E-

module M satisfying ax = (−1)deg(a)+deg(x)xa for all homogeneous elements

a ∈ E and x ∈ M , where M ∈ M. The complex C•(v1, . . . , vm;M) =

C•(v1, . . . , vm;E) ⊗E M is called the Cartan complex of M with respect to

v1, . . . , vm ∈ E1, and its homology H•(v1, . . . , vm;M) is called the Cartan

homology. We recall two basic properties of the Cartan homology. (See [2]

or [14] for the detail.)

Lemma 3.1. ([2, Theorem 2.2]) Let v1, . . . , vn ∈ E be linearly indepen-

dent linear forms and M ∈ M. One has

Hi(v1, . . . , vn;M)j ∼= TorEi (K,M)j .
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Lemma 3.2. ([2, Corollary 2.4]) Let v1, . . . , vn ∈ E be linear forms and

M ∈ M. For p = 1, 2, . . . , n− 1, there exists a long exact sequence

· · ·
γi,p
−→ Hi(v1, . . . , vp;M)

ηi,p
−→ Hi(v1, . . . , vp+1;M)

ψi,p
−→ Hi−1(v1, . . . , vp+1;M)(−1)

γi−1,p
−→ Hi−1(v1, . . . , vp;M)

ηi−1,p
−→ Hi−1(v1, . . . , vp+1;M) −→ · · ·

where ηi,p is the map induced by the inclusion map and the maps ψi,p and

γi,p are defined as follows: If z = g0 + g1xp+1 + · · · + gix
(i)
p+1 is a cycle

in Ci(v1, . . . , vp+1;M) with each gk ∈ Ci(v1, . . . , vp;M), then ψi,p
(

[z]
)

=

[g1 + g2xp+1 + · · · + gix
(i−1)
p+1 ] and γi,p

(

[z]
)

= [g0vp+1].

Next, we will introduce generic annihilator numbers in the exterior al-

gebra. Let M ∈ M and let v1, . . . , vn ∈ E be generic linear forms of M .

For p = 1, 2, . . . , n, set

(12) A(p)(M) =
(

(v1, . . . , vp−1)M :M vp
)/

(v1, . . . , vp)M

and

αp,k(M) = dimK

(

A(p)(M)k
)

.

Note that A(p)(M) = Ker(γ0,p−1) for p = 2, 3, . . . , n. These numbers

αp,k(M) are constant for a generic choice of linear forms v1, . . . , vn ∈ E1,

and will be called exterior generic annihilator numbers of M . In the rest

of this section, we will give the formula to compute the graded Betti num-

bers of generic initial ideals in the exterior algebra from exterior generic

annihilator numbers.

A monomial ideal J ⊂ E is said to be strongly stable if eS ∈ J and

j ∈ S implies that e(S\{j})∪{i} ∈ J for all i < j with i 6∈ S. It is known that

generic initial ideals are strongly stable ([2, Proposition 1.7]).

Lemma 3.3. Let J ⊂ E be a graded ideal. Then one has

αp,k(E/J) =
∣

∣

{

eS ∈ G
(

Gin(J)
)

k+1
: max (S) = n− p+ 1

}
∣

∣

for p = 1, 2, . . . , n,

where |A| denotes the cardinality of a finite set A and G
(

Gin(J)
)

k+1
is the

set of minimal monomial generators of Gin(J) of degree k + 1.
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Proof. By a generic change of coordinates, we may assume that in(J) =

Gin(J) and v1, v2, . . . , vp+1 = en, en−1, . . . , en−p. Then, by (12), we have

A(p+1)(E/J) =
(

(en, . . . , en−p+1) + J :E en−p
)/(

(en, . . . , en−p) + J
)

,

where p = 0, 1, . . . , n− 1. Set

B(p+1)(E/J) =
(

(en, . . . , en−p+1) + in(J) :E en−p
)/(

(en, . . . , en−p) + in(J)
)

.

Since we consider the reverse lexicographic order induced by e1 > · · · > en,

it follows from [1, Proposition 5.1] that

in
(

(en, . . . , en−p+1) + J :E en−p
)

=
(

(en, . . . , en−p+1) + in(J) :E en−p
)

and

in
(

(en, . . . , en−p) + J
)

= (en, . . . , en−p) + in(J).

Since
(

(en, . . . , en−p+1) + J :E en−p
)

⊃ (en, . . . , en−p) + J and taking initial

ideals does not change Hilbert functions, it follows that B(p+1)(E/J) and

A(p+1)(E/J) have the same Hilbert function. Thus we have αp,k(E/J) =

dimK B
(p)(E/J)k for all k ≥ 0.

Then, to prove the claim, it is enough to show that the set of monomials

(13)
{

[eS ] ∈ E/
(

(en, . . . , en−p) + in(J)
)

:

max(S) < n− p, eS ∧ en−p ∈ G(in(J))k+1

}

forms a K-basis of B(p+1)(E/J)k.

If eS satisfies the condition of (13), then we have eS 6∈ (en, . . . , en−p) +

in(J). Thus the set (13) is indeed the set of K-linearly independent mono-

mials belonging to B(p+1)(E/J). Hence we need to prove that any nonzero

monomial eS ∈ B(p+1)(E/J) of degree k is contained in the set (13).

Let [eS ] ∈ B(p+1)(E/J) \ {0} be a monomial of degree k. Then we have

eS ∧ en−p ∈ (en, . . . , en−p+1) + in(J). Also, since [eS ] is not zero, we have

eS 6∈ (en, . . . , en−p). Thus we have max(S) < n − p and eS ∧ en−p ∈ in(J).

Since in(J) = Gin(J) is strongly stable and eS 6∈ in(J), any monomial

eT ∈ E of degree k which divides eS ∧ en−p does not belongs to in(J). Thus

we have eS ∧ en−p ∈ G(in(J)), and [eS ] is contained in the set (13).

https://doi.org/10.1017/S0027763000009557 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009557


RIGIDITY OF LINEAR STRANDS AND GENERIC INITIAL IDEALS 49

For a monomial eS ∈ E, let m(eS) = max(S). If J ⊂ E is a strongly

stable ideal, then it follows from [2, Corollary 3.3] that

βEii+k(E/J) =
n

∑

p=k+1

∑

eS∈G(J)k+1

m(eS)=p

(

p− 1 + i− 1

i− 1

)

for all i ≥ 1 and all k ≥ 0.

Since every generic initial ideal is strongly stable, the above equality to-

gether with Lemma 3.3 imply the next lemma.

Lemma 3.4. Let J be a graded ideal in E. Then one has

βEii+k
(

E/Gin(J)
)

=
n−k
∑

p=1

(

n− p+ i− 1

i− 1

)

αp,k(E/J)

for all i ≥ 1 and all k ≥ 0.

§4. Rigidity of resolutions over an exterior algebra

In this section, we will prove similar results studied in Section 2 for

generic initial ideals in an exterior algebra.

Let M ∈ M. Throughout this section, let v1, . . . , vn ∈ E1 be generic

liner forms and write Hi(p)k, hi,k(p) and αp,k for Hi(v1, . . . , vp;M)k, dimK
(

Hi(v1, . . . , vp;M)k
)

and αp,k(M) respectively. Set δi,p,k = dimK

(

Im(γi,p)k
)

for i > 0 and δ0,p,k = 0 for all p, k.

For an integer j ≥ 0, Lemma 3.2 yields the following exact sequence

· · ·
γi,p
−→ Hi(p)j

ηi,p
−→ Hi(p + 1)j

ψi,p
−→ Hi−1(p+ 1)j−1

γi−1,p
−→ Hi−1(p)j −→ · · ·

where p = 1, 2, . . . , n− 1. Then, in the same way as Section 1, we have

(14) h1,k(p + 1) = h1,k(p) + αp+1,k−1 − δ1,p,k

and, for i > 1, we have

(15) hi,i+k(p+ 1) = hi,i+k(p) + hi−1,i+k−1(p+ 1) − {δi,p,i+k + δi−1,p,i+k}.
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Proposition 4.1. With the same notation as above, one has

(16) hi,i+k(p) =

p
∑

j=1

(

p− j + i− 1

i− 1

)

αj,k

−
i

∑

s=1

p−1
∑

j=1

(

p− 1 − j + i− 1 − (s− 1)

i− 1 − (s− 1)

)

{

δs,j,s+k + δs−1,j,s+k

}

.

Proof. The proof is quite similar to the proof of Proposition 1.1. So

we will skip some detail calculations.

We use induction on p and i. First, we will show the case p = 1. Recall

that C•(v1;M) is the complex

· · · −→ Ci+1(v1;M)
∂

−→ Ci(v1;M)
∂

−→ Ci−1(v1;M) −→ · · ·

with the differential ∂(x
(i)
1 ) = v1x

(i−1)
1 . Thus we have

Hi(1)i+k ∼=
(

(M :M v1)/v1M
)

k
= A(1)(M)k,

and therefore we have hi,i+k(1) = α1,k for all i ≥ 1 and all k ≥ 0. This is

equal to the formula (16).

Second, we will consider the case i = 1. Since we already proved

h1,1+k(1) = α1,k, the equation (14) says that

h1,1+k(p) = {α1,k + · · · + αp,k} − {δ1,1,1+k + · · · + δ1,p−1,1+k}

which is equal to the formula (16).

Finally, the formula (16) for i > 1 and p > 1 follows from the equation

(15) together with the induction hypothesis in the same way as Proposi-

tion 1.1.

Next, we will show the following vanishing property of Im(γi,p), which

is an analogue of Lemma 2.2.

Lemma 4.2. Let i ≥ 1 be a positive integer. If δi,p,k = 0 for all 1 ≤
p ≤ n− 1, then one has δi+t,p,k+t = 0 for all 1 ≤ p ≤ n− 1 and all t ≥ 0.

Proof. It is enough to prove the claim for t = 1. Remark that δi,p,k = 0

if and only if the map ηi,p : Hi(p)k → Hi(p + 1)k is injective. Let ∂
(p)
ℓ :

Hi+1(p)k+1 → Hi(p)k be the map defined by

∂
(p)
ℓ

(

[g0 + g1xℓ + g2x
(2)
ℓ + · · · + gi+1x

(i+1)
ℓ ]

)

= [g1 + g2xℓ + · · · + gi+1x
(i)
ℓ ],
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where 1 ≤ ℓ ≤ p and each gt does not contain the variable x
(s)
ℓ for all s ≥ 1.

Thus ∂
(p)
p is equal to the map ψi+1,p−1 which appears in Lemma 3.2. Set

∂(p) =
⊕p

ℓ=1 ∂
(p)
ℓ . Then we have the following commutative diagram.

Hi+1(p)k+1
∂(p)

//

fp

��

⊕p
k=1Hi(p)k

hp

��

Hi+1(p + 1)k+1
∂(p+1)

//
⊕p+1

k=1Hi(p+ 1)k

where hp is the map defined by hp(z1, . . . , zp) =
(

ηi,p(z1), . . . , ηi,p(zp), 0
)

and

fp is the map defined by fp(z) = ηi+1,p(z).

Then ∂(1) is injective since ∂(1)
(

[gi+1x
(i+1)
1 ]

)

= [gi+1x
(i)
1 ]. Also, by

the assumption, the map ηi,p : Hi(p)k → Hi+1(p + 1)k is injective for all

1 ≤ p ≤ n− 1. Thus hp is injective for all 1 ≤ p ≤ n− 1. We will show that

if ∂(p) is injective then ∂(p+1) is also injective.

Set u ∈ Ker(∂(p+1)). Then we have ∂
(p+1)
p+1 (u) = ψi+1,p(u) = 0. Thus,

by the long exact sequence in Lemma 3.2, there exists w ∈ Hi+1(p) such

that we have ηi+1,p(w) = fp(w) = u. Since hp ◦∂
(p)(w) = ∂(p+1) ◦ fp(w) = 0

and hp ◦ ∂
(p) is injective by the induction hypothesis, it follows that w = 0

and ∂(p+1) is injective.

Now, we proved that ∂(p) is injective for all 1 ≤ p ≤ n−1. Thus hp◦∂
(p)

is injective for all 1 ≤ p ≤ n−1. This fact together with the commutative di-

agram imply that the map ηi+1,p : Hi+1(p)k+1 → Hi+1(p+1)k+1 is injective

for all 1 ≤ p ≤ n− 1. Hence we have δi+1,p,k+1 = dimK

(

Im(γi+1,p)k+1

)

= 0

for all 1 ≤ p ≤ n− 1.

Proposition 4.1 and Lemma 4.2 imply the next theorem.

Theorem 4.3. Let M ∈ M. Suppose that for some i > 1 and k ≥ 0,

we have βEii+k(M) =
∑n

j=1

(

n−j+i−1
i−1

)

αj,k(M). Then

βEqq+k(M) =
n

∑

j=1

(

n− j + i− 1

i− 1

)

αj,k(M) for all q ≥ 1.

Proof. Since all binomial coefficients in the formula (16) are nonzero,

the assumption says that δs,p,s+k = 0 and δs−1,p,s+k = 0 for all 1 ≤ s ≤ i and

all 1 ≤ p ≤ n−1. Then Lemma 4.2 says that δs,p,s+k = 0 and δs−1,p,s+k = 0

for all s ≥ 1 and all 1 ≤ p ≤ n − 1. Thus, the statement follow from the

formula (16).
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Next we consider the case M = E/J . Lemma 3.3 says that, for any

graded ideal J of E, one has αj,k(E/J) = 0 for j > n−k. Thus for any i ≥ 1

and k ≥ 0 we have
∑n

j=1

(

n−j+i−1
i−1

)

αj,k(E/J) =
∑n−k

j=1

(

n−j+i−1
i−1

)

αj,k(E/J).

Then the following corollaries follows from Lemma 3.4 and Theorem 4.3 in

the same way as in Section 2.

Corollary 4.4. Let J ⊂ E be a graded ideal. If βEii+k(E/J) =

βEii+k
(

E/Gin(J)
)

for some i > 1 and k ≥ 0, then

βEqq+k(E/J) = βEqq+k
(

E/Gin(J)
)

for all q ≥ 1.

Corollary 4.5. Let J ⊂ E be a graded ideal. Then, for a given

integer k, the graded Betti numbers βEii+k(E/J) = βEii+k
(

E/Gin(J)
)

for all

i ≥ 1 if and only if βE1,k+1(E/J) = βE1,k+1

(

E/Gin(J)
)

and βE1,k+2(E/J) =

βE1,k+2

(

E/Gin(J)
)

.

Remark 4.6. Notice that the above Corollary 4.4 and Corollary 2.3

in Section 2 are similar. But as we see Corollary 4.4 is relatively more

stronger. We give here an example to show that in the case of a polynomial

ring one cannot have the stronger result as in Corollary 4.4. Consider the

ideal I = (x1x
2
4, x

3
2, x

2
2x3) ⊂ S = C[x1, x2, x3, x4]. The minimal graded free

resolution of S/I and S/Gin(I) are given by:

0 −→ S(−7) −→ S(−4) ⊕ S2(−6) −→ S3(−3) −→ S −→ S/I −→ 0,

and

0 −→ S(−7) −→ S2(−4) ⊕ S(−5) ⊕ S2(−6) −→

S3(−3) ⊕ S(−4) ⊕ S(−5) −→ S −→ S/Gin I −→ 0.

From above resolutions, we see that βS2,2+4(S/I) = βS2,2+4

(

S/Gin(I)
)

= 2

and ofcourse then βS3,3+4(S/I) = βS3,3+4

(

S/Gin(I)
)

= 1. But the graded

Betti number βS1,1+4(S/I) = 0 6= 1 = βS1,1+4

(

S/Gin(I)
)

.

In the case of exterior algebra, the notions of regularity, linear resolu-

tions and componentwise linear ideals are defined in the same way as in the

case of polynomial ring. In [4, Theorem 2.1] it was proved that a graded

ideal J in E is componentwise linear if and only if J and Gin(J) have the

same graded Betti numbers. Theorem 4.4 and Corollary 4.5 provide the fol-

lowing new characterization of componentwise linear ideals in the exterior

algebra. (See also [19] for other characterizations of componentwise linear

ideals.)
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Theorem 4.7. A graded ideal J in the exterior algebra E is compo-

nentwise linear if and only if βEi (E/J) = βEi
(

E/Gin(J)
)

for some i ≥ 1.

Proof. Since βEii+k(E/J) ≤ βEii+k
(

E/Gin(J)
)

for all i ≥ 1 and

k ≥ 0, the equality βEi (E/J) = βEi
(

E/Gin(J)
)

implies βEii+k(E/J) =

βEii+k
(

E/Gin(J)
)

for all k ≥ 0. Then Theorem 4.4 and Corollary 4.5 say

that βEi (E/J) = βEi
(

E/Gin(J)
)

for some i ≥ 1 if and only if J and Gin(J)

have the same graded Betti numbers. Hence the claim follows.

§5. Linear components and graded Betti numbers

Throughout this section, we assume that R is either the polynomial

ring S over the field K with char(K) = 0 or the exterior algebra E over an

infinite field.

First, we will extend Corollaries 2.3 and 4.4 to lexsegment ideals and

generic initial ideals with respect to any term order. For a strongly stable

ideal I in R and for integers q = 1, . . . , n and k ≥ 0, let

m≤q(I, k) =
∣

∣

{

u ∈ I : u is a monomial with m(u) ≤ q and deg(u) = k
}
∣

∣.

Lemma 5.1. Let I ⊂ R be a graded ideal and I ′ ⊂ R a strongly sta-

ble ideal with the same Hilbert function as I. Assume that I ′ satisfies

m≤q(I
′, d) ≤ m≤q

(

Gin(I), d
)

for all q, d and βRii+k(R/I) = βRii+k(R/I
′)

for some i > 1 and k ≥ 0.

(i) If R = S, then one has βSqq+k(S/I) = βSqq+k(S/I
′) for all q ≥ i.

(ii) If R = E, then one has βEqq+k(E/I) = βEqq+k(E/I
′) for all q ≥ 1.

Proof. We will show the case R = S. (The proof for the case R = E

is same.) It follows from [7, Proposition 2.3] that, for any strongly stable

ideal J ⊂ S, we have

(17) βSii+j(S/J) = dimK Jj+1

(

n− 1

i

)

−
n−1
∑

q=i

m≤q(J, j + 1)

(

k − 1

i− 1

)

−
n

∑

q=i+1

m≤q(J, j)

(

k − 1

i

)

for all i and j. (A similar formula for graded Betti numbers over the exterior

algebra appears in [2, Theorem 4.4].) Then by (17) and the assumption,
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we have βSij(S/I) ≤ βSij
(

S/Gin(I)
)

≤ βSij(S/I
′) for all i, j. Thus, by Corol-

lary 2.3, what we must prove is βSqq+k
(

S/Gin(I)
)

= βSqq+k(S/I
′) for all

q ≥ i. However (17) and the assumption imply that m≤q

(

Gin(I), k + 1
)

=

m≤q(I
′, k+1) for all q ≥ i and m≤q

(

Gin(I), k
)

= m≤q(I
′, k) for all q ≥ i+1.

Hence for all q ≥ i, we have βSqq+k
(

S/Gin(I)
)

= βSqq+k(S/I
′) as desired.

Let I ⊂ R be a graded ideal. We write Lex(I) ⊂ R for the unique

lexsegment ideal of R with the same Hilbert function as I defined in [7] (or

[3] for the exterior case) and Ginσ(I) for the generic initial ideal of I with

respect to a term order σ. It is known that Lex(I) and Ginσ(I) satisfy the

assumption of Lemma 5.1 (see [9, §5] and [19, §5]). Thus we have

Theorem 5.2. Let I ⊂ R be a graded ideal, σ a term order and let

J be either Ginσ(I) or Lex(I). Suppose that βRii+k(R/I) = βRii+k(R/J) for

some i > 1.

(i) If R = S, then one has βSqq+k(S/I) = βSqq+k(S/J) for all q ≥ i.

(ii) If R = E, then one has βEqq+k(E/I) = βEqq+k(E/J) for all q ≥ 1.

Next, we consider when a graded ideal J satisfies βEii+d(E/J) =

βEii+d
(

E/Gin(J)
)

for all i ≥ 1, where we fix an integer d ≥ 0. The next

lemma follows from [5] and [1, Theorem 5.3].

Lemma 5.3. Let I ⊂ R be a graded ideal. Then, I has a linear resolu-

tion if and only if Gin(I) has a linear resolution.

We also require the following.

Lemma 5.4. (Crystallization Principle) Let I ⊂ R be a graded ideal. If

I is generated by elements of degree ≤ d and βR1d+1

(

R/Gin(I)
)

= 0, then

reg(I) ≤ d.

The Crystallization Principle was proved by Green [13, Corollary 2.28]

for generic initial ideals over a polynomial ring, however, this fact can also

be proved for generic initial ideals over an exterior algebra in the same way.

Proposition 5.5. Let I ⊂ R be a graded ideal. The following condi-

tions are equivalent.

(i) I〈k〉 has a linear resolution;
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(ii) βR1k+1(R/I) = βR1k+1

(

R/Gin(I)
)

, that is, the number of elements of

degree k + 1 belonging to the set of minimal generators of I is equal

to that of Gin(I).

Proof. Let m be the maximal ideal of R. Since βR1k+1(R/I) is the

numbers of generators in G(I) of degree k + 1, we have

βR1k+1(R/I) = dimK Ik+1 − dimK(mI〈k〉)k+1

= dimK Ik+1 − dimK(I〈k〉)k+1

and

βR1k+1(R/Gin(I)) = dimK(Gin(I)k+1) − dimK

(

m Gin(I〈k〉)
)

k+1
.

Then, from above equations we have βR1k+1(R/I) = βR1k+1

(

R/Gin(I)
)

if and

only if dimK(I〈k〉)k+1 = dimK

(

m Gin(I〈k〉)
)

k+1
.

Suppose I〈k〉 has a linear resolution. Then, by Lemma 5.3 Gin(I〈k〉) has

a linear resolution. Hence

dimK

(

m Gin(I〈k〉)
)

k+1
= dimK

(

Gin(I〈k〉)
)

k+1
= dimK(I〈k〉)k+1.

Hence we have βR1k+1(R/I) = βR1k+1

(

R/Gin(I)
)

as required. On the other

hand, if βR1k+1(R/I) = βR1k+1

(

R/Gin(I)
)

, then dimK

(

m Gin(I〈k〉)
)

k+1
=

dimK

(

Gin(I〈k〉)
)

k+1
. This implies βR1k+1

(

R/Gin(I〈k〉)
)

= 0. Then the Crys-

tallization Principle says that I〈k〉 has a linear resolution.

Now, Theorem 0.1 immediately follows from the above proposition to-

gether with Corollaries 2.5 and 4.5. Indeed, (i) ⇔ (iii) of Theorem 0.1 follows

from Corollaries 2.5 and 4.5. Also, (ii) ⇔ (iii) of Theorem 0.1 follows from

Proposition 5.5.

Example 5.6. Let I = (x2
1, x

2
2, x1x2x

2
3, x

5
3) ⊂ S = C[x1, x2, x3]. Then

we have

Gin(I) = (x2
1, x1x2, x

3
2, x

2
2x

2
3, x1x

4
3, x2x

5
3, x

6
3).

Then Proposition 5.5 says that I〈k〉 has a linear resolution for k = 3, 4, 7, 8,

9, . . . . In particular, for k = 4, 8, 9, 10, . . . , we have βSii+k(I) = βSii+k
(

Gin(I)
)

for all i ≥ 0.
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§6. The Cancellation Principle

Let K be a field of characteristic 0. In this section, we will study the

relation between our results in Section 1 and the Cancellation Principle for

generic initial ideals, which was considered in [13]. This observation would

help us to understand why we require the assumption i > 1 in Corollary 2.3

and why we need to consider I〈k〉 and I〈k+1〉 in Theorem 0.1.

First, we recall what is the Cancellation Principle.

Lemma 6.1. ([13, Corollary 1.21]) Let I be a graded ideal in S and σ a

term order. The minimal free resolution of I is obtained from that of inσ(I)

by cancelling adjacent terms, in other words, there exists integers τi,i+k with

1 ≤ i ≤ n− 1 and k ≥ 0 such that

βSii+k
(

inσ(I)
)

= βSii+k(I) + τi,i+k + τi+1,i+k for all i ≥ 0 and all k ≥ 0,

where we let τ0,k = 0 for all k ≥ 0.

We refer the reader to [13, Example 1.35] for further information about

the Cancellation Principle.

Let I be a graded ideal in S. Then Lemma 6.1 says that there exists

integers ci,i+k(I) with 1 ≤ i ≤ n− 1 and with k ≥ 0 such that

βSii+k
(

Gin(I)
)

= βSii+k(I) + ci,i+k(I) + ci+1,i+k(I)

for all i ≥ 0 and all k ≥ 0,

where we let c0,k(I) = 0 for all k ≥ 0. It can be easily verified that the

integers ci,i+k(I) are uniquely determined for a given ideal I. We will call

the integer ci,i+k(I) the (i, i + k)-th cancellation number of I.

Example 6.2. Let

I = (x3
1, x

2
1x2, x1x

2
2, x

3
2, x

2
1x3, x1x3x4) ⊂ S = C[x1, x2, x3, x4].

Then we have Gin(I) = (x3
1, x

2
1x2, x1x

2
2, x

3
2, x

2
1x3, x1x2x3, x1x

3
3). The mini-

mal free resolution of I is

0 −→ S(−5) ⊕ S(−6) −→ S6(−4) ⊕ S(−5) −→ S6(−3) −→ I −→ 0,
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and that of Gin(I) is

0 −→ S2(−5) ⊕ S(−6) −→ S7(−4) ⊕ S2(−5) −→ S6(−3) ⊕ S(−4)

−→ Gin(I) −→ 0.

Hence we have c1,4(I) = 1, c2,5(I) = 1 and all other cancellation numbers

of I are 0.

In Section 2, we already proved that (see Proposition 1.1 and (10))

βSii+k(I) = βSii+k
(

Gin(I)
)

−
∑

(a,b)∈Ai+1,n

[(

n− b− 1

i− a+ 1

)

δa,b,a+k−1 +

(

n− b− 1

i− a

)

δa,b,a+k

]

,

where δa,b,a+k = dimK

(

Imϕa,b
)

a+k
and where ϕa,b is the map which appears

in the long exact sequence (1). This formula enables us to write the cancel-

lation numbers in terms of the Koszul homology of generic linear forms.

Lemma 6.3. With the same notation as above, one has

ci,i+k(I) =
∑

(a,b)∈Ai+1,n

(

n− b− 1

i− a

)

dimK

(

Imϕa,b
)

a+k

for all i ≥ 0 and all k ≥ 0.

Proof. For all i ≥ 0 and all k ≥ 0, we set Ci,i+k =
∑

(a,b)∈Ai+1,n

(

n−b−1
i−a

)

dimK

(

Imϕa,b
)

a+k
and C ′

i,i+k =
∑

(a,b)∈Ai+1,n

(

n−b−1
i−a+1

)

dimK

(

Imϕa,b
)

a+k−1
.

Then we have

βSii+k(I) = βSii+k
(

Gin(I)
)

− Ci,i+k − C ′
i,i+k.

Notice that we only need to show that C ′
i,i+k = Ci+1,i+k. Recall that, in

the proof of Theorem 2.1, we already proved that

Ai+2,n \
{

(i+ 2, b) : b ≤ n− 1
}

= Ai+1,n \
{

(i− n+ b+ 1, b) : b ≤ n− 1
}

.

Now, since the binomial
(

n−b−1
i−a+1

)

= 0 for all (a, b) ∈
{

(i+ 2, b) : b ≤ n− 1
}
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and for all (a, b) ∈
{

(i− n+ b+ 1, b) : b ≤ n− 1
}

, we have

Ci+1,i+k =
∑

(a,b)∈Ai+2,n

(

n− b− 1

i− a+ 1

)

dimK

(

Imϕa,b
)

a+k−1

=
∑

(a,b)∈Ai+2,n\{(i+2,b):b≤n−1}

(

n− b− 1

i− a+ 1

)

dimK

(

Imϕa,b
)

a+k−1

=
∑

(a,b)∈Ai+1,n\{(i−n+b+1,b):b≤n−1}

(

n− b− 1

i− a+ 1

)

dimK

(

Imϕa,b
)

a+k−1

=
∑

(a,b)∈Ai+1,n

(

n− b− 1

i− a+ 1

)

dimK

(

Imϕa,b
)

a+k−1

= C ′
i,i+k.

This concludes the proof.

By using Lemma 6.3, we can prove an analogue of Corollaries 2.3

and 2.5.

Theorem 6.4. Let I be a graded ideal in S. If ci,i+k(I) = 0 for some

i ≥ 1 and k ≥ 0, then one has cq,q+k(I) = 0 for all q ≥ i.

Proof. It suffices to show the case q = i + 1. Remark that

dimK

(

Imϕa,b
)

a+k
= 0 if and only if

(

mHa(b)
)

a+k
= 0. In the proof

of Theorem 2.1, we proved that if dimK

(

Imϕa,b
)

a+k
= 0 for all (a, b) ∈

Ai+1,n \
{

(i + 1, b) : b ≤ n − 1
}

, then dimK

(

Imϕa,b
)

a+k
= 0 for all (a, b) ∈

Ai+2,n \
{

(i + 2, b) : b ≤ n − 1
}

. Then, since
(

n−b−1
i−a+1

)

= 0 for any (a, b) ∈
{

(i+ 2, b) : b ≤ n− 1
}

, Lemma 6.3 says that ci+1,i+1+k(I) = 0.

Corollary 6.5. Let I be a graded ideal in S. Then ci,i+k(I) = 0 for

all i ≥ 1 if and only if I〈k〉 has a linear resolution.

Proof. Since the graded Betti number βS0,k+1

(

Gin(I)
)

= βS0,k+1(I) +

c1,1+k(I), we have βS0,k+1

(

Gin(I)
)

= βS0,k+1(I) if and only if c1,1+k(I) = 0.

However, by Theorem 6.4, we have c1,1+k(I) = 0 if and only if ci,i+k(I) = 0

for all i ≥ 1. Also, by Proposition 5.5, we have βS0,k+1

(

Gin(I)
)

= βS0,k+1(I)

if and only if I〈k〉 has a linear resolution. Thus the assertion follows.
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Observe that Theorems 6.4 and Corollary 6.5 are stronger than Corol-

laries 2.3 and 2.5. Indeed, Corollary 2.3 immediately follows from Theo-

rem 6.4, since the graded Betti numbers βSii+k(I) = βSii+k
(

Gin(I)
)

if and

only if ci,i+k(I) = 0 and ci+1,i+k(I) = 0.

We also remark the next fact which follows from Lemma 6.3.

Corollary 6.6. Let I be a graded ideal in S. Assume that I〈k〉 has a

linear resolution.

(i) If βSq,q+k+2(I) = βSq,q+k+2

(

Gin(I)
)

, then

βSq+1,q+k+2(I) = βSq+1,q+k+2

(

Gin(I)
)

;

(ii) If βSq,q+k−1(I) = βSq,q+k−1

(

Gin(I)
)

, then

βSq−1,q+k−1(I) = βSq−1,q+k−1

(

Gin(I)
)

.

Proof. By Corollary 6.5, we have cℓ,ℓ+k(I) = 0 for all integers

ℓ ≥ 1. Then, we have the graded Betti numbers βSq+1,q+k+2

(

Gin(I)
)

=

βSq+1,q+k+2(I) + cq+1,q+k+2(I) and βSq−1,q+k−1

(

Gin(I)
)

= βSq−1,q+k−1(I) +

cq,q+k−1(I). On the other hand, if the graded Betti number βSq,q+k+2(I) =

βSq,q+k+2

(

Gin(I)
)

then we have cq+1,q+k+2(I) = 0. Also, if βSq,q+k−1(I) =

βSq,q+k−1

(

Gin(I)
)

then we have cq,q+k−1(I) = 0. Thus the assertion follows.

As for any graded ideal I, I〈1〉 always has a linear resolution, it fol-

lows that if βSq,q+3

(

Gin(I)
)

= βSq,q+3(I) then we have βSq+1,q+3

(

Gin(I)
)

=

βSq+1,q+3(I).

Since it is not difficult to find the Betti numbers of a strongly stable

ideal J , one may expect to find all possible Betti numbers of graded ideals

I such that Gin(I) = J by using Betti numbers of J and by considering all

possible cancellations. However, this problem is far reaching as pointed out

in [13, Example 1.35].

Thanks. All of the examples that we have presented in the paper are

computed by the computer algebra system CoCoA [8]. We also mention

that computations of generic initial ideals are done by a random choice of

matrices.
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