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Abstract. In this paper we analyse the non-wandering set of one-dimensional Greenberg–
Hastings cellular automaton models for excitable media with e > 1 excited and r > 1
refractory states and determine its (strictly positive) topological entropy. We show that
it results from a Devaney chaotic closed invariant subset of the non-wandering set that
consists of colliding and annihilating travelling waves, which is conjugate to a skew-
product dynamical system of coupled shift dynamics. Moreover, we determine the
remaining part of the non-wandering set explicitly as a Markov system with strictly less
topological entropy that also scales differently for large e, r .
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1. Introduction
Following Greenberg, Hastings and Hassard [6], we consider a basic cellular automaton

model of an excitable medium based on the alphabet

A := {0, 1, 2, . . . , e, e + 1, e + 2, . . . , e + r},

of cardinality #A := card(A)= a+ 1 for some positive integers e, r and a := e + r . Here,
E := {1, 2, . . . , e} represents the excited states, R := {e + 1, . . . , a} the set of refractory
states and 0 is the equilibrium rest state. The special case e = r = 1 is the most studied
case (see, in particular, [5]) even though the literature on this model is surprisingly scarce.
However, the understanding of excitable media is of major importance in many different
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scientific contexts such as theoretical cardiology, neuroscience, chemistry, transition to
turbulence, and surface catalysis, and it is a paradigm of nonlinear dynamics, self-
organization and pattern formation [9, 11]. Our main motivation stems from the problem
of modelling strong interaction of localized nonlinear waves in spatially extended partial
differential equations. On the one hand, only in simple cases can strong interaction be
treated analytically rigorously. Even the major continuous models of excitable media,
namely the FitzHugh–Nagumo-type systems, are not completely understood. On the
other hand, in numerical simulation intricate spatio-temporal dynamics has been observed
[13, 15, 17, 18], but there seems to be no rigorous analysis of its complexity.

Unlike the special case e = r = 1, which has been treated in [5], we will show in
this paper that in the case a> 2 the recurrent dynamics turns out to be in general much
richer. We will provide a complete description of the recurrent dynamics: in addition to
the pure pulse-annihilation dynamics, which is also present in the special case e = r = 1,
there exists an intricate Markovian structure caused by stationary dislocations and defects.
We complete our observation by showing that in terms of topological entropy the pulse-
annihilation dynamics has a strictly higher complexity than the Markovian structure. It
turns out that both parts of the dynamics scale differently with respect to an increase in the
cardinality of excited and refractory states. We note that the topological entropy of cellular
automata can have surprising properties and has been studied for several cases (see, for
example, [2, 8, 14]), though to our knowledge no general results can be applied here. For
e = r = 1 the entropy has been computed in [5] which serves as a guideline for the general
case.

The cellular automaton model we study is a paradigmatic model of excitable media that
captures many of the basic features. Let

X :=AZ
= {x = (. . . , x−1, x0, x1, . . .) : xk ∈A for all k ∈ Z}

denote the full A-shift [12]. Then T : X→ X denotes the cellular automaton given by

T (η(x))= E(η(x))+ D(η(x); η(x + 1), η(x − 1)),

where
E(k)= k + 1, 16 k 6 a− 1, and E(a)= E(0)= 0

and

D(u; v1, v2)=

{
1 if u = 0 and 16 vi 6 e for i = 1 or 2,

0 otherwise.

The function E can be thought of as the reaction term and D models the interaction
between neighbouring cells. If a cell is not at rest, then it evolves according to the reaction
term. If, in contrast, a cell is at rest then it becomes excited at level 1 if and only if at least
one of its two neighbours is excited. We equip A with the discrete topology and X with
the associated product topology which renders X compact and T continuous.

As the system is translation invariant both in space and time it allows for relative
equilibria, in particular, travelling waves. The main building block of these are pulses of
the form x∗ = (. . . , 0, 0, 1, 2, . . . , a, 0, 0, . . .) and, spatially reflected, of the form x∗∗

with (x∗∗)k := (x∗)−k , k ∈ Z. These pulses travel to the left and to the right, respectively.
More specifically, if we define the left shift σL : X→ X by (σL(x))k = xk+1, and the right
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shift, σR, analogously, then we have
T (x∗)= σL(x∗) and T (x∗∗)= σR(x∗∗).

The above observation remains valid also for left-moving (respectively, right-moving)
multi-pulses, that is, for elements x ∈ X given by arbitrary concatenations of the finite
word wL

:= (1, 2 . . . , a) (also referred to as local pulses) and zeros (respectively, wR
:=

(a, a− 1, . . . , 1) and zeros). Due to the specific form of the coupling D, there is no
dispersion, that is, the distances between local pulses remain fixed within each multi-
pulse. Hence the restriction of T to the set of multi-pulses is conjugated to a left
(respectively, right) shift-dynamical system. Further, this observation gives rise to the
subsystem of counter-propagating semi-infinite multi-pulses. This invariant subsystem
is determined by the key feature that pulses annihilate upon collision: in the simplest
case, consider an initial datum x := (. . . , 0, 0, wR, 02`, w

L, 0, 0, . . .), where 02` denotes
a block of zeros of length 2`. Then T acts on x by decrementing ` so that T `(x)=
(. . . , 0, 0, wR, wL, 0, 0, . . .) and T `+a(x)= (. . . , 0, . . .). We prove that the dynamics
of counter-propagating semi-infinite multi-pulses with annihilation events constitutes a
closed T -invariant Devaney chaotic subset Z ⊂ X referred to as the pulse-annihilation
dynamics (cf. Figure 4). Similarly to [5], we combinatorially determine the topological
entropy of T restricted to Z to be twice the entropy of the (sub)shift dynamics on infinite
pulse-trains. We show that on the corresponding subset Z∞, on which pulse annihilation
never ends, the dynamics of T is topologically conjugated to a skew-product dynamical
system consisting of coupled shift dynamics, thus giving us a heuristic understanding of
the concrete value of the topological entropy.

Since T is a continuous endomorphism of a compact metric space X , we know that the
non-wandering set � of T (cf. Definition 4.1) carries the topological entropy of T , that
is, h(X, T )= h(�, T |�). We shall show that the complexity of the dynamical system is
already determined by further restricting to the pulse-annihilation dynamics (Z , T |Z ).

The third author has shown in [19] that in the special case e = r = 1 the non-wandering
set �, the pure pulse-annihilation system Z and the eventual image Y :=

⋂
n∈N T n(X) all

coincide. In contrast, for a> 2 both � and Z are strict subsets of Y . In order to determine
the topological entropy of (X, T ) we also have to study the complement of Z in the
non-wandering set �, which, loosely speaking in terms of nonlinear wave phenomena,
consists of stationary dislocations and defects; see Figure 5. This also leads to a complete
understanding of the structure of the recurrent dynamics. For this we introduce transition
graphs which determine the dynamics on � \ Z ; cf. Figure 7. An explicit formula allows
us to compare the entropy of T restricted to Z with the entropy of T restricted to its
complement in �. These explicit formulae allow us to study the limits as e, r→∞. On
the one hand, asymptotically and after time-rescaling, the limiting entropy of the whole
system is twice the topological entropy of the full shift over an alphabet with a symbols.
On the other hand, the limit of the restriction to � \ Z depends strongly on the difference
of r and e.

This paper is organized as follows. In §2 we provide the basic setting and introduce
the necessary notation. In §3 we focus on the pure pulse-annihilation subsystem and its
skew-product representation. In the main section, §4, we give a detailed analysis of the
non-wandering set and determine its topological entropy, including its asymptotics.
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2. Preliminaries and notation
In this section we provide the topological set-up of our model and introduce some
notational conventions as used in symbolic dynamics and throughout this paper.

2.1. Topological setting. We recall that the topology on X is generated by the clopen
cylinder sets, for a0, . . . , an ∈A, n ∈ N and m ∈ Z,

[a0, . . . , an]m := {x ∈ X : xm = a0, . . . , xm+n = an}.

The topological space X is compact and metrizable, and a metric inducing the topology is,
for x, y ∈ X for example, given by

d(x, y)=

{
2−k if x 6= y and k is maximal so that x[−k,k] = y[−k,k],

0 if x = y,
(1)

with the convention that if x = y then k =∞ and 2−∞ = 0, while if x0 6= y0 then k =−1.
See [12] for further details. Moreover, T : X→ X is continuous with respect to the product
topology.

The concept of topological entropy was first introduced for continuous self-maps of
compact metric spaces by Adler, Konheim and McAndrews [1] and is a widely accepted
measure of the complexity of a dynamical system. Bowen and Dinaburg [3, 4] gave
a definition for uniformly continuous maps on (not necessarily compact) metric spaces
which coincides with the previous definition in the case of compactness. It was shown
that the latter definition works for any continuous self-map whenever the metric on the
space is totally bounded [7]. In this paper the topological entropy of T on X will be
denoted by h(X, T ). Both the eventual image Y and the non-wandering set � determine
the topological entropy, that is, h(X, T )= h(Y, T |Y )= h(�, T |�) [20].

In this context, it is crucial to notice that Y is the set of all configurations x ∈ X with
T−n(x) 6=∅ for all n ∈ N and that T : X→ X is not surjective: the preimage at a lattice
site j ∈ Z is T−1

j : X→A ∪ {{0, e + 1}} ∪∅ with

T−1
j (x) :=



x j − 1 if x j > 1,

0 if x j = 1 and x j−1 ∈ E + 1 or x j+1 ∈ E + 1,

a if x j = 0 and x j−1 ∈ E + 1 or x j+1 ∈ E + 1,

{0, a} if x j = 0 and x j±1 6∈ E + 1,

∅ if x j = 1 and x j±1 6∈ E + 1,

(2)

where E + 1= {a + 1 : a ∈ E}; note that A \ (E + 1)= {0, 1, e + 2, . . . , a} = (R +
1) ∪ {1} with addition mod a.

2.2. Symbolic dynamics. We refer to (a1, a2, . . . , ak) ∈Ak as a block (or word) over
A. The elements in X are also referred to as bi-infinite blocks. The length |w| of a block
w is the number of symbols it contains, that is, a k-block w is a block of length |w| = k.
In particular, we use the notation 0k := (0, . . . , 0) ∈Ak for the k-block consisting only of
zeros and 0∞, 0±∞ for the (semi-)infinite zero blocks. Note that the action of T naturally
carries over to the set of blocks.
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For i, j ∈ Z with i 6 j , we denote the block of coordinates in x from position i to
position j by x[i, j] = (xi , xi+1, . . . , x j ). If i > j , x[i, j] is the empty block, denoted by ∅.
For convenience, if i, j ∈ {±∞} and p ∈ Z, we stick to this notation by setting x[−∞,p] :=
(. . . , x p−1, x p) ∈AZ6p , x[p,∞] := (x p, x p+1, . . .) ∈AZ>p and x[−∞,∞] := x ∈ X .

If w is a block, we say that w occurs in x ∈ X (or that x ∈ X contains w) if there are
indices i and j such that w = x[i, j]. A subblock of a block w = (a1, a2, . . . , ak) is a block
of the form v = (ai , ai+1, . . . , a j ) where 16 i 6 j 6 k, and we also say that v occurs in
w or that w contains v and write w = (a1, a2, . . . , ai−1, v, a j+1, a j+2, . . . , ak).

For finite blocks w = (w1, . . . , wm), v = (v1, . . . , vn) and a configuration x ∈
[w, v]p−m+1 := [w1, . . . , wm, v1, . . . , vn]p−m+1, we use the notation

(w p
|v)= x[p−m+1,p+n]

in order to specify the position p ∈ Z at which the two blocks are linked. In a slight abuse
of this notation, if w ∈

⋃
q∈Z AZ6q is a left-infinite configuration and v is a finite block

of length n ∈ N, we write x = (w p
|v) for the left-infinite configuration x ∈AZ6p+n with

x[−∞,p] = w and x[p+1,p+n] = v (and analogously for w and v being a finite block and a
right-infinite configuration, respectively). If both w and v are semi-infinite, x = (w p

|v)

denotes the configuration x ∈ X with x[−∞,p] = w and x[p+1,∞] = v. In the same sense,
we simply write

(w, v)

if the position is irrelevant.
To express the temporal dynamics of T , we use the transposed block notation

wᵀ
= (w1, . . . , wn)

ᵀ
:=

wn
...

w1

 .
A configuration x ∈ X or a block ω = x[i, j] occurring in x is n-periodic if n > 1 is the
smallest integer such that T n(x)= x , or (T n(x))[i, j] = ω, respectively.

In the sequel, we need some notion of ‘distance’ between states a, b ∈A. To this end,
we make the convention to consider A as the group (Z/(a+ 1)Z,+), while inequalities
involving elements in A are meant with respect to Z.

Definition 2.1. For a, b ∈A, let A 3 s(a, b) := b − a be the step size from a to b.

For illustration, it is convenient to think of the corresponding alphabet

Â := {̂a = eiψ(a)
: a ∈A} = Ê ∪ R̂, ψ(a) := 2πa/(a+ 1), (3)

on {x ∈ C : |x | = 1}; cf. Figure 1.

3. The pulse-collision subsystem
We first consider the aforementioned invariant subsystem for which we can compute the
topological entropy explicitly and infer other features of the dynamics. This will already
give a lower estimate for the topological entropy and complexity of the whole system.
This subsystem depends on a only and thus is a lower complexity bound independent of
the order of e and r .
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FIGURE 1. Illustration of Â for the particular case r = e + 1.

FIGURE 2. Transition graph for the one-sided subshift defining the pulse system.

The set of multi-pulses and infinite wavetrains mentioned in the introduction forms
a subshift constructed by the transition graph plotted in Figure 2 (left): adjacent block
entries differ by one or are both zero, that is, s(xi , xi+1) ∈ {sgn(xi ), 1} or s(xi+1, xi ) ∈

{sgn(xi+1), 1}. The transition matrix A ∈ {(ai, j )
a+1
i, j=1 : ai, j ∈ {0, 1}} corresponding to this

graph is shown in Figure 2 (right).
Accordingly, we define sets of right- and left-moving infinite multi-pulse-type solutions,

SR := {x ∈AZ
: axi ,xi−1 = 1, i ∈ Z}, SL := {x ∈AZ

: axi ,xi+1 = 1, i ∈ Z},

their semi-infinite analogues,

S−R :=
⋃
p∈Z

S−R,p, S−R,p := {x ∈A
Z≤p : axi ,xi−1 = 1},

S+L :=
⋃
p∈Z

S+L,p, S+L,p := {x ∈A
Z≥p : axi ,xi+1 = 1},

and infinite configurations composed of semi-infinite counter-propagating parts,

SR
L :=

⋃
p∈Z
{(xR p

|xL) ∈ S−R,p × S+L,p+1} \ (SR ∪ SL).

In the definition of SR
L we have identified pairs in S−R,p × S+L,p+1 with configurations in X

by gluing these together at position p. Conversely, for given x ∈ SR
L this position is not

unique, but there are only finitely many options p ∈ Z such that (x[−∞,p], x[p+1,∞]) ∈ SR
L

since x /∈ SR ∪ SL. This motivates the following notion.
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FIGURE 3. Snapshot of T acting on SR as right shift σR.

Definition 3.1. For x ∈ SR
L ∪ SR ∪ SL we call p ∈ Z := Z ∪ {±∞} a separating position

if (x[−∞,p], x[p+1,∞]) ∈ SR
L or either x[−∞,p] ∈ SR with p =∞ or x[p,∞] ∈ SL with

p =−∞. We denote the set of separating positions of x by Isp(x), or simply by Isp if
x is clear from the context.

Note that #Isp = 1 for x ∈ SR ∪ SL and #Isp <∞ for x ∈ SR
L . T acts as the right shift

σR, (σR(x)) j+1 = x j , on SR and on SL as the left shift σL, so that SR, SL form invariant
subsets of X ; cf. Figure 3. Conversely, T acts as a shift on such configurations only. On
finite blocks of type SR or SL the map T acts on x[ j−+1, j+−1] as the corresponding shift,
and thus locally in space. On S−R and S+L the shifts are denoted by σR,−, σL,+, respectively.

We now define the key notion of this section.

Definition 3.2. The pulse-collision subsystem Z ⊂ SL ∪ SR ∪ SR
L is the set of x ∈ X

with either x ∈ SR ∪ SL or x ∈ SR
L such that, for p =max Isp(x), we have x p+1 = x p

or (x[−∞,p], x[p,∞]) ∈ SR
L . Let Z∞ ⊂ Z ∩ SR

L be the subset of configurations x ∈ SR
L for

which x[−∞,k] 6= 0−∞, x[k,∞] 6= 0+∞ for all k ∈ Z.

As will be discussed more in the sequel, Z consists of configurations which are either
purely left- or right-moving under the dynamics of T , or sequences of local pulses wL

(leftwards) and wR (rightwards) glued at one position, which annihilate each other in time.
That is, the dynamics on Z consists entirely of pulse dynamics and pulse annihilation;
cf. Figure 4. The set Z∞ ⊂ SR

L captures the configurations for which the collision and
annihilation never ends. More specifically, for x ∈ Z with separating position p ∈ Z, there
is (xR, xL) ∈ SR

L such that x = (xR p
|xL) and some x̃ ∈ T−n(x) ∈ SR

L for some minimal
n ∈ N0 such that x̃ is of pre-collision type, that is, x̃ = (x̃R, 0`, x̃L) with x̃R

= (. . . , 2, 1),
x̃L
= (1, 2, . . .) and separating interval Isp = [p−, p+] with x̃[p−,p+] = (1, 0`). Recall the

dynamics of iterating T for even `= 2`′ decrements `′ until `= 0, namely,

T j (x)= (xR, 02(`′− j), xL), x[−∞,p−] = xR, j = 0, 1, . . . , `′.

After this the annihilation takes place for T `
′
+ j (x), j = 0, 1, . . . , a, which is

characterized by a unique and constant separating position p and by x p = x p+1. These
values are incremented until both are a and the next time step leads to x p = x p+1 = 0 so
the pulses have annihilated each other.

For odd `, the annihilation starts via

T (. . . , 2, 1,0, 1, 2, . . .)= (. . . , 3, 2, 1, 2, 3, . . .),
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FIGURE 4. Space–time plot of Greenberg–Hastings cellular automaton simulation of x = (xR, xL) ∈ SR
L . Marked

is a sequence of four pulse annihilation events for e = 2 and r = 4; the rest state is shown in white, the grey levels
increase in order a, a− 1, . . . , e + 1, 1, . . . , e.

where dots denote some continuation in SR, SL, respectively. The central block (1, 0, 1)
in the preimage determines the separating positions, lying either at the leftmost 1 or at
the 0, so, in contrast to annihilation for even `, here we have two separating positions,
Isp = [p, p + 1], where p + 1 lies at the centre of the block (1, 0, 1) in the preimage.
Further iteration yields the annihilation analogous to the even case, except that there are
two separating positions. Notably, at collision (i.e. when there are no zeros at separating
positions) and during annihilation we have x[p,∞], x[p+1,∞] ∈ SL.

Remark 3.3. In summary, the pre-collision-type configuration

x = (xR, 0`, xL) with (xR, xL)= (. . . , 2, 1, 1, 2, . . .) ∈ SR
L

has Isp = [p−, p+], and x[p−,p+] = (1, 0`). For even ` > 0, the number of separating
positions is odd and the collision is characterized by a block (2, 1 p

|1, 2) with unique
separating position p (i.e. #Isp = 1). This remains the unique separating position for a time
steps. For odd `, the number of separating positions is even and pulse collision occurs at a
block (2, 1, 2) which yields two separating positions, #Isp = 2, also during annihilation.

In the cases xR
≡ 0 or xL

≡ 0 and more generally for x ∈ SR ∪ SL the separating
positions also form an interval Isp = [p−, p+], with p+ =∞ or p− =−∞, or
Isp = [±∞] for one sign.

LEMMA 3.4.
(i) T (SR)= SR, T (SL)= SL, and T |SR = σR|SR , T |SL = σL|SL are invertible.
(ii) T (Z)= Z ⊂ Y , T (Z∞)= Z∞,
(iii) Let x ∈ Z. If #Isp = 1 or x p+1 6= 0 with Isp = [p, p + 1], then x has a unique

preimage under T in Z. Otherwise there are #Isp possible preimages in Z.
(iv) Z is closed (hence compact) and Z∞ is not closed with closure Z∞ = Z.
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Proof. (i) As noted above, SR and SL are naturally forward invariant under T . For x ∈ SR,
there is a unique preimage in SR being the left or right shift, respectively. More precisely,
each 1 lies in a block (2, 1, 0) and each 0 lies in the centre of a block (0, 0, 0) or (1, 0, 0)
with unique preimage in SR being 0, or it lies in a block (0, 0, a) with unique preimage in
SR being a. Analogously. this holds for T |SL : SL→ SL.

(ii) The argument in (i) and the annihilation procedure discussed above show that the
image of Z lies in Z , and also that each point in Z has a preimage in Z , which means
Z ⊂ Y . Likewise for Z∞.

(iii) The case #Isp = 1 implies either x ∈ SR ∪ SL, in which case the preimage in Z is
unique as in item (i), or otherwise x = (xR, xL) ∈ SR

L , xL
∈ SL, as in Remark 3.3 for `= 0

with x p = x p+1 > 0 and the unique preimage in Z is (xR, 0, 0, xL) with zeros at positions
p and p + 1. The case of two separating positions corresponds to the annihilation from
odd ` and again x = (xR, xL) with x p = x p+1 + 1> 1 by assumption so that the unique
preimage in Z is (xR, x p − 1, xL) with x p − 1 at position p.

Finally, if Isp = [p−, p+] with p+ − p− > 2 then x[p−,p+] = (1, 0`) for `= p+ −
p− − 1 (cf. Remark 3.3) and x = (xR, 0`, xL) with x[−∞,p−] = xR. The possible
preimages are x0

= (xR, 0`+2, xL) and x j
= (xR, 0 j , a, 0`− j+1, xL) with x0

[−∞,p−−1] =

xR and j = 1, . . . , `, which makes #Isp = `+ 1.
(iv) By construction of elements in Z it contains limits of converging sequences. Since

such limits of a sequence in Z∞ may be, for example, the zero sequence, Z∞ is not closed.
However, any point in Z can be approximated in the cylinder topology with a sequence in
Z∞ by replacing the infinite tails with tails of elements from Z∞. �

3.1. Topological entropy on Z and its asymptotics. We determine the topological
entropy of (Z , T |Z ). The proof is an adaption and more complete exposition of the
technique in [5] for the case e = r = 1, which is special as Y = Z , which has been shown
by the third author in [19], that is, eventual image and pulse-collision subsystem coincide
in this case only. We remark that it is purely a combinatorial counting argument of space–
time windows and in this sense independent of the topology.

PROPOSITION 3.5. The topological entropy of T restricted to Z is given by h(Z , T |Z )= 2
ln ρa, where ρa denotes the largest eigenvalue of A, which is the positive real root of
λa+1

− λa − 1. In particular, h(X, T )> 2 ln ρa.

Proof. We determine a substitution for Z by (essentially) replacing each pulse travelling
right (left) with an ‘r ’ (‘`’) symbol at the a state and all other states by zeros; thus between
two rs and between two `s there are at least a zeros. Specifically, let Z ′ ⊂ {0, r, `}Z be the
set of configurations z for which there exists some p ∈ Z ∪ {±∞} such that:
(1) zi ∈ {0, r} for all i 6 p, and |i − j |> a for all i, j ∈ Z6p, i 6= j : zi = z j = r ;
(2) zi ∈ {0, `} for all i > p, and |i − j |> a for all i, j ∈ Z>p, i 6= j : zi = z j = `.
On Z ′ we define T ′ : Z ′→ Z ′ by shifting rs to the right, `s to the left and letting rs
and `s annihilate each other upon collision, that is, T ′((zR, r, `, zL))= (zR, zL) and
T ′((zR, r, 0, `, zL))= (zR, 0, zL) (here zR, zL do not have r , ` at the right- or leftmost
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position, respectively). We define a map U : Z→ Z ′ by

(U (x))i :=


r if xi = a and xi+1 ∈ {a− 1, a},

` if xi = a and xi−1 ∈ {a− 1, a},

0 otherwise,

(4)

which is surjective and satisfies U ◦ T |Z = T ′ ◦U . From a topological viewpoint, Z ′

equipped with the cylinder topology renders U continuous, that is, (Z ′, T ′) is a topological
factor of (Z , T |Z ) so that h(Z ′, T ′)6 h(Z , T |Z ).

However, U is not a bijection since (0, a, 0) (the last stage of an odd annihilation) is
mapped to (0, 0, 0), as is (0, 0, 0) itself; the issue is that a should be mapped to r and
` simultaneously for consistency with T . Hence, for z ∈ Z ′ with a block (r, 02a+k+3, `)

(note there can be at most one such block) we have #U−1(z)= k, and infinitely many
preimages occur for z with semi-infinite zero block. Nevertheless, U has a unique inverse
except in the case of a block (0, 0, 0).

We next follow [5] in order to compute h(Z ′, T ′)= 2 ln ρa and define

cq(z′[k1,k2]
) := #{z′(k)= q : k ∈ [k1, k2]} (5)

to count the number of symbols q in the block z′
[k1,k2]

and

γg,n(q) := #{z′
[0,n−1] : z

′
∈ Z ′, cq(z′[0,n−1])= g} (6)

to be the number of ways of putting down g symbols q on an integer interval of length n
with at least a zeros in between. Moreover, let

γn(q) :=
n∑

g=0

γg,n(q), (7)

which is the number of ways of putting any number of symbols q on an integer interval of
length n with at least a zeros in between. This is the number of allowed words of length n
of the pure left or right subshifts, hence (cf. [12])

lim sup
n→∞

γn(`)

n
= ln ρa, (8)

where ρa is the largest eigenvalue of the matrix A; cf. Figure 2. Finally, for a space–time
window of symbols, Wm,n := {0, r, l}[−m,m]×[0,n−1], let

0n,m := card{Wm,n : ∃z′ ∈ Z ′ :Wm,n = (z′, T ′z′, . . . , (T ′)n−1z′)[−m,m]}, (9)

where the block formation is meant rowwise. This is the number of space–time windows
Wm,n that can be extended in space to be in an orbit of T ′ on Z ′. The topological entropy
of h(Z ′, T ′) can then equivalently be defined as (cf. [5, 19])

h(Z ′, T ′) := sup
m

lim sup
n→∞

1
n

ln 0m,n . (10)

We first show that h(Z ′, T ′)> 2 ln ρa. To this end, we construct a sufficiently rich set of
initial data in Z ′ to generate different Wm,n . Let t > 0 be some integer and n = t (m + a).
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Consider the blocks z′
[−n,n] for initial data of the form z′ = (zR, 0, zL) ∈ Z ′, where zR

is a semi-infinite configuration of rs and 0s with at least a 0s between two rs, and similarly
for zL. Let h j , for ± j = 1, . . . , t , be blocks of length m and consider

zL
[1,n] = (h1, 0a, h2, 0a . . . , ht , 0a),

zR
[−n,−1] = (0a, h−t , 0a, h−t+1, . . . , h−2, 0a, h−1),

with cl(h j )= cr (h− j ) for each j = 1, . . . , t . By construction, different such initial data
differ at some point in Wm,n and hence the number of these initial configurations is a
lower bound for the total number of different space–time windows. Since for each j we
can independently assign symbols in h± j , for each j the number of these pairs with g non-
zero symbols is γg,m(r) · γg,m(`)= γg,m(r)2. Since each subblock can be independently
assigned symbols, the total number of such initial data is( m∑

g=0

γg,m(`)
2
)t

(11)

so that

h(Z ′, T ′)>
1

t (m + 2)
ln
( m∑

g=0

γg,m(`)
2
)t

=
1

m + 2

m∑
g=0

γg,m(`)
2. (12)

Finally, we use the fact that for any ε > 0 there exists an m such that
(1/(m + 2))

∑m
g=0 γg,m(`)

2 > ln ρa − ε and thus h(Z ′, T ′)> 2 ln ρa − ε for any ε > 0
so that h(Z ′, T ′)> 2 ln ρa.

In order to prove h(Z ′, T ′)6 2 ln ρa, note that 0m,n is at most the number of initial
data z′ ∈ Z ′ for which a change in z′ has a chance of resulting in a change in Wm,n . Since
the speed of propagation is one, it follows that only the blocks z′

[−m−n+1,m+n−1] can have
an impact on Wm,n . Moreover, any ` ∈ z′

[−m−n+1,−m] has no impact on Wm,n since it is
moving to the left. Likewise, any r in z′

[m,m+n−1] has no impact on Wm,n . Hence 0m,n is
less than or equal the number N of configurations z′ ∈ Z ′ with c`(z′[−m−n+1,−m])= 0=
cr (z′[m,m+n−1]). Due to these restrictions on z′

[−m−n+1,m] and z′
[−m,m+n−1], we have that

N 6 γ2m+n(r)γ2m+n(`)= γ2m+n(`)
2, that is,

h(Z ′, T ′)6 sup
m

lim sup
n→∞

1
n

ln γ2m+n(`)
2
= 2 ln ρa. (13)

Since U is not finite-to-one Bowen’s inequality does not directly imply h(T, Z)6 2
ln ρa as the fibre entropy is not a priori zero (cf. [3]). Since a is mapped to 0 under T ,
the previous counting misses precisely the options to replace 0 with a within a zero block
in Wn,m . However, the preimage in Z of (0, a, 0) under T is (a, a− 1, a), on which U
is bijective. Hence, the only options for Wm,n that have not been accounted for in 0m,n

concern the bottom row of Wm,n . Since these are at most 2m, this extra contribution
vanishes in the limit as ln(γ2m+n(`)

2
+ 2m)6 ln(γ2m+n(`)

2)+ ln(2m), that is, it carries
zero entropy. This concludes the proof. �

Remark 3.6. In this proof the largest growth rate of different space–time windows, and
thus the topological entropy, stems from counting enduring annihilations, that is, elements
in the set Z∞. In this sense the topological entropy is generated by Z∞.
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Let us study what happens with the topological entropy as a increases. Despite the
increasing number of states, the system’s complexity, measured by the entropy, actually
decreases since the rigid reaction dynamics of incremental steps takes more time.

LEMMA 3.7. The largest positive root ρt of the polynomial ft (λ) := λ
t+1
− λt
− 1 is

strictly greater than one and we have ρt − 1∼ (ln t)/t as t→∞.

Proof. By Descartes’ rule of signs, the polynomial ft has exactly one positive (simple)
root ρt . Moreover, ρt > 1 since ft (λ) < 0 for λ ∈ [0, 1]. Since (1+ (ln t)/t)t =
et ln(1+(ln t)/t)

∼ eln t
= t as t→∞, we have

ft

(
1+

ln(t)
t

)
=

(
1+

ln(t)
t

)t ln(t)
t
− 1∼ ln(t)− 1> 0, t→∞.

Consequently, ρt ∈ (1, 1+ (ln(t))/t) for large values of t and limt→∞ ρt = 1.
Now, since ft (1+ ξt )= 0 if and only if (1+ ξt )

tξt = et ln(1+ξt )ξt = 1 and et ln(1+ξt ) ∼

etξt , we get tξt etξt ∼ t as t→∞. Applying the Lambert function W and using its large-
argument approximation, we find that tξt ∼W (t)∼ ln(t) as t→∞, which concludes the
proof. �

However, viewing a as a discretization in space, the rescaling of time that preserves
velocities is linear in a; the associated entropy then increases proportionally with log a.
More precisely we have the following corollary.

COROLLARY 3.8. The topological entropy of T on Z for a time-rescaling α : N→ N
satisfies h(Z , T α(a))= 2 ln(ρα(a)a )∼ 2α(a)(ln a)/a as a→∞. In particular, for α : n 7→
n, the topological entropy asymptotically doubles the topological entropy of the full a-shift.

Proof. This is a direct consequence of Lemma 3.7. �

Remark 3.9. The restriction on � \ Z scales differently as the cardinality of excited and
refractory states increases; cf. Remark 4.28.

3.2. Waiting times, coherent structures and chaos. Since the dynamics on Z∞ consists
entirely of pulses moving towards each other until collision, it is natural to encode this in
terms of waiting and annihilation times. Each x ∈ Z∞ away from pulse annihilation and
collision has the form

(. . . , 0k j , w
R, 0k j+1 , . . . , w

R, 0k0 , w
L, 0k1 , w

L, . . .)

for a sequence of waiting times (k j ) j∈Z ⊂ N between the end of an annihilation and the
next collision. Recall that a collision occurs precisely when Isp(x)= [p−, p+], 16 p+ −
p− 6 2 and x p− = x p+ = 1; the end of the collision is reached one iteration step after
x p− = x p+ = a.

Clearly, k0 + 1= #Isp(x), and if k0 > 1 then the position of the initial collision, c0 ∈ Z,
under the dynamics of T is at the lattice site of the (left-)centre c0 = b(p− + p+)/2c of
Isp(x)= [p−, p+], and this happens at time t0 = bk0/2c. Otherwise, the initial condition
lies in an annihilation event in which case c0 is as in the previous case, but t0 = 1− x p−
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should be considered negative. More generally, the lattice site and time of the nth collision,
n > 1, can be computed from k j for j = 0, . . . , n recursively as

cn = cn−1 +

⌊
kn − k−n

2

⌋
, tn = tn−1 + a+

⌊
kn + k−n

2

⌋
,

which can readily be written as explicit summations. In particular, the collision sites remain
constant as long as k j = k− j for an interval j ∈ [ j−, j+] ⊂ N.

We point out an analogy to so-called coherent structures found in nonlinear waves in
partial differential equations, in particular the complex Ginzburg–Landau equation. In all
cases we require collision times to be equidistant, that is, tn+1 − tn = a+ τ, τ ∈ N, which
means kn+1 + k−n−1 = τ . We may view x as a sink defect, if the collision sites move with
constant speed s, that is,

cn+1 − cn

tn+1 − tn
= s ⇔ cn+1 = cn + s(a+ τ).

However, since there is no dispersion of waves and thus no variation of group velocity,
using this terminology is a slight abuse of language.

By manipulating cn, tn , we can create a richer set of orbits whose complexity can be
measured by the topological entropy discussed later. One may interpret this as the entropy
of the admissible sequences of pairs (cn, tn)n∈N ⊂ Z× N, though we do not pursue this
viewpoint here.

Rather we use the waiting time coding to investigate the sensitivity of the dynamics.
Note that also any x ∈ Z has ‘waiting times’, that is, lengths of zero intervals between local
pulses forming a sequence (k j ) j∈J , where either J = Z or J = [−∞, j+] with j+ > 0 and
k j+ =∞, or j = [ j−,∞], j− 6 0, k j− =∞.

Moreover, one can use this coding to argue that the basin of attraction of 0∞ is dense in
X .

COROLLARY 3.10. 0−(0∞) :=
⋃

n∈N T−n(0∞) is dense in X. In particular, M ∩
0−(0∞) is dense in M ∈ {Y, Z} with respect to the subspace topology. Analogously, any
x ∈ Z has a dense basin of attraction.

Proof. It suffices to prove [a0, . . . , an]m ∩ 0−(0∞) 6=∅ for all cylinder sets. To this end,
let x[m,m+n] = (a0, . . . , an). Choose x[−∞,m−1] ∈ S−R and x[m+n+1,+∞] ∈ S+L with finitely
many waiting times (k j ) j∈J and corresponding pairs (cn, tn), respectively, such that there
exist counter-propagating local pulses which annihilate pairwise and xi = 0, |i |> j , for
sufficiently large j ∈ Z. Then, T tN (x)= 0∞ for some maximal collision time tN ∈ N. �

PROPOSITION 3.11. The subsystem (T |Z , Z) is chaotic in the sense of Devaney: (i)
periodic orbits are dense, (ii) it is topologically transitive, and (iii) sensitive with respect
to initial conditions. In particular, Z is contained in the non-wandering set Z ⊂�.

Proof. (i) It is well known that the statements holds for both invariant subsystems SR

and SL. Without loss of generality, let x ∈ Z \ (SR ∪ SL) with x = (xR, 0`, xL), ` ∈ N,
and Isp = [p−, p+], x[p−,p+] = (1, 0`) for suitable (xR, xL) ∈ SR

L . Consider an arbitrary
neighbourhood U of x . Due to the structure of Z and the cylinder topology there are
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k± ∈ ±N such that the following holds: Isp ⊂ [k− + 1, k+ − 1], xk± = 0 and for any
(x̃R, x̃L) ∈ SR

L we have x̃ = (x̃R, x[k−,k+], x̃L) ∈U (with positioning so that x̃k+ = xk+ ).
In order to make x̃ time periodic we distinguish even and odd `. In case of even ` let

pm := (p+ − p− − 1)/2 and choose x̃R as the leftward periodic extension of x[k−,pm ] and
x̃L the rightward periodic extension of x[pm+1,k+]. The odd case is analogous.

(ii) Let U, V ⊂ Z be any open non-empty f := T |Z -invariant sets. For an index set
K , k ∈ K and fixed a0k , . . . , amk ∈A, nk ∈ Z, let C Z

k := [a0k , . . . , amk ]nk ∩ Z . With this
notation, U and V are of the form U =

⋃
i∈I C Z

i and V =
⋃

j∈J C Z
j . Since U, V are f -

invariant, f n(C Z
i )⊆U and f n(C Z

j )⊆ V for all i ∈ I, j ∈ J and n ∈ N. By Corollary 3.10,
there exists some N ∈ N such that 0∞ ∈ f N (C Z

i ) ∩ f N (C Z
j )⊆U ∩ V . By [10, Corollary

1.4.3], f is topologically transitive.
(iii) This already follows by (i) and (ii) (cf. [21]) but can also be shown explicitly.

To this end, let x ∈ Z \ (SR ∪ SL) with waiting times (k j ) j∈J . Let U be an arbitrary
neighbourhood of x and j0 such that any change of finite k j with | j |> j0 gives a point
in U . In particular, unless already k j0 =∞ or k− j0 =∞ we choose x ′ with waiting times
k′j = k j for | j |6 j0 (and j ∈ J ) such that this holds so that T m(x ′) ∈ SR ∪ SL for which
sensitivity is straightforward. �

3.3. Stationary dislocations. We introduce another class of configurations x ∈ X
related to Z , which possesses at least one dislocation at some j ∈ Z, that is,
s(x j , x j+1) > 1, so that x /∈ Z . Consider first x ∈ X with x = (xR p

|xL), xR
∈ S−R , xL

∈

S+L , with one dislocation at p that is then naturally a generalized separating position. An
example is the orbit

x = (. . . , 3, 2 p
|0, 1, 2, . . .),
...

T a−1(x)= (. . . , a, 0 p
|a− 1, a, 0, . . .),

T a(x)= (. . . , a′ p
|a, 0, b, . . .),

T a+1(x)= (. . . , a′′ p
|0, b′, . . .).

For a = 0, we have a′ = 0 and possibly a′′ = 1, and, since b′ ∈ {0, 1}, the next pulse
collision would be as in Z . Hence, maintaining a difference from Z requires maintaining
a dislocation at the separating position p. The simplest option is a = b = 1 so that a′ = 1
and a′′ = 2 so that the same dislocation as in x occurs. Let xR∗± and xL∗± be the highest-
frequency pulse sequence with one 0 between local pulses left-infinite (‘−’) or right-
infinite (‘+’). Choosing xR

= xR∗− , xL
= xL∗+ creates a periodic orbit with period a+ 1

and constant separating position. This construction generalizes to any choice of x p, x p+1,
and we refer to such a periodic solution, as well as the following ones, as periodic
stationary dislocation.

In fact, we may place dislocations next to each other as long as one neighbour at each 0
lies in E . This yields an interval of dislocations of arbitrary width between xR∗− and xL∗+ ,
and the width and position of the dislocations for such a solution remain constant and the
solutions has period a+ 1; cf. Figure 5(d). Moreover, for s(x j , x j+1) ∈ E , excitations are
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FIGURE 5. Snapshots of configurations with (spatially) stationary dislocations (again e = 2 and r = 4 with the
same grey levels as for Figure 4). Parts (a)–(c) show configurations in �var with unique separating position
(dislocation). Part (d) illustrates an element of �const with an interval of separating positions (dislocations); cf.
§4.3.1 and 4.3.2 for details. Note that, in time, the dislocations are either periodic as suggested in (a) and (c) or

aperiodic as in (b).

transported from right to left so that we may take an interval of such dislocation between
xR∗− and xR∗+ , thus creating a kind of so-called ‘transmission defect’; cf. §3.2.

Notably, if we select to the left xR or to the right xL with a longer waiting times, then
the dynamics will map into Z after finitely many steps, except for the following type of
stationary dislocations.

For a> 4, r > e + 1, there is a class of stationary dislocations with arbitrarily long
period, even aperiodic, having a unique separating position. Consider the (xL, xR) ∈ SR

L
with pulse distances periodically alternating between one and two (cf. Figure 5(a)):

xL
= (0, 0, 1, 2, . . . , a, 0, 1, 2, . . . , a, 0, 0, 1, 2, . . . , a, 0, 1 . . .),

xR
= (. . . , 1, 0, a, a− 1, . . . , 1, 0, 0, a, a− 1, . . . , 1, 0, a, . . . , e + 1),

and set x := (xR p
|xL). Following the dynamics of this initial state gives at j = e + 2r that

T j (x)[p,p+1] = (a, r − 2) and T j+1(x)[p,p+1] = (0, r − 1). The assumption r − 1 ∈ R
gives T j+2(x)[p,p+1] = (0, r), which is consistent with the zero block in xR and thus we
obtain a periodic solution of minimal period 2a+ 3. For more generality, see §4.

In this fashion we can map the full 0–1 shift onto such solutions, thus creating another
chaotic invariant subset. However, as shown in §4, this has smaller entropy than Z and the
non-wandering set is formed by Z together with the configurations of this subsection.

3.4. Skew-product structure. In Proposition 3.5 we showed that h(Z , T |Z )= 2 ln ρa,
and that it is combinatorially generated by Z∞; cf. Remark 3.6. This value is exactly the
sum of the topological entropies of the left and right subshifts (cf. Lemma 3.4(i)) for which
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h(SR, T |SR)= h(SL, T |SL)= ln ρa. Thus, the well-known product formula h(σL × σR)=

h(σL)+ h(σR) suggests a product structure of the dynamics of T on Z . Indeed, if, for some
x ∈ Z , two pulses approach each other under T , the dynamics is exactly a combination of
left and right shifts. However, once two pulses have annihilated, the position of the next
annihilation can be arbitrarily far away, which causes problems in finding a conjugacy of
T on Z to some form of product system.

Here we present a topological conjugacy to a skew-product system for the restriction to
Z∞. Note that restricting on the dense subset Z∞ ⊂ Z makes no difference in terms of the
Bowen–Dinaburg entropy.

PROPOSITION 3.12. h(Z , T |Z )= h(Z∞, T |Z∞)

Proof. Since Z is a totally bounded metric space and Z∞ ⊂ Z is dense by Lemma 3.4(iv),
this is a direct consequence of [7, Corollary 4]. �

Consider the left and right subshifts placed at fixed positions,

6+L := {x = (xi )i∈Z>0 ∈A
Z>0 : axi ,xi−1 = 1},

6−R := {x = (xi )i∈Z≤0 ∈A
Z≤0 : axi ,xi+1 = 1},

on which the standard right shift σR,− and left shift σL,+ are defined with pseudo-inverses
for m < 0 given by

σm
R,−((. . . , x−1, x0)) := (. . . , x−1, x0, 0m), σm

L,+((x0, x1, . . .)) := (0m, x0, x1, . . .).

Each configuration x ∈ Z∞ can be written as x = (xR p
| xL) with xR

∈6−R \ {0
−
∞} and

xL
∈6+L \ {0

+
∞}. Here p ∈ Z is some separating position and hence a priori not unique.

Since separating positions form an interval Isp(x)= [p−, p+], with p± = p±(x), one
option for a unique choice is the middle separating position

pmid(x) :=
⌊

p+(x)+ p−(x)
2

⌋
.

For x = (xR p
| xL) ∈ Z∞ we define the adaption of p to the middle separating position

of T x by a : Z∞→ Z, a(x) := pmid(T x)− p.
While the adaption in Z∞ is always bounded there is no a priori bound after pulse

collisions. As long as pmid is constant during iteration of T , that is, a(T i x)= 0 for an
interval in N, the dynamics of T is a product of left and right shifts centred at position
p = pmid(x),

T (x)= (σR,−(x) p
| σL,+(x)).

This occurs in an invariant subset of � (cf. proof of Theorem 4.6), but otherwise the
description requires some technicalities.

We look for a set Z and a map F : Z→ Z , which is in essence a product of left and
right shifts and admits an appropriate continuous conjugation H : Z∞→ Z , that is, H ◦
T |Z∞ = F ◦ H obeys a commutative diagram

Z∞
T

−−−−→ Z∞

H

y yH

Z F
−−−−→ Z
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To this end, let6+− :=6
−

R ×6
+

L \6∗, where (xR, xL) ∈6∗ if x = (xR 0
| xL) does not lie

in Z∞, which is precisely the case if x ∈ SR
L has a dislocation at the block x[0,1] = (xR

0 , xL
1 )

or if x ∈ SR
L with x[−∞,k] = 0−∞ or x[k′,∞] = 0+∞ for some k, k′ ∈ Z.

On the product space Z :=6+− × Z define the skew-product map

F : Z→ Z, F(z)= ( f (x), gx (p)), z = (x, p) ∈ Z,

with base function f : 6+−→6+− ,

f (x)= (σ−α+1
R,− (xR), σα+1

L,+ (x
L)), x = (xR, xL) ∈6+− ,

where α = a(xR 0
| xL), σ−α+1

R,− = σ−αR,− ◦ σR,− and σα+1
L,+ = σ

α
L,+ ◦ σL,+.

For given x = (xR, xL) ∈6+− , the fibre function gx : Z→ Z is defined as

gx (p)= p + a(xR 0
| xL).

Finally, the bijection H : Z∞→ Z and its inverse H−1 are given by

H(x)= (xR, xL, pmid(x)), H−1((xR, xL, p))= (xR p
| xL).

The natural topology on 6+− in this context is given by the product of the cylinder
topologies on 6−R and 6+L , respectively; taking the product topology with the discrete
topology on Z then gives the topology of Z =6+− × Z. Each block x[m,n], m, n ∈ Z, of
Z∞ either is a block in SL ∪ SR or contains a separating position in [m, n]. In the latter
case, it follows that the image under H of a cylinder defined by this block gives a product of
non-empty cylinders in6−R and6+L . If a cylinder is defined by a block in SL or SR its image
under H is a union of cylinders defined by extended blocks with a separating position, and
therefore open in Z . Hence, H is continuous, and similarly we infer continuity of H−1.

Though instructive, the conjugacy does not directly help to determine or sharply
estimate the topological entropy. Indeed, since Z∞ is not compact, it would be desirable
to identify a conjugacy for Z = Z∞. However, it is unclear how to track positions that
separate left and right shifts in a consistent manner; for example, 0∞, the bi-infinite
zero sequence, does not have a canonical separating position. For elements in SR ∪ SL

one may choose ±∞ as a separating position, but the preimages of elements with a
semi-infinite zero sequence are not unique. Attempts to consider quotient spaces cause
additional difficulties in determining the topological entropy in the skew-product system.

4. The non-wandering set and the topological entropy
We now turn our attention to T on the entire space X . The aim of this section is to
determine the non-wandering set which turns out to consist of the collision subsystem
Z and the stationary dislocations. This allows us to determine the topological entropy by
inferring the upper estimate h(X, T )6 h(Z , T |Z ).

We first recall the definition of the non-wandering set [10, 20].

Definition 4.1. Let θ : 3→3 be continuous on a topological space 3. The set

�(θ) := {x ∈3 : for every neighbourhood U of x ∃N > 1 : θN U ∩U 6=∅}

is called the non-wandering set of θ . For compact 3, one can equivalently assume that
there exist arbitrarily large N ∈ N for which the intersection is non-zero [10]. When θ and
3 are clear from the context, we write � instead of �(θ).
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Remark 4.2. For the product topology on X =AZ, a configuration x ∈ X is non-
wandering, that is, x ∈�(T ), if and only if for any cylinder set [xn, . . . , xn′ ]n there exist
arbitrary large N ∈ N such that T N ([xn, . . . , xn′ ]n) ∩ [xn, . . . , xn′ ]n 6=∅.

For our set-up, �(T ) is contained in the eventual image Y :=
⋂

n∈N T n(X). Since we
make use of �(T )⊂ Y , we prove this inclusion here for completeness.

LEMMA 4.3. Let 3 be a compact Hausdorff space with a continuous transformation
θ : 3→3. Then the non-wandering set is contained in the eventual image, that is,
�(θ)⊆

⋂
n∈N θ

n(3).

Proof. Let n ∈ N and x ∈U := θn(3)C . U is an open neighbourhood of x with

θm(U )⊆ θn(3)=U C , for all m > n.

By [20, Theorem 5.7], x is a wandering point. Hence �(θ)⊆
⋂

n∈N θ
n(3). �

Remark 4.4. In the degenerate case e = r = 1, the non-wandering set and the eventual
image coincide, Z =�= Y [19].

4.1. Strategy for characterizing �. The aim of this section is to characterize the non-
wandering set. In this regard, Remark 4.2 provides some guidance: an element x ∈ X is
contained in � exactly if any finite block x[n,n′] of x can be restored infinitely often at the
same positions under iterations of T . In particular, this requires the local dynamics of the
blocks to be globally synchronized.

Our strategy to reveal this matching of local and global dynamics is as follows.
(I) Local analysis. We start with a local analysis of non-wandering points at each

position p ∈ Z and show that, for x ∈�, the trajectory {(T m(x))[p,p+1] : m ∈ N0}

of a 2-block x[p,p+1] can be completely described in terms of the transitions of the
associated step size

sm
p (x) := s((T m(x))p, (T m(x))p+1)= (T m(x))p+1 − (T m(x))p mod (a+ 1),

which decompose into equivalence classes (‘communicating classes’); cf. Figures 7
and 8.

(II) Global analysis. We use the local step-size analysis to infer the spatial structure
of x ∈� by showing that the local dynamics of any 2-block x[p,p+1] essentially
determines the global spatial structure.

By this approach, we characterize � and the topological entropy h(�, T |�). More
specifically, we will identify sets�const and�var that correspond to (periodic or aperiodic)
configurations with stationary dislocations of certain constant or varying step sizes. These
form the complement of Z within � and the main results of this section are as follows.

THEOREM 4.5. The non-wandering set, �, of the one-dimensional (1D) Greenberg–
Hastings cellular automaton associated with T : X→ X can be decomposed into the
invariant sets

�= Z ]�const ]�var,

where �var =∅ if and only if r 6 e + 1.

https://doi.org/10.1017/etds.2020.18 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.18


Dynamics and topological entropy of 1D GHCA 1415

FIGURE 6. One-dimensional spiral: e = 2, r = 1 (0 shown in white; 1, 2, 3 in lightening grey levels).

The proof will be given in §4.3.

THEOREM 4.6. The topological entropy, h(X, T ), of the 1D Greenberg–Hastings
cellular automaton with e, r ∈ N is given by h(X, T )= h(Z , T |Z )= 2 ln ρa, where
ρa is the positive root of xa+1

− xa − 1. Moreover, h(�const, T |�const)= 0 and
0< h(�var, T |�var) < 2 ln ρa for r > e + 1.

The proof will be given in §4.4.

Remark 4.7. These results imply that the recurrent structure for r 6 e + 1 is somewhat
simpler since �var =∅. However, somewhat surprisingly in this situation, new wave
phenomena occur in the eventual image: an interesting case are sources emitting pulses
to the left and right antisynchronously; cf. Figure 6. These qualitatively share features
of 1D spirals observed experimentally in a quasi-1D chemical system and, in continuous
models, were related to localized periodic Turing states [16]. Here the asymptotic state is
(a+ 1)-periodic and lies in �const.

In what follows, the step sizes sm
p (·), as elements of the communicating classes, should

not be confused with the states of the cellular automata since both are contained in A but
obey different transition rules.

4.2. Local analysis. In this section we analyse the dynamics of 2-blocks xm
[p,p+1] =

(xm
p , xm

p+1) under iterations of T . Here, xm
k is shorthand for (T m(x))k with k ∈ Z and

m ∈ N0. Each such 2-block has an associated step size sm
p (x)= s(xm

p , xm
p+1) ∈A. For

space–time windows [p, p′] × [m, m′] of x and s we write, for example, x [m,m
′
]

[p,p′] .
The following lemma is fundamental to our approach.

LEMMA 4.8. The step size of a 2-block x[p,p+1] for some p ∈ Z changes under T
at time m, that is, sm

p (x) 6= sm+1
p (x), if and only if either (xm

p , xm+1
p )ᵀ = (0, 0)ᵀ or

(xm
p+1, xm+1

p+1 )
ᵀ
= (0, 0)ᵀ.
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Specifically, the step size changes if and only if either

(i) x [m,m+1]
[p,p+1] =

(
0 c + 1
0 c

)
, c ∈ R ∪ {0}, or

(ii) x [m,m+1]
[p,p+1] =

(
c + 1 0

c 0

)
, c ∈ R ∪ {0}.

Moreover, the step-size change is either
(i) an increment and s[m,m+1]

p (x)= (c, c + 1)ᵀ, or
(ii) a decrement and s[m,m+1]

p (x)= (−c,−c − 1)ᵀ with −c ∈ {0, 1, . . . , r} ⇔ c ∈ R ∪
{0}.

Proof. Let us first suppose that (xm
p , xm+1

p )ᵀ = (0, 0)ᵀ and (xm
p+1, xm+1

p+1 )
ᵀ
6= (0, 0)ᵀ.

Three further cases have to be distinguished.
(1) xm

p+1 6= 0 and xm+1
p+1 6= 0. Then, xm

p+1 = c ∈A \ {0, a} and, consequently, xm+1
p+1 =

c + 1 ∈A \ {0, 1}.
(2) xm

p+1 = 0 and xm+1
p+1 6= 0. In this case, we have xm+1

p+1 = 1.

(3) xm
p+1 6= 0 and xm+1

p+1 = 0. This implies xm
p+1 = a.

In all three cases, the step size increases and, by symmetry, the step size decreases if
(xm

p , xm+1
p )ᵀ 6= (0, 0)ᵀ and (xm

p+1, xm+1
p+1 )

ᵀ
= (0, 0)ᵀ.

For the other direction, suppose

sm
p (x)= xm

p+1 − xm
p 6= xm+1

p+1 − xm+1
p = sm+1

p (x). (14)

For a proof by contradiction, we consider the following two cases.
(4) (xm

p , xm+1
p )ᵀ = (0, 0)ᵀ = (xm

p+1, xm+1
p+1 )

ᵀ.

(5) (xm
p , xm+1

p )ᵀ 6= (0, 0)ᵀ 6= (xm
p+1, xm+1

p+1 )
ᵀ.

In the first case, condition (14) does obviously not hold. In the second case, a case-by-case
analysis of all possibilities shows that

((xm
p , xm+1

p )ᵀ, (xm
p+1, xm+1

p+1 )
ᵀ) ∈ {(0, 1)ᵀ, (a, 0)ᵀ, (a, a + 1)ᵀ : a ∈A \ {0, a}}2.

For each such element, it is easy to verify that the step size remains constant, that is,
sm

p (x)= sm+1
p (x), contradicting condition (14). �

Lemma 4.8 precisely describes how step sizes can and cannot change. In order to make
the implications transparent, we introduce the concept of communicating classes. For an
arbitrary configuration x ∈ X , position p ∈ Z and time m ∈ N0, we first define the graph
of all possible step-size transitions sm

p (x) 7→ sm+1
p (x).

Definition 4.9. We denote by Gs the directed graph of local step-size transitions: the set
of nodes of Gs is A, and Gs possesses an edge from s1 to s2 for s1, s2 ∈A if there exist a
configuration x ∈ X , a position p ∈ Z and a time m ∈ N such that s[m,m+1]

p = (s1, s2)
ᵀ. In

this case we say there exists a transition from s1 to s2 in Gs for which we use the notation
s1→ s2; if s1 = s2, a transition is called trivial, otherwise non-trivial.

Definition 4.10. Let s1, s2 ∈A and τ be the transition s1→ s2. i(τ )= s1 and t (τ )= s2 are
called the initial and terminal state of τ , respectively. A path P on Gs is a finite sequence
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P = (τi )16i6m of transitions τi such that t (τi )= i(τi+1) for 16 i 6 m − 1. We say that
s1 communicates with s2, if there exist paths from s1 to s2 and vice versa, that is, paths
P = (τi )16i6m and P ′ = (τ ′i )16i6m′ with i(τ1)= s1, t (τm)= s2 and i(τ ′1)= s2, t (τ ′m′)=
s1.

As defined in Definition 4.9, communication is an equivalence relation, hence A is
partitioned into equivalence classes, referred to as communicating classes, with respect
to the step-size transitions. The graph Gs contains irreducible subgraphs associated with
these classes; cf. [12]. In particular, the induced graph GC whose directed edges stem from
connections between the communicating classes has no loops. Before deriving the edge
set and the structure of these equivalence classes, we remark on the implications for the
non-wandering set.

Remark 4.11. Since any 2-block x[p,p+1] of a non-wandering point x ∈� must reappear
under the dynamics of T , so does the step size s1 = sp(x). Hence, if the step size changes
to a value s2, which does not communicate with s1, then x 6∈�. In other words, if x ∈�
and p ∈ Z, the step sizes sm

p (x) for any m ∈ N lie in the same communicating class.

LEMMA 4.12. Let s1, s2 ∈A. Then Gs has an edge from s1 to s2 if and only if either
(i) s2 = s1 + 1 and s1 ∈ {0, e + 1, . . . , a} = R ∪ {0}, or
(ii) s2 = s1 − 1 and s1 ∈ {0, 1, . . . , r}, or
(iii) s2 = s1.
Specifically, s1→ s2 if and only if either s1 = s2 or |s2 − s1| = 1 and s1, s2 ∈ C0 ∪ Cπ ,
where C0 := {a, 0, 1} and Cπ := {e + 1, . . . , r} if r > e + 1, while Cπ =∅ otherwise. In
particular, the communicating classes of Gs are

C0, Cπ , Ca := {a}, a ∈A \ (C0 ∪ Cπ ).

Proof. Cases (i) and (ii) are a direct consequence of Lemma 4.8. Case (iii) follows
from sm

p (x)= sm+1
p (x) if xm

p = xm
p+1 > 0 and the possibility that xm+1

p = xm+1
p+1 = 0 if

xm
p = xm

p+1 = 0.
Case (iii) means trivial transitions always occur, and it follows that a non-trivial

transition is present precisely when cases (i) and (ii) occur jointly (i.e., the intervals
overlap; cf. Figure 9). This in turn implies the communicating classes; cf. Figure 7. �

Remark 4.13. It follows that for x ∈� with sp(x) ∈ Ca , a /∈ {0, π}, the step size at p
remains constant. Step-size transitions are possible within C0 and, if r > e + 1, within Cπ
only. Note that for e + 1= r we have Cπ = {e + 1} so that the step size cannot change in
this class.

Remark 4.14. If sp,m(x) ∈ Cπ then for c in Lemma 4.8 we have c ∈ Ca \ {r} since
otherwise sm+1

p (x)= r + 1 ∈ Cr+1; analogously, c 6= e + 1. Therefore, whenever xm
p = 0

(respectively, xm
p+1 = 0), the neighbour state xm

p+1 (respectively, xm
p ) is a refractory

state, which implies that the dynamics on the space–time windows [−∞, p] × N and
[p + 1,+∞] × N are independent of each other.

Let us describe the non-trivial transitions in more detail; for generality, we consider
configurations x ∈AK,K ∈ {Z, Z6q , Z>q : q ∈ Z}.
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FIGURE 7. Macrostructure of the communicating classes. Transition graph GC of the step-size dynamics of 2-
blocks for r > e (left) with vertex set consisting of the communicating classes which contain either one single
state or multiple states as illustrated on the unit circle (right). In particular, Cπ = {e + 1} for r = e + 1 and

#Cπ > 1 for r > e + 1.

FIGURE 8. Transition graph GC for r 6 e. In this case Cπ =∅.

FIGURE 9. The inner dotted arcs represent step sizes s1 ∈ R ∪ {0} (left) and their increments s2 = s1 + 1 (right).
The outer dashed arcs show the step sizes s1 ∈ {0, 1, . . . , r} (left) and their decrements s2 = s1 − 1 (right). The

maximal overlapping is given by C0 ∪ Cπ (shadowed region).

Definition 4.15. Let x ∈AK, p, p + 1 ∈K and j ∈ {0, π}. If j = π , assume r > e + 1.
For some interval I ⊆ N, the transition times at p in C j constitute the sequence (mi )i∈I
of positive integers with mi < mi+1 such that

smi
p (x) ∈ C j and smi

p (x) 6= smi−1
p (x) for all i ∈ I.

The transition time mi is called consecutive if mi+1 = mi + 1 or mi−1 = mi + 1 and
separated otherwise. Times m > 0 such that sm

p (x)= s0
p(x) are called step returns.
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Remark 4.16. Let rk be a step return time of some x ∈AK. Since step-size changes are by
±1, for the transition times mi 6 r we have

#{mi 6 rk : smi
p (x)= smi−1

p (x)+ 1} = #{mi 6 rk : smi
p (x)= smi−1

p (x)− 1}. (15)

Due to Remarks 4.11 and 4.2, for x ∈� the sequence of step returns is infinite.

COROLLARY 4.17. For x ∈AK, each separated transition time mi lies in a triple

(xmi−1
p , xmi

p , xmi+1
p )ᵀ ∈ {(0, 0, 0)ᵀ, (0, 0, 1)ᵀ} or

(xmi−1
p+1 , xmi

p+1, xmi+1
p+1 )

ᵀ
∈ {(0, 0, 0)ᵀ, (0, 0, 1)ᵀ},

depending on whether mi is associated with a step size in C0 or, if r > e + 1, in Cπ .
If r > e + 1, there can be at most max{2, #Cπ − 1} consecutive transition times mi <

mi+1 < . . . < m j . More specifically, if the step sizes associated to the mk, i 6 k 6 j , are
in Cπ , the mk lie in a block

(xmi−1
p , . . . , x

m j+1
p )ᵀ = (0`, 1)ᵀ or (xmi−1

p+1 , . . . , x
m j+1
p+1 )ᵀ = (0`, 1)ᵀ, (16)

with a zero block 0` of length 36 `6 #Cπ while there can be exactly two consecutive
transition times m1, m2 with associated step sizes in C0 which lie in a quadruple of type
(16) or a triple

(xm1−1
p , xm1

p , xm2
p )ᵀ = (0, 0, 1)ᵀ or (xm1−1

p+1 , xm1
p+1, xm2

p+1)
ᵀ
= (0, 0, 1)ᵀ.

Proof. This is a direct consequence of Lemma 4.12, noting that consecutive transitions
increase the length of the zero block in time so that c is incremented further, but these
increments cannot be in E before a transition. �

We end this subsection with examples for the macro- and microstructure of the
communicating classes when r > e + 1 and e > r . In the next section we use this local
framework of the step-size dynamics to determine the global spatial structure of non-
wandering points.

Example 4.18. Let e = 3 and r = 7. The communicating classes are given by C0 =

{0, 1, 10}, C2 = {2}, C3 = {3}, Cπ = {4, 5, 6, 7}, C8 = {8} and C9 = {9}; see Figure 10.

Example 4.19. Let e = 7 and r = 4. The communicating classes are given by C0 =

{0, 1, 11}, C2 = {2}, C3 = {3}, C4 = {4}, C5 = {5}, C6 = {6}, C7 = {7}, C8 = {8}, C9 =

{9} and C10 = {10}; see Figure 11.

4.3. Global analysis: characterizing the non-wandering set. The local analysis showed
that, for x ∈� and any p ∈ Z, the step sizes sm

p (x) for all m ∈ N lie in the same
communicating class. We also know that all k-blocks x[p,p+k], k ∈ N, need to reappear
infinitely often under T . In this section we infer from this the spatial structure of x ∈�.
Specifically, we show that the class C0 can be identified with the pulse-collision subsystem
Z of §3, and Cπ with the non-trivial dislocations of §3.3. To this end, we need the
following easy but helpful observation. In what follows, x− j denotes an arbitrary element
of T− j ({x}), if it exists, and x− j

n its nth coordinate.
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FIGURE 10. Example 4.18. The transition graph Gs with vertex set A (top) reveals the microstructure of the
communicating classes of the step-size transitions, while the graph GC (bottom) illustrates the macrostructure
by using the set of communicating classes as the vertex set (cf. Figure 7). For visibility the dashed circles

representing C0 and Cπ are not filled in grey in the top diagram.

LEMMA 4.20. For a − 1 ∈ E ∪ R and k ∈ Z, consider x ∈ X with either x[k,k+1] = (0, a)
or x[k−1,k] = (a, 0). If x1−a

k = c exists, then:
(i) c = a− a + 2 if a − 1 ∈ E;
(ii) c ∈ [a− a + 2, r + 1] if a − 1 ∈ R.

Proof. In case (i) we have x−1
k = a by the local preimage formula (2), p. 1400, and at least

the a further local preimages at k are unique and simply decremental: x− j
k = a+ 1− j ,

for 16 j 6 a+ 1. Hence, at j = a − 1 we have x− j
k = a− a + 2.

In case (ii) the preimage x−1
k might be a or 0. In the first case the same applies as in (i),

which gives the lower bound c = a− a + 2. The same applies to further preimages x− j
k ,

j > 1 until j = a − e − 1, for which x− j
k±1 = e + 1 (with sign depending on the 2-block).

Then the choice x− j
k±1 = 0 enforces x− j−1

k±1 = e + r so that c = a− a + 2= r + 1, which
is the upper bound (note a > e + 1 in the present case). �

Now we are in a position to state a characterization of the non-wandering points with
step sizes in C0 only.

LEMMA 4.21. x ∈� and sp(x) ∈ C0 for all p ∈ Z if and only if x ∈ Z.

Proof. By definition of Z , it follows that sp(x) ∈ C0 for all p ∈ Z, and we showed Z ⊂�
in Proposition 3.11.
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FIGURE 11. Example 4.19. Gs (top) and GC (bottom), cf. Figure 8.

For the converse suppose x ∈� and sp(x) ∈ C0 for all p ∈ Z. We will show by
contraposition that x ∈ Z . From the definition of Z we immediately infer that the only
blocks which might a priori occur in x but not in elements of Z are

F3,1 :={(a, a, a) : a ∈ E ∪ R},

F3,2 :={(a, a, b), (b, a, a) : a ∈ E ∪ R, b ∈A, s(a, b)= a},

F3,3 :={(a, b, c) ∈A3
: s(b, a)= a and s(b, c)= a},

Fn :=(a, 0n−2, a), n > 4.

The idea is to show that blocks contained in these sets (or, more generally, in supersets
which are defined below) cannot occur in configurations in the eventual image Y , and
hence not in elements of the non-wandering set �; cf. Lemma 4.3. This strategy is
motivated by our approach to characterize Y as a shift space XF with respect to forbidden
blocks F which will be the subject of a forthcoming paper.

First, as a direct consequence of the local preimage formula (2), 3-blocks in

F3,0 := (A \ (E + 1))× {1} × (A \ (E + 1))

do not occur in elements of Y .
Regarding F3,1, suppose x ∈ X with x[k,k+2] = (a, a, a) for some k ∈ Z and a ∈ E ∪ R.

Then x−(a−1)
[k,k+2] = (1, 1, 1), which lies in F3,0 so that (a, a, a) cannot occur in the eventual

image.
Turning to F3,2, we show that blocks contained in

F3,2 := {(a, a, b), (b, a, a) : a ∈ E ∪ R, b ∈A, s(a, b) > e},
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which is a superset of F3,2, do not occur in elements of Y ; by symmetry, it suffices to
consider the case (a, a, b).

Suppose x ∈ X with x[k,k+2] = (a, a, b) for some k ∈ Z with a ∈ E ∪ R, b ∈A and
s(a, b) > e. We claim that for any choice of preimages we have x1−a

[k,k+2] = (1, 1, c) with
c ∈A \ (E + 1), which lies in F3,0 so that (a, a, b) cannot occur in the eventual image.

For a < b, the first a − 1 preimages are unique so x1−a
[k,k+2] = (1, 1, b − a + 1). Since

b − a + 1> e + 1 by assumption, this block lies in F3,0.
If a > b the first b − 1 preimages are unique, and assuming that the bth preimage exists

(i.e., the right neighbour lies in E + 1) gives x−b
[k,k+2] = (a − b, a − b, 0) with a − b ∈

[2, r ] (which requires r > 1). Lemma 4.20 implies x1−a
[k,k+2] = (1, 1, c) with c ∈ [a− (a −

b), r + 2] so that c ∈ [e + 2, r + 1]. But then x1−a
[k,k+2] lies in F3,0.

Considering F3,3, we show that blocks contained in

F3,3 := {(a, b, c) ∈A3
: s(b, a) > e and s(b, c) > e},

which is a superset of F3,3, do not occur in Y . For (a, b, c) ∈ F3,3 and x ∈ X with
x[k,k+2] = (a, b, c) for some k ∈ Z we distinguish the following three cases.

(1) For b ∈ R, the assumption s(b, a), s(b, c) > e means a, c ∈ [b − r, b − 1], and,
without loss of generality, by spatial reflection, a 6 c. Then x−a

[k,k+2] = (0, b − a,
c − a) with b − a ∈ [1, r ] and e < s(b, c)= c − b < c − a so c − a /∈ E + 1. Hence, if
b − a = 1 then (0, b − a, c − a) ∈ F3,0 so we may assume b − a ∈ [2, r ]. It then follows
from Lemma 4.20 that x1−b

[k,k+2] = (a
′, 1, c′) with a′, c′ > a+ 2− (b − a)> e + 2 and

thus (a′, 1, c′) ∈ F3,0.
(2) For b ∈ E , the assumption s(b, a), s(b, c) > e means a, c ∈ [0, b − 1] ∪ [b +

e + 1, a]. The subcase a, c ∈ [0, b − 1] (take a 6 c without loss of generality) yields
x−a
[k,k+2] = (0, b − a, c − a) with b − a ∈ [1, e] ⊂ [1, r ] so that case 1 can be applied. If

c ∈ [b + e + 1, a] we obtain c′ = c − b + 1> e + 1 with c′ derived in case 1, and thus
also (a′, 1, c′) ∈ F3,0. The last subcase a, c ∈ [b + e + 1, a] means x1−b

[k,k+2] = (a − b +
1, 1, c − b + 1) ∈ F3,0 as in the previous subcase.

(3) Finally, assume b = 0, which implies a, c ∈ R (again take a 6 c without loss
of generality). By Lemma 4.20 we have x1−a

[k,k+2] = (1, b′, c − a + 1)=: (a′, b′, c′) with
b′ ∈ [a+ 2− a, r + 1] ⊂ [2, r + 1] and c′ ∈ [1, a+ 1− a] ⊂ [1, r + 1]. Thus a′ − b′ ∈
[−r, a − a+ 1] ⊂ [−r,−1] and c′ − b′ ∈ [−r,−1], and therefore s(b′, a′)= a+ 1+
a′ − b′ > e, and s(b′, c′)= a+ 1+ c′ − b′ > e.

Turning to Fn , we show by induction that n-blocks, n > 4, of the form (a, 0, . . . , 0, b)
in the superset Fn := R × {0}n−2

× R ⊃ Fn do not occur in elements of Y . We consider
n = 4 first and let x ∈ X with x[k,k+3] = (a, 0, 0, b) ∈ F4 for some k ∈ Z, where without
loss of generality a 6 b. In case a = b = e + 1 we have x−1

[k,k+2] = (e, a, a) ∈ F3,2. If
a = e + 1 and r > e + 1 we have either x−1

[k+1,k+3] = (a, 0, b − 1) ∈ F3,3 or x−1
[k+1,k+3] =

(a, a, b − 1) ∈ F3,2. If b > a > e + 1, we have

x−1
[k,k+3] ∈ {(a − 1, c, d, b − 1) : c, d ∈ {0, a}}

and for c 6= 0 or d 6= 0 we get 3-blocks in F3,2 ∪ F3,3, while for c = d = 0 the 4-block
is contained in F4. Hence, as long as x− j

k > e + 1, the preimage contains a block with
non-empty preimage. Eventually, x− j

k = e + 1 and we are in one of the previous cases.
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Suppose now the statement holds for some n > 4 and let x ∈ X with x[k,k+n] =

(a, 0n−1, b) ∈ Fn+1 for some k ∈ Z and, without loss of generality, a 6 b. If a = e + 1,
we have either x−1

[k,k+2] ∈ F3,2, x−1
[k+1,k+3] ∈ F3,3 or x−1

[k+1,k+n] ∈ Fn . If a > e + 1 we have
either one of the previous blocks or x−1

[k,k+n] = (a − 1, 0n−1, b − 1) ∈ Fn+1, and this

repeats until we end up with x− j
k = a − j = e + 1, which is the previous case. �

We next identify trivial, (a+ 1)-periodic dislocations. First, however, we make a
simple, but fundamental observation.

LEMMA 4.22. If x ∈� and sm
p (x) is not constant in m ∈ N for some p, then s0

q (x) ∈

C0 ∪ Cπ for all q ∈ Z and there is m ∈ N such that x [m,m+1]
p = (0, 0)ᵀ.

Proof. The block xm
[p−1,p+1] repeats infinitely many times for m ∈ N and any step-size

change of sm
p (x) is compensated by a reverse step; cf. Remark 4.16. Hence, there is m ∈ N

such that x [m,m+1]
p = (0, 0)ᵀ. If xm

p−1 = 0 we immediately have s0
p−1(x) ∈ C0. If xm

p−1 6= 0

then sm
p−1(x) 6= sm+1

p−1 and by Lemma 4.12 it follows that s0
p−1 ∈ C0 ∪ Cπ , which are the

only classes that allow for changing step sizes. The claim follows by induction on the
position. �

The following lemma shows how ‘excitations’ can be backtracked in time by a spatial
shift in one direction, if all step sizes lie in C0 ∪ Cπ . By the previous lemma this is the
case if the step size is not constant.

LEMMA 4.23. Suppose x ∈�, s0
p(x) ∈ C0 ∪ Cπ for all p ∈ Z. If there are m ∈ N, p ∈

Z such that xm
p,p+1 = (1, 0) then for all 16 j 6 m we have that xm− j

p− j,p+1− j = (1, 0).

Likewise, xm
p,p+1 = (0, 1) implies xm′− j

p+ j,p+1+ j = (0, 1) for all 16 j 6 m.

Proof. By assumption, x [m−1,m]
[p−1,p+1] =

(a3 1 0
a2 0 a1

)
for some a1, a2, a3 ∈A. By the step-size

assumption we have a1 ∈ C0 ∪ Cπ , and since xm
p+1 = 0 we have a1 ∈ {0, a}. Therefore,

xm
p = 1 requires a2 ∈ E , and by the step-size assumption a2 = 1. Hence, xm−1

p−1,p = (1, 0).
The claim follows by induction, and by spatial reflection symmetry. �

LEMMA 4.24. If x ∈� and there exist p ∈ Z, m ∈ N0 such that xk
p = 0 for all k > m, then

xm
∈ Z.

Proof. Without loss of generality, suppose xk
p = 0 for all k > 0. By induction over the

position,

for all q ∈ Z there exists n = n(q)> 0 : xk
q = 0 for all k > n, (17)

since otherwise xk
p 6= 0 for some k > 0.

Suppose x is not the zero configuration (which would already mean x ∈ Z ), and let
qmin ∈ Z be the nearest position to p such that xq 6= 0. Without loss of generality, assume
qmin > p. Then xk

q = 0 for all p 6 q < qmin and all k > 0. Consequently, sqmin−1(x)=
a ∈ R and there exists a change in the step size, s1

qmin−1(x)= a + 1 6= a. Hence, sq(x) ∈
C0 ∪ Cπ for all q ∈ Z by Lemma 4.22. However, by (17), for each step size sq(x) ∈ Cπ
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there exists some k > n(q) such that sk
q (x) /∈ Cπ , contradicting x ∈�. Hence, sq(x) ∈ C0

for all q ∈ Z which, together with x ∈�, implies x ∈ Z by Lemma 4.21. �

4.3.1. Constant step size.

LEMMA 4.25. Let x ∈� \ Z with sm
p (x)= s0

p(x) for all m ∈ N and some fixed p ∈ Z.
Then

x ∈�const := {x ∈� \ Z | for all q ∈ Z, m ∈ N : sm
q (x)= s0

q (x)}.

Moreover, x ∈ X \ Z is (a+ 1)-periodic if and only if x ∈�const.

Proof. Suppose x ∈� and there exists some p ∈ Z such that sm
p (x)= c ∈ C j for all

m ∈ N0. By Lemma 4.8, for any m ∈ N, there are two possibilities for constant step-size
dynamics:
(1) x [m,m+1]

p 6= (0, 0)ᵀ 6= x [m,m+1]
p+1 for all m ∈ N0l,

(2) x [m,m+1]
p = (0, 0)ᵀ = x [m,m+1]

p+1 for some m ∈ N0.
Case (1). By Lemma 4.22 applied to p ± 1, any step-size change of sp−1(x) or sp+1(x)

implies a block x [m,m+1]
p = (0, 0)ᵀ for some m ∈ N, which does not occur in case (1).

By induction over q ∈ Z, sm
q (x) is constant for all m ∈ N0 and q ∈ Z. In particular, x is

(a+ 1)-periodic due to the absence of any zero block 0`, `> 2, in (xm
q )m∈N for any q.

Case (2). We show that in this case x ∈ Z so that x /∈�const. The constant step size is
c = 0 ∈ C0, that is, xk

p = xk
p+1 for all k ∈ N0.

First, assume that xm′
[p,p+1] = (0, 0) for all m′ > m. By Lemma 4.24, xm

∈ Z , that
is, sp(xm) ∈ C0 for all p ∈ Z and hence sp(x) ∈ C0 for all p ∈ Z, meaning that x ∈ Z
(Lemma 4.21).

Next, suppose there exists some (smallest) m′ > m + 1 with xm′
[p,p+1] = (1, 1), that is,

there is a window

x [m
′
−2,m′]

[p−1,p+1] =

a3 1 1
a2 0 0
a1 0 0

 (18)

for some a1, a2, a3 ∈A. Since xm′
p = 1 and xm′−1

p+1 = 0, we must have a2 ∈ E and

xm′−1
p = 0 implies a2 = 1 so that a1 = 0. This means sm′−2

p−1 (x) 6= sm′−1
p−1 (x) so that, by

Lemma 4.22, we know sk
q (x) ∈ C0 ∪ Cπ for all q ∈ Z and k ∈ N0. By Lemma 4.23, the

block xm′−1
[p−1,p] = (1, 0) shifts back spatially to x[p−m′−2,p−m′−1] = (1, 0). Hence, we can

conclude that sq(x) ∈ C0 for all p − m′ − 26 q 6 p.
To conclude that sq(x) ∈ C0 for all q ∈ Z, note that we can assume that there are

infinitely many k > m′ with x [k,k+1]
[p−1,p+1] =

(a1 1 1
a2 0 0

)
; otherwise we are again in the situation

of Lemma 4.24. Since we have already concluded that all step sizes lie in C0 ∪ Cπ , we
must have a2 = 1 and a1 = 2 and, again by Lemma 4.22, the block xk

[p−1,p] = (1, 0) shifts
back to x[p−1−k,p−k] = (1, 0). Since this holds for infinitely many increasing k > m′, one
deduces sq(x) ∈ C0 for all q 6 p. By symmetry, also sq(x) ∈ C0 for q > p, that is, x ∈ Z
by Lemma 4.21. �
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Remark 4.26. By reverse conclusion, any non-wandering point in � \ Z with some
varying step size has nowhere constant step size. Lemma 4.25 shows in particular that
�const is a T -invariant subset of �.

4.3.2. Varying step size. Next, we let x ∈� \ Z and suppose that for some position
p ∈ Z the step size varies (i.e., ∃m ∈ N : sm

p (x) 6= s0
p(x)= c). By the previous section, this

implies x ∈�C
const and it turns out that x ∈�C

const \ Z is the following set:

�var :=
⋃
p∈Z
{x ∈� \�const : s0

p(x) ∈ Cπ , x[−∞,p] ∈ S#Cπ
R,p,−, x[p+1,+∞] ∈ S#Cπ

L,p+1,+},

Sk
L,p,+ := {x ∈ S+L,p : at most k consecutive zeros occur in x},

Sk
R,p,− := {x ∈ S−R,p : at most k consecutive zeros occur in x},

for k ∈ N0.

LEMMA 4.27. If, for x ∈� \ Z, there exist p ∈ Z and m ∈ N such that sm
p (x) 6= s0

p(x),
then x ∈�var and r > e + 1.

Proof. Recall that the only two options for varying step sizes are c ∈ C0 and, if r > e + 1,
c ∈ Cπ as for r = e + 1 we have Cπ = {e + 1}, which does not allow for step-size
variation. Hence, �var =∅ for r 6 e + 1.

Since x is not identically zero, there must be a window

x [k,k+1]
[q,q+1] ∈

{(
1 a + 1
0 a

)
,

(
a + 1 1

a 0

)}
.

If a ∈ E 6= 1 we have sk
q (x) ∈A \ (C0 ∪ Cπ ), but by Lemma 4.22 we have that s0

q (x) ∈
C0 ∪ Cπ for all q ∈ Z. Therefore a = 1 and, as in the proof of Lemma 4.25, by
backtracking excitation loops in time it follows that x[−∞,p] ∈ S−R,p and x[p+1,+∞] ∈

S+L,p+1. If s0
q (x) ∈ C0 for all q ∈ Z then x ∈ Z , that is, x /∈�var. Therefore, there is q ∈ Z

with s0
q (x) ∈ Cπ .

In this case, we can backtrack analogously to Lemma 4.25; however, the restriction
26 `6 #Cπ on zero blocks 0` occurring in (xm

q (0))m∈N (cf. Corollary 4.17) implies that

at most #Cπ consecutive zeros can occur in x , that is, x[p+1,+∞] ∈ S#Cπ
L,p+1,+ and x[−∞,p] ∈

S#Cπ
R,p,−, hence x ∈�var. �

Using the fact that Cπ =∅ for e + 1> r , which means �var =∅, the lemmas together
prove Theorem 4.5 in particular.

4.4. Computing the topological entropy: proof of Theorem 4.6. In this section we
finally determine the topological entropy h(X, T ) of T using h(X, T )= h(�, T |�).

By Theorem 4.5, the non-wandering set is the union of disjoint T -invariant sets,
�= Z ]�const ]�var, so that

h(�, T |�)=max{h(Z , T |Z ), h(�const, T |�const), h(�var, T |�var)}. (19)

By Proposition 3.5, h(Z , T |Z )= 2 ln ρa and it remains to consider h(�const, T |�const)

and h(�var, T |�var).
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As to �const, by Lemma 4.25 this set contains (a+ 1)-periodic configurations only,
which directly implies

h(�const, T |�const)= 0. (20)

From Theorem 4.5 we also know that �var =∅ if and only if r 6 e + 1 and hence we
restrict ourselves in what follows to the case r > e + 1. By Remark 4.14, T |�var splits
into two independent dynamics on the lattices to the left and right of the particular unique
stationary dislocation p ∈ Z with step size s0

p(x) ∈ Cπ . As the position of the dislocation
is stationary, we can make use of the skew-product structure established in §3.4 in order to
find an upper estimate for h(�var, T |�var). To this end, let

Q0 := {(x, y) ∈ S#Cπ
R,0,− × S#Cπ

L,1,+ : y1 = x0 + c, c ∈ Cπ } ⊂6− ×6+,

W := Q0 × Z,
V :=�var × Z.

On V and W , respectively, consider the maps

f := T |�var × id : V → V,

g := (σR,− × σL,+)× id : W →W.

For x ∈�var, let p(x) ∈ Z denote its unique stationary separating position (dislocation)
with step size s0

p(x)(x) ∈ Cπ . We define ϕ : V →W by

ϕ((x, p(x))) := (x[−∞,p(x)], x[p(x)+1,+∞], p(x)).

(V, f ) and (W, g) are topologically conjugate, that is, the diagram

V
f

−−−−→ V

ϕ

y yϕ
W

g
−−−−→ W

commutes, ϕ ◦ f = g ◦ ϕ, where ϕ is a homeomorphism. Thus, h(V, f )= h(W, g). Since
the identity map has zero topological entropy,

h(�var, T |�var)= h(V, f )= h(W, g)= h(Q0, σR,− × σL,+).

Note that Q0 ⊂6− ×6+ is an invariant (proper) subset with respect to the product map
σR,− × σL,+. Using the product rule of topological entropy,

h(Q0, σR,− × σL,+) 6 h(6− ×6+, σR,− × σL,+)

= h(6−, σR,−)+ h(6+, σL,+)= 2 ln ρa.

In fact, we next show that the upper bound is strictly smaller than 2 ln ρa. In preparation,
note that Q0 is a (σR,− × σL,+)-invariant subset of S#Cπ

R,0,− × S#Cπ
L,1,+, that is,

h(Q0, σR,− × σL,+) 6 h(S#Cπ
R,0,− × S#Cπ

L,1,+, σR,− × σL,+)

= h(S#Cπ
R,0,−, σR,−)+ h(S#Cπ

L,1,+, σL,+).
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FIGURE 12. Transition graph for the one-sided subshifts S#Cπ
R,p,− and S#Cπ

L,p,+.

The topological entropies on the right-hand side of the equation can be computed by
considering semi-infinite walks on the graph corresponding to the alphabet

A′ := (A \ {0}) ∪ {0i
: 16 i 6 #Cπ }

and the dynamics resulting from replacing the trivial transition 0→ 0 in Figure 2 by
transitions

0i
→ 1 for all 16 i 6 #Cπ ,

0i
→ 0 j exactly if 16 i, j 6 #Cπ and j = i + 1;

cf. Figure 12. The resulting transition matrix M ∈ {0, 1}2r×2r is of block form

M =
(

A B
C D

)
with quadratic matrices A ∈ {0, 1}(#Cπ )2 and D ∈ {0, 1}(a)

2
with 1s on the upper off-

diagonal and 0s elsewhere. The matrix B ∈ {0, 1}#Cπ×a is composed of the first column
(1, 1, . . . , 1)ᵀ and 0s elsewhere. Finally, the matrix C ∈ {0, 1}a×#Cπ has a 1 in the last
entry of the first column (which corresponds to the edge a→ 01) and 0s elsewhere.

In order to determine the characteristic polynomial of M , let I denote the unit matrix of
suitable dimension and note that D − λI is invertible for λ 6= 0; its inverse matrix is given
by

(D − λI )−1
=−



λ−1 λ−2 λ−3 . . . . . . λ−a

λ−1 λ−2 λ−3 . . . λ−(a−1)

. . .
. . .

. . .
...

. . .
. . . λ−3

λ−2

λ−1


, (21)

where blank entries are 0s. The product of (D − λI )−1 and C is an (a)× #Cπ -matrix
whose first column is given by the last column of (21) and is 0 otherwise. Multiplying by
matrix B gives the #Cπ × #Cπ -matrix Q := B(D − λI )−1C whose first column is given
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by −(λ−a, . . . , λ−a)ᵀ and is 0 otherwise. Subtracting Q from A − λI yields

P := (A − λI )− Q =



−λ+ λ−a 1
λ−a −λ 1
λ−a −λ 1
...

. . .
. . .

λ−a −λ 1
λ−a −λ


whose determinant can be computed by expanding along the first row. By #Cπ = r − e,

|P| = λ−a(λ2r
− λr−e−1)−

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ−a 1 0 . . . 0
... −λ 1 . . . 0
... 0 −λ

. . .

λ−a
. . . 1

λ−a −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (22)

The determinant on the right-hand side of (22) can be computed again by expanding along
the first row, yielding the summand λ−a(−λ)r−e−2 and another determinant computable
by expanding along the first row. Repeating this until we end up with the summand λ−a,
the determinant of P is eventually given by

|P| = λ−a ·
(
λ2r
−

#Cπ−1∑
i=0

λi
)
.

Using |D − λI | = (−λ)a and the determinant formula for block matrices,

|M − λI | = |D − λI |·|P| = (−λ)aλ−a
(
λ2r
−

#Cπ−1∑
i=0

λi
)

= (−1)a
(
λ2r
−

r−e−1∑
i=0

λi
)
.

Since we are interested in the roots of this polynomial, we can neglect the factor (−1)a

and consider the polynomial

ge,r (λ)= λ
2r
−

r−e−1∑
i=0

λi

which has exactly one positive (simple) root ηe,r by Descartes’ rule, and ηe,r > 1 since
ge,r (0), ge,r (1) < 0 and the leading coefficient is positive. Hence,

h(S#Cπ
R,0,−, σR,−)= h(S#Cπ

L,1,+, σL,+)= ln ηe,r . (23)

Finally, we show ηe,r < ρa and hence h(�var, T |�var) < 2 ln(ρa). First note that
ge,r (λ)= λ

2r
− (λr−e

− 1)/(λ− 1)= λr−e fc(λ)+ 1, where fc is the polynomial from
Lemma 3.7 with unique positive root ρc. Consequently, ge,r (ρc)= 1> 0. This implies
ηe,r < ρa since the root ηe,r > 1 of ge,r is unique and its leading coefficient is positive,
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so that ge,r (λ) > 0, λ > 0⇒ λ > ηe,r . In particular, 1< ηe,r < ρc, that is, ηe,r → 1 as
e→∞ by Lemma 3.7. This concludes the proof of Theorem 4.6.

Recall that the topological entropy h(Z , T|Z ) depends on e, r only through a; cf.
Lemma 3.7. We end this section by commenting on scaling bounds of (23).

Remark 4.28. The asymptotic scaling of (23) and, consequently, of the upper bound
2 ln ηe,r of h(�var, T|�var) differs from the scaling of 2 ln(ρa)= h(Z , T|Z ), and in
particular depends on the difference r − e.

More specifically, we next show that if r − e is constant then ζ := ηe,r − 1∼ 1/r as
r→∞, which is thus asymptotically smaller than ρa ∼ (ln(a))/a; recall 0< ζ < (ln a)/a

so ζ → 0 as a→∞. In particular, a time-rescaled topological entropy on �var as in
Corollary 3.8 behaves differently than that on Z .

As to the proof, we rewrite ge,r (1+ ζ )= 0 and take logarithms as follows:

(1+ ζ )r−e
= 1+ ζ(1+ ζ )2r

⇔ (r − e) ln(1+ ζ )= ln(1+ ζ(1+ ζ )2r )

⇔ (r − e)=
ln(1+ ζ(1+ ζ )2r )

ln(1+ ζ )
.

Hence, if r − e is constant then, as r→∞, we have ζ(1+ ζ )2r
∼ ζ , that is, (1+ ζ )2r

∼ 1
and therefore ζ ∼ 1/r .

In contrast, if e is constant one can show that η ∼ (ln r)/r , that is, the upper bound
ln(η) for the topological entropy on �var scales as that on Z . However, we omit this as we
do not investigate a lower bound here.
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