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Abstract
DHA is a key nutritional n-3 PUFA and needs to be supplied by the human diet. DHA is found in significant amounts in the
retinal and neuronal cell membranes due to its high fluidity. Indeed, DHA is selectively concentrated in the synaptic and retinal membranes.
DHA is deemed to display anti-inflammatory properties and to reduce the risk of CVD. Consumption of larger amounts of DHA
appears to reduce the risk of depression, bipolar disorder, schizophrenia and mood disorders. Conversely, it has been shown that loss of
DHA from the nerve cell membrane leads to dysfunction of the central nervous system in the form of anxiety, irritability, susceptibility to stress,
dyslexia, impaired memory and cognitive functions, and extended reaction times. DHA plays an important role in ensuring a healthy
ageing, by thwarting macular degeneration, Alzheimer’s disease, and other brain disorders at the same time as enhancing memory and
strengthening neuroprotection in general. A reduced level of DHA is associated with cognitive decline during ageing. Different mechanisms
for this fundamental DHA role have been put forward. Namely, neuroprotectin D1, a DHA derivative, may support brain cell survival
and repair through neurotrophic, anti-apoptotic, and anti-inflammatory signalling. Many of the effects of DHA on the neurological system
may be related to signalling connections, thus leading to the study of the related signalolipidomics. Therefore, the present review will focus
on the influence of DHA deficiency upon ageing, with specific emphasis upon neurological disorders related to cognitive function and
mental health.
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Introduction

In developed countries, population ageing is a major
demographic trend and will remain so in the next decades.
Accordingly, health issues concerning the elderly have
increased in importance and have entailed an ever-growing
level of economic costs. Among these health issues, loss of
memory and alterations in behaviour associated with declining
brain function have a large impact on society and the economy.
These changes with ageing are also key symptoms of
degenerative brain diseases, such as Alzheimer’s disease (AD)
and other dementia forms(1). Furthermore, there are many
forms of chronic debilitating brain disorders besides dementias.
It has been claimed that in the next years the impact of the
wide array of brain disorders will possibly surpass that of CVD
and cancer taken together(2). Therefore, it is of paramount
importance to achieve a deeper knowledge of the conditions
for optimal brain function and cognition. It is important to point
out that prevention is more effective than treatment in curbing
the societal and economic costs. Taking this into account,
nutrition may have a very significant role for this objective.

In fact, there are aspects associated with nutrition that affect the
risk of cognitive function decline and neural and psychiatric
outcomes.

DHA, one of the most important marine n-3 PUFA, may
have a strong influence on brain health(1). Indeed, consumption
of larger amounts of n-3 PUFA, particularly DHA, appears
to reduce the risk of depression(3), including postpartum
depression, bipolar disorder (manic depression), schizophrenia,
and mood and behaviour disorders(4). It has also been hypothe-
sised a connection between DHA in the diet and in the nerve
cell membrane and the risk of dysfunction of the central
nervous system in the form of anxiety(5), irritability, susceptibility
to stress(6), dyslexia(7), stereotypic behaviour, aggressiveness(8),
reduced learning capacity(4), impaired memory and cognitive
functions, and extended reaction times(9).

The present review will focus on the role of DHA in the nervous
system and cognitive function as well as in the prevention of
cognitive decline associated with ageing. The state-of-the-art in
these scientific areas of research will be analysed taking into
account the DHA chemical form (Fig. 1), that is, the wider
chemical structure where DHA is bound (TAG, NEFA, ethyl ester
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and phospholipid (PL)) and its effects on DHA bioaccessibility and
bioavailability.

DHA and its role in cognitive ageing: evidence discussion

Ageing and the cognitive function decline associated with
it pose a great challenge to societies in developed countries.
The loss of cognitive abilities may vary immensely in kind and
degree and may affect not only elderly, but also middle-aged
individuals. In the most serious situations, pathologies are
identified. As aforementioned, there are many forms of chronic
debilitating brain disorders, nutrition being a possible key to the
prevention and mitigation of some of their effects. DHA plays
an important role in ensuring healthy ageing, by possibly
thwarting macular degeneration, AD and Parkinson’s disease,
and other brain disorders at the same time as enhancing
memory and strengthening neuroprotection in general.
A reduced level of DHA in the blood is associated with
cognitive decline during ageing(10). An overview of the various
studies concerning the impact of DHA on AD (and other
cognitive decline situations) as well as on healthy individuals is
presented in Table 1.
There are several important studies correlating dietary DHA

and cognitive function ageing effects. These studies relate to
different human populations that can be healthy or presenting
mild cognitive impairment (MCI)/AD/other cognitive function
disorders.
Some interesting studies, either observational or randomised

controlled trials (RCT), have been carried out with healthy
populations(11–13). For instance, in a community-dwelling cohort,
levels of α-linolenic acid (ALA), EPA and DHA were assessed in

serum PL of volunteers not taking fish oil supplements(11,14). It was
found out that only the associations between serum PL DHA and
non-verbal reasoning and working memory remained after
adjustment for participant education and vocabulary. Moreover,
DHA increased cognitive performance in an RCT involving
mentally healthy individuals older than 55 years(13,15). Daily sup-
plementation of 900mg of algal (Schizochytrium sp.) DHA for
24 weeks was associated with significantly lower paired associative
learning errors than the placebo case. Similar results were attained
by an RCT study(12) on executive functions and neuroimaging in a
group of healthy subjects whose age ranged between 50 and
75 years. The authors registered a benefit in executive function
including verbal fluency. They also found alterations in white
matter microstructural integrity (interpreted as beneficial) as well as
increases in gray matter volume in the frontal, temporal, parietal
and limbic areas(12). In a large cohort of Chinese adults (average
age of 65 years; part of the Singapore Longitudinal Aging Studies
(SLAS)), daily consumption of fish oil supplements was associated
with higher Mini-Mental State examination scores and a lower risk
of cognitive decline over a 1·5-year period(16).

All these studies involving healthy subjects have some
drawbacks. In fact, while the study by Witte et al.(12) involved a
very small population (n 65), the SLAS did not control the
level of DHA intake. Therefore, both studies’ conclusions are
weakened by these shortcomings. The study by Yurko-Mauro
et al.(13) seems better designed and more robust than others
and clearly points to positive effects of 0·9 g DHA/d. However,
the study by Velho et al(17) did not find an effect of any PUFA
on cognitive function. Hence, though studies on healthy elderly
seem to point to a beneficial net effect of DHA on cognitive
ageing, evidence is still far from convincing, further studies
being required.
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Fig. 1. Chemical structure of the different chemical forms in which DHA may be found. PL, phospholipid; R’, choline, serine, ethanolamine, etc.; EE, ethyl ester.
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Table 1. Overview of some significant intervention and observational studies concerning the effects of DHA on the cognitive decline due to ageing

Type of study
Study length
(months)

Subjects
(n)

Age
(years)

DHA intake
(g/d) DHA source/form Outcome Reference

Observational study – 280 35–54 – – Positive association between DHA and non-verbal
reasoning and working memory in healthy volunteers

(11)

Prospective cohort
study

18 1475 ≥55 – Fish oil/TAG Daily consumption of fish oil supplements was associated
with higher Mini-Mental State examination scores and
lower cognitive decline

(16)

Cross-sectional and
prospective study

5–12 187 >65 – – The exact effect of n-3 PUFA intake on cognitive function of
elderly was unclear, warranting further study

(17)

Randomised
controlled trial

6 65 50–75 – Fish oil/TAG DHA (and other n-3 PUFA) was beneficial in executive
function including verbal fluency in healthy subjects

(12)

Randomised
controlled trial

6 485 ≥55 0·9 Algal/TAG DHA associated with significantly lower paired associative
learning errors in healthy subjects

(13)

Randomised
controlled trial

6 23 55–90 0·7 Fish oil/TAG DHA improved Alzheimer’s Disease Assessment Scale
score in subjects with mild cognitive impairment

(18)

Randomised
controlled trial

3 21 68·1 (SD 6·3) 0·2 – DHA improved immediate memory and attention score in
subjects with mild cognitive impairment

(19)

Randomised
controlled trial

12 36 ≥60 1·3 Fish oil DHA provided benefit for several measures of memory
function in subjects with mild cognitive impairment

(20)

Observational study 31 186 65–84 – – Only high DHA and other n-3 PUFA intake evidenced a
borderline non-significant trend for a protective effect
against the development of mild cognitive impairment

(23)

Observational study 48 397 55–90 – Fish oil Although a causal effect of fish oil supplement use on
cognition cannot be concluded from results, they
highlight the need for future research

(22)

Observational study – 5395 ≥55 – – DHA was not associated with AD risk (29)
Observational study – 815 65–94 – – DHA was associated with reduced risk of AD (25)
Observational study – 899 55–88 – – Top quartile of plasma phosphatidylcholine DHA was

associated with reduced risk of AD
(26)

Randomised
controlled trial

6 23 55–90 0·7 Fish oil/TAG DHA produced no difference in Alzheimer’s Disease
Assessment Scale score in AD subjects

(18)

Randomised
controlled trial

3 8 67·0 (SD 6·3) 0·2 – DHA did not improve immediate memory and attention
score in AD patients

(19)

Randomised
controlled trial

18 402 76 (SD 8·7) 2·0 Algal/TAG DHA provided benefit for cognitive score in ApoE4 allele-
negative AD patients

(32)

AD, Alzheimer’s disease.
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For individuals with MCI, some interesting studies(18–20) have
also been carried out. The evidence has been recently
reviewed(21). Namely, the Memory Improvement After DHA
Study (MIDAS) demonstrated that DHA may be advantageous
in healthy adults with a mild memory complaint(13), thereby
emphasising the role of prevention. Another study, Lee et al.(20),
has reported a benefit for several measures of memory function
in a group of elderly patients with MCI. Furthermore, in an RCT
study, DHA provided benefit for several measures of memory
and attention score in subjects with MCI(19). However, in a
study by Daiello et al.(22), it was concluded that a causal effect
of fish oil supplement use on cognition was not proven, further
research being warranted. On the other hand, in the Italian
Longitudinal Study on Aging, there was no significant effect on
the protection against the development of MCI(23). These latter
studies oppose the view that benefits of DHA are easier to
detect during ageing whenever there is some MCI or memory
complaint or possibly if an individual is under the influence of
some physical or mental stressors(21).
A critical appraisal of these studies relating to MCI raises

doubts about the beneficial action of DHA on MCI onset and
development. The more positive results were attained in studies
with small populations (thirty-six or lower)(18–20). The studies
with larger populations (186 or higher) did not show significant
results(22,23), but they were observational studies where high
DHA intakes were not tested by a significant share of the
subject set. Accordingly, the protective role of DHA in MCI is
still dubious.
Nevertheless, the effects of DHA on cognitive ageing, MCI

and dementia other than AD have been more supported by
evidence than those on AD. Whereas, according to some
authors, DHA improved cognitive abilities in individuals with
MCI, the effects on AD patients were not obvious(10,18,19).
Indeed, it has been mentioned that once AD is clinically
evident, supplementation trials show no significant effect of
DHA on AD(24). Nevertheless, several prospective observational
studies clearly point to a protective effect of higher DHA intake
against risk of AD(25,26). Hence, prevention is more effective
than treatment. This assessment of the observational studies has
been shared by different review papers(24,27,28). On the other
hand, there are other observational studies that did not find
any association between DHA intake and AD risk(29).
A meta-analysis reviewing the association of n-3 PUFA and
DHA with AD incidence found no significant evidence(30).
However, in some populations, such as the Dutch(29), fish
consumption and DHA intake are quite low(31), thus entailing
statistical problems given the very low number of subjects
with a DHA intake high enough to reduce AD incidence.
Furthermore, another interesting study(32), the Alzheimer’s
Disease Cooperative Study, found out that DHA did not
produce any benefit in the primary outcomes, but observed a
benefit for cognitive score in ApoE4 allele-negative patients.
Indeed, AD patients in this group had a significantly lower
decline in the Alzheimer’s Disease Assessment Scale score
over 18 months with a daily dosage of 2 g of DHA.
A comparison between the studies concerning DHA and AD

(Table 1) shows that some studies do not have a representative
population sample(18,19) and, as such, their significance is quite

weakened. The Dutch study(29) seems much more solid and
representative. The other observational studies are more modest
and show beneficial DHA effects on AD that were not found
in the Dutch study(25,26). The RCT study by Quinn et al.(32) may
harbinger a new generation of studies that are supported by
a priori genetic analysis. This will provide much more insight.
Meanwhile, evidence connecting DHA intake and containment of
AD progression after its onset is very insufficient.

Whether healthy or MCI or AD subjects, the assessed studies
do not provide incontrovertible outcomes. It is possible
that the beneficial effects of DHA concern solely AD and MCI
prevention and be entirely absent once clinical conditions,
especially if severe (AD), are already present. But, results
do not allow for such conclusion. Perhaps, more importantly,
future studies should always separate population groups in
accordance to their genes, since some causal links may only
occur in specific genotypes. Studies encompassing larger
populations and longer periods are also warranted.

DHA and its role in cognitive ageing: dose–response
and mechanisms

The calibration of the DHA dosages for achieving a significant
response is another issue that requires new studies. Some of the
daily DHA dosages are quite high. For instance, in order to
achieve 2 g/d of DHA, a daily meal of 130 g of Atlantic mackerel
or 120 g of Atlantic salmon may be required (Table 2). Therefore,
it would be difficult to achieve such high DHA intakes without
supplements. Moreover, in future RCT, the issue of DHA
bioavailability (see the ‘Dietary sources of DHA, bioaccessibility
and bioavailability’ section) should be taken into account – for
instance, the same DHA dosage given to different individuals
can lead to different levels of bioavailable DHA as a result of
changes in the functioning of the digestive system due to age
and disease – and a better selection of DHA supplements
(including chemical binding form) should be ensured.

For those studies involving AD patients, it has been observed
that though DHA intake is low, brain DHA levels are frequently
similar to the controls, thus suggesting that low DHA intake leads
to low plasma DHA, but does not necessarily decrease brain
DHA(24). Accordingly, these authors have claimed that animal
models involving dietary n-3 PUFA deficiency in order to deplete
brain DHA may not be adequate in AD research. Moreover, it has
been claimed that the fatty acid (FA) profile of plasma total lipids
is not an appropriate measure of DHA status in AD because it
seems to mask lower DHA in plasma PL offset by higher DHA in
plasma cholesteryl esters(33,34). Hence, it is of paramount
importance to analyse DHA in each lipid class. AD has been
associated with changes in plasmalogen choline as well as in the
amount of DHA found in different PL(35).

In the mechanistic analysis of the link between DHA and
cognitive function, it should be noted that DHA is by far the
main n-3 PUFA present in the brain – its content within brain FA
is 12–15%(36)

– where it is predominantly located in neuronal
membranes of the grey matter, especially in synapses(24).
In addition, the brain FA-binding protein preferentially binds
DHA (and other n-3 PUFA)(37), leading to higher levels of DHA
incorporation in the molecular structures of the membranes(38).
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DHA is supplied to the central nervous system by the liver,
where DHA attained from food is taken up and distributed to
other organs(39). Besides, though there is evidence suggesting
the expression and functional role of FA transporters at the
blood–brain barrier(40), DHA can reach the brain by simple
diffusion through this barrier(41). On the other hand, the dietary
level of α-linolenic acid (ALA; 18 : 3n-3), a precursor of DHA,
does not correlate well with the level of DHA in the human
body, making it advisable, for instance, to supplement the
nursing mother’s diet with DHA(42). Furthermore, it should be

remarked that plasma or erythrocyte DHA does not correlate
well with DHA in the brain cells(24,43–45).

DHA is highly enriched in the PL of the synaptic plasma
membrane and synaptic vesicles(46). Regarding this issue, it is
worth analysing the pathways leading to the synthesis of some
important PL. Phosphatidylcholine (PC), a fundamental brain PL,
is synthesised through the Kennedy pathway(47) from three
precursors: choline, a pyrimidine, and, typically, a PUFA (either
DHA or other PUFA). Phosphatidylethanolamine (PE) may be
synthesised from a PUFA and a pyrimidine. These precursors act
by enhancing the substrate saturation of enzymes that bring about
the incorporation of the precursors in PC and phosphatidyletha-
nolamine(48). In accordance with this, it has been reported that
synaptic proteins and PL are increased in gerbil brain by joint
administration of uridine and DHA(48). Furthermore, it was found
that continuous supply of DHA, but not arachidonic acid
(20 : 4n-6), may lead to an increase in brain phosphatide and
synaptic protein levels according to animal models(49). Phospha-
tidylserine is also very important and abundant in the human brain
and typically contains significant amounts of DHA(50). It is known
that throughout childhood development DHA is accumulated
within the brain PL, PC and phosphatidylethanolamine(51).

Differently from EPA, DHA is not a source for eicosanoid
synthesis, rather exerting influence directly and indirectly. DHA can
also be converted to EPA by a retroconversion reaction, thereby
leading to the formation of various eicosanoid metabolites(52).
The DHA derivatives produced by oxidation reactions have
also importance and are usually termed docosanoids(53). Such
compounds bear resemblance to eicosanoids and are deemed
as potential mediators of the biochemical processes in the central
nervous system(53). DHA may also generate trans-4-hydroxy-2-
hexenal (4-HHE) as a result of peroxidation. This oxidation
product, 4-HHE, has been shown to be toxic to primary cultures of
cerebral cortical neurons(54). The formation of 4-HHE seems
to follow an oxidation pathway different from that generating
docosanoids. Hence, DHA may undergo different biochemical
transformations as a function of the prevailing conditions and lead
to distinct effects on the central nervous system.

Docosanoids include neuroprotectin D1 (NPD1), maresins,
neuroprostanes (NeuroPs), and related 22-C derivatives(55). The
NeuroPs are structurally related to prostaglandins and constitute
a large family of oxidised cyclopentanoid derivatives. NeuroPs
are derived through a cascade of non-enzymic radical reactions
from the non-enzymic peroxidation of DHA in neurons(56).
However, it has also been shown that lipoxygenase inhibitors
block the synthesis of many docosanoids(57). Interestingly, it
has been suggested that these DHA derivatives might be
neuroprotective(58). The research into the role of NPD1 has
brought forth evidence of such a neuroprotective effect(59).

NPD1 is attained from the selective oxygenation of DHA by the
enzyme 15-lipoxygenase-1(60). NPD1 leads to homeostatic signal-
ling in response to cellular and systemic imbalances(61). In parti-
cular, the positive regulatory actions of NPD1 together with DHA
follow different interdependent mechanisms(62–65). First, mem-
brane properties encompassing lipid bilayer fluidity and mem-
brane rafts are important for their biophysical characteristics.
Another mechanism involves the recruitment and up-regulation of
anti-apoptotic members of the Bcl-2 gene family. Moreover, the
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Table 2. Average DHA content (mg/100g) in different marine sources, not
subjected to any culinary process(112,113,130–132)

Category Product
DHA content
(mg/100 g)

DHA
richness

Bivalves Common cockle 215 Poor
Grooved carpet shell 55 Poor

Cephalopods Common cuttlefish 38 Poor
Common octopus 129 Poor
European squid 417 Medium
Flying squid 225 Poor

Crustaceans Norway lobster 77 Poor
Red shrimp 28 Poor
Rose shrimp 29 Poor

Fish Alfonsino 48 Poor
Atlantic cod 42 Poor
Atlantic mackerel 1580 Rich
Atlantic salmon 1773 Rich
Auxillary seabream 327 Medium
Black scabbardfish 171 Poor
Blackspot seabream 490 Medium
Chub mackerel 2128 Rich
Common sole 29 Poor
European conger 425 Medium
European eel 3447 Rich
European hake 155 Poor
European plaice 153 Poor
Gilthead seabream 1207 Rich
Greater forkbeard 26 Poor
Horse mackerel 363 Medium
Ling 21 Poor
Meagre 147 Poor
Monkfish 38 Poor
Northern bluefin tuna 420 Medium
Rainbow trout 387 Medium
Red porgy 45 Poor
Rubberlip grunt 79 Poor
Sardine 1169 Rich
Sea bass 599 Rich
Silver scabbardfish 460 Medium
Smooth hound 51 Poor
Swordfish 829 Rich
Thornback ray 44 Poor
Wreckfish 418 Medium

Microalgae Amphidinium sp. S1* 677 Poor†
Isochrysis galbana NIVA-4/91* 1580 Medium†

Prorocentrum triestinum S2* 752 Poor†
Thraustochytrium aureum

ATCC 34304
6590 Rich†

Seaweeds Ascophyllum nodosum* 40 Poor
Fucus spiralis* 83 Poor
Fucus vesiculosus* 91 Poor
Laminaria digitata* 16 Poor
Pelvetia canaliculata* 127 Poor

* For microalgae and seaweeds, DHA contents are given in mg/100g DM.
† For microalgae and seaweeds, richness was assessed assuming 20% DM as is

usually the case in seafood.
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modulation of kinase-mediated Bcl-2 gene family phosphorylation
is affected. The activation of inflammatory signalling mediators
(for instance, the PG-synthesising arachidonic FA enzyme cyclo-
oxygenase-2) is repressed. Finally, the expression of proapoptotic
signalling is also repressed.
Different mechanisms for the DHA role as a protective agent

against cognitive decline have been put forward. Namely,
NPD1 may support brain cell survival and repair through
neurotrophic, anti-apoptotic and anti-inflammatory signalling.
Indeed, many of the effects of DHA on the neurological system
may be related to signalling connections, thus leading to the
study of the related signalolipidomics. However, the action of
NPD1 as a possible modulating agent of transport mediated by
ApoE and its effect on β-amyloid precursor protein (β-APP)
processing, soluble amyloid precursor protein α fragment
(sAPP-α) or amyloid-β peptide speciation, generation, and
secretion during ageing, and in cytokine-, hypoxia- and
oxidation-stressed human brain cell models of AD are not fully
understood. DHA itself has been linked to these events(64,66,67).
It is still unsettled if, under those conditions, NPD1 is formed
from DHA or if there are alternative mechanisms for DHA
action(63).
However, there are aspects of the NPD1 action that need to

be better understood, such as, the impact on the biophysics
and kinetics of the membrane-embedded secretase-mediated
cleavage mechanisms of β-APP(66,68). Moreover, the effect of
NPD1 on specific secretase activities is a still unexplored field,
which deserves more attention, given its importance to the
design of more effective and selective amyloid-β peptide-
lowering agents(68,69).
The Alzheimer’s Disease Cooperative Study AD study(32) also

suggests other biochemical interactions of DHA, given the
sensitivity of ApoE4 allele-negative patients to DHA. It is known
that ApoE can interact with various receptors in the brain, in
neurons, astrocytes and in capillary endothelial cells at the
blood–brain barrier(70,71). ApoE4 is a lipid transporter, which
may limit DHA transport in the brain. A comparison between
old ApoE4 carriers with ApoE4 allele-negative individuals
(carrying ApoE2 or ApoE3 alleles) points to a shorter DHA
whole-body half-life in the former after an oral dose of [13C]
DHA(72). It has been reported that an accumulation of DHA in
the blood is associated with lower concentrations in cerebral
tissue of ApoE4 mice, taking ApoE2 animals as a reference(73).
Such an inverse relationship between plasma and brain DHA
contents suggests that plasma levels(74) may reflect defective
distribution in the brain rather than being a good correlate of
brain DHA content. So, it seems that ApoE4 leads to less DHA
being transported into the brain, thereby causing a deleterious
effect in AD(21).
A further mechanism relating DHA dietary intake and cognitive

function ageing may involve the role of DHA in inflammatory
processes. Indeed, DHA and EPA are deemed to display
some anti-inflammatory properties(75,76), thereby offsetting
the pro-inflammatory effects of n-6 PUFA(76). For diseases having
a recognised central role of inflammation to the pathology such
as asthma or rheumatoid arthritis, DHA supplementation in
the diet may be protective. The DHA-derived docosanoids are
potent endogenous anti-inflammatory and pro-resolving chemical

mediators(77). They may reduce chronic inflammation by
attenuating NF-kB, thereby modulating the expression of
pro-inflammatory cytokines. On the other hand, abundant
evidence indicates that inflammatory processes are active in
AD(78). Epidemiological studies indicate a lower prevalence of AD
in individuals treated with non-steroidal anti-inflammatory drugs,
but clinical trials have not yielded strong effects(79). It is known
that AD is related to the activation of microglia by different
factors, including β-APP and pro-inflammatory cytokines(80).
Microglia increase the levels of some cytokines, such as IL-6, and
TNF-α, which may generate deviations from the normal neuronal
function(81).

Besides, DHA incorporation into the cell membranes
modulates the efficiency of numerous membrane transporters
and enzymes(82). The incorporation of DHA into cell membranes
is of great importance, since many essential cellular processes
take place in and on membranes(83). These processes are affected
by the biochemical and biophysical properties of organelle
membranes. Precisely, the lipid composition of these membranes
influences the membrane properties, which, in turn, decisively
exert an effect upon the activity of membrane-embedded
proteins(84). For instance, membrane thickness can affect the
location of proteins.

DHA may also affect directly the physical properties of
membranes, which depend on PL that are known to have a
large importance in the neural membranes. For instance, PL,
such as glycerophospholipids and sphingolipids, and sterols are
prominent lipid classes in the membranes, but there is a large
diversity of other minor lipid components(85). The physical
properties of membranes are affected both by the head groups
and the hydrocarbon chains of lipid molecules. These effects
can be tremendous not only on the properties, but also on the
processes occurring within the membranes, even with
subtle changes in lipid composition(83). For instance, while a
hypothetical bilayer of PC with two chains of a SFA such as
stearic acid (18 : 0) displays a packed ordered state without any
diffusion of lipid substances, a bilayer of PC with two DHA
chains exhibits a more disordered state with freely moving lipid
molecules(86,87). Moreover, longer FA chains and a higher
content of sphingolipids and sterols in the membrane correlate
with an enhanced thickness(88). It has also been observed
that asymmetric distribution of glycerophospholipids and
sphingolipids between the two leaflets of the neural membrane
may lead to dynamic lipid substructures(46). Therefore,
the connections between DHA and the membrane physical
properties are another important research field deserving
further scientific studies.

Future research on the mechanistic aspects connecting DHA
and AD as well as other cognitive ageing disorders should also
identify and quantify relevant biomarkers in the plasma and
cerebrospinal fluid, bridging the gap between docosanoids,
cytokines and neuronal cell changes.

DHA and the cognitive function

The effects of DHA on cognitive ageing need an understanding
of the multiple connections between DHA and the highest
degrees of brain activity. Several studies have been conducted
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regarding this subject (Table 3). A deficient level of DHA is
related with changes in the operation of cognitive function,
namely, in ageing, hyperactivity, AD, schizophrenia and
peroxisomal diseases(55). Conversely, higher dietary intake of
DHA is linked to better brain health(89). Indeed, DHA is
enriched in synaptic membranes, being able to change their
fluidity as well as neurotransmitter and receptor densities.
These mechanisms whereby DHA affects neural cells have
already been described in previous section, but more studies on
their details and the way that DHA positively affects cognitive
function are warranted. There are several studies of a medical
nature pointing to the positive effect of DHA on cognitive
function(89), but the full understanding of the underlying
biochemistry remains elusive.
Many studies relate to human cognitive function evolution as

a result of ageing. For instance, a study on the effects of a 90 d
DHA supplementation (252mg/d) on cognitive function in a
healthy ageing population did not find any significant
impact(90). Besides, it has been argued that there is greater
evidence for DHA playing a preventive rather than curative role
in dementia(27). This role may be more important in unhealthy
populations, for instance, in patients with type 2 diabetes(91).
Namely, it is not clear if an adequate brain DHA level can be
kept in obesity and insulin-resistant states. Indeed, it is quite
possible that the DHA level becomes inadequate, given
evidence of greater cognitive decline in individuals with insulin
resistance(92). Moreover, it has been reported(93) that reference
memory-related learning ability is positively correlated with
DHA-derived docosanoids in aged rats. The same study did
not find a significant correlation for EPA-derived mediators.
Moreover, dietary DHA improves the learning-related spatial
memory of DHA-deficient rats(94,95).
There is a lack of robust evidence to evaluate the effect of DHA

in diet on the cognitive performance of young healthy
adults. Some of the trials that have been done seem to present
experimental design shortcomings. For instance, a placebo
control is absent(96), sample size is small(97) and duration is
too short(98,99). On the other hand, a cross-sectional study on
adults aged between 30 and 70 years old showed a positive
association between DHA blood levels and scores on cognitive
performance tests(11). Against this backdrop, a recent work
involving RCT has shown that DHA supplementation has
improved both memory and reaction time in healthy young
adults(9). It should be remarked that the habitual diet of
these young adults (age range 18–45 years) was low in DHA.
Moreover, response was modulated by sex – whereas DHA
improved episodic memory in women, it improved reaction times
of working memory in men(9). Another recent study provided
compelling initial evidence that dietary factors affect the connec-
tion between physical activity and cognitive performance(100).
In particular, high levels of DHA relative to arachidonic
acid reduced the negative effects of lower physical activity on
performance. The results of these two studies may be related to
the fact that DHA accumulates in areas of the brain involved
in memory and attention such as the cerebral cortex and
hippocampus(101,102). Nevertheless, further observational studies
and RCT are warranted in order to achieve a higher degree of
certainty and a deeper understanding of the connections.
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Dietary sources of DHA, bioaccessibility and bioavailability

The large importance of DHA makes this an essential FA in
human nutrition. Diets should be formulated in order to ensure
an adequate level of DHA supply. The main source of DHA is
seafood, particularly marine fish and shellfish(103). DHA is
found in the flesh of both lean and oily fish, with much greater
amounts in the latter, and in the liver of some lean fish species,
such as cod. There is also fish oil prepared from these raw
materials rich in DHA(76). There are also non-marine sources of
DHA. However, DHA contents are only comparable with lean
fish in the case of some meat-processing by-products and
especially enriched foods. An overview of the DHA content in
different sources and their characteristics is presented in
Tables 2 and 4. Since meat, cereals and milk are more important
in the Western diet, DHA intake is low(104). Indeed, for a total
of approximately 100mg DHA/d, fish and seafood products
are the largest contributor with 69·9mg/d, followed by meat
products with 19·6mg/d, and egg products with 5·1mg/d.
DHA is present primarily as TAG and, to a lesser extent, as

NEFA in fish and derived unrefined raw oils(105). In krill oil, a
third fraction is found, since a substantial percentage of n-3
PUFA (and DHA) is bound in PL(105). Pharmaceutical-grade,
highly concentrated fish oil supplements with DHA bound in
ethyl ester, are also available(76).
Oily fish, such as herring, salmon and sardine, are the richest

sources of DHA(106). According to these authors, of thirty-seven
commonly consumed types of fish products, DHA is the main n-3
PUFA, being on average 65% of total n-3 PUFA(107). It should be
remarked that DHA content in fish usually varies with the overall
n-3 PUFA content. Three main classes of fish products may be
differentiated on the basis of DHA content: relatively poor DHA
sources (black scabbardfish, catfish, hake, megrim, tilapia);
moderately rich DHA sources (halibut, pollock); and very rich
DHA sources (herring, mackerel, salmon, sardine), corresponding
to the approximate ranges <300, 300–500, and >500mg/100 g,
respectively(106–111).
For a more detailed presentation of DHA concentrations in

different marine sources, Table 2 based on the Portuguese Institute
for the Sea and Atmosphere (IPMA) extensive database(111,112) and

different papers(113) can be consulted. The six highest DHA con-
tents are found in the European eel, chub mackerel, Atlantic sal-
mon, Atlantic mackerel, gilthead seabream (wild) and sardine, all
exceeding 1000mg/100g(111,112).

The American Heart Association’s recommended daily intake
(RDI) is 500mg EPA + DHA for individuals without CHD(114).
The European Food Safety Agency has advised 250mg of
EPA + DHA(115) and reference values for the EPA +DHA RDI
are typically in the 250–500mg range(116). Specifically for DHA,
an RDI of 250mg has been put forward by ANSES
(Agence Nationale de Sécurité Sanitaire de l’Alimentation, de
l’Environnement et du Travail)(117). A single weekly meal of
150 g of chub mackerel, Atlantic salmon or sardine may be more
than enough to meet this DHA RDI (250mg/d). For seafood
moderately rich in DHA, the consumption of two to three
weekly meals of 150 g may also be enough.

The level of DHA in a portion of food that is eaten may be quite
different from the bioaccessible level, that is, the DHA concentration
that is released from the food matrix into the intestinal lumen after
digestion and is available for absorption(118,119). On the other hand,
bioavailability is usually defined as the fraction of an oral dose
of a substance that reaches the systemic circulation(120). The bio-
accessible content is always equal or higher than the bioavailable
content(118). Bioaccessibility is usually determined by in vitro
simulations of human digestion(118,121). For bioavailability, according
to the definition given above, cell lines and transwell assays are
used for mimicking the intestinal lining barrier(122) and cell cultures
simulating the relevant liver tissues may also be used(123).
Bioaccessibility and, as a consequence, bioavailability of DHA may
depend on the chemical binding form (DHA bound in ethyl ester,
TAG or PL) (Fig. 1), matrix effects (fat and other components
content in food), and, in the case of DHA in supplements, galenic
form (microencapsulation, emulsification, etc.)(105).

DHA biosynthesis routes

Besides dietary DHA and the bioaccessibility/bioavailability
issues, DHA may be biosynthesised in the human body.
However, for healthy and non-vegetarian humans, despite the
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Table 4. Non-marine DHA dietary sources and their main characteristics, advantages and drawbacks

Category Product DHA content (mg/100 g) Product characteristics, advantages and drawbacks

Milk* Cows’ milk, basal diet 0–10 Readily available, but extremely low content
Cows’ milk, special diet 10–30 Available, but very low content
Cows’ milk, enriched 30–50 Available, but still very low content

Eggs† Chicken eggs, basal diet 20–40 Readily available, but very low content
Chicken eggs, enriched diet 90–180 Available, low content

Meat‡ Lamb, muscle 10–20 Readily available, but very low content
Pork, muscle 10–50 Readily available, but very low content
Beef 10–20 Readily available, but very low content
Rabbit, muscle 10–30 Readily available, but very low content
Chicken, basal diet 10–30 Readily available, but very low content
Chicken, linseed diet 20–50 Readily available, but very low content

Animal by-products§ Pork, subcutaneous fat 60–320 Available, nutritionally unbalanced, low content
Pork, viscera 10–50 Available, but very low content

* Values from Fonollá et al.(133) and Klop et al.(134).
† Values from Lemahieu et al.(135).
‡ Values from Woods & Fearon(136) and Zotte & Szendrö(137).
§ Values from Sobol et al.(138).
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availability of the necessary enzymes, there is extremely
limited synthesis of DHA in adults(124,125). Unless induced by
several years of a vegetarian diet, the human enzymic machinery
is very inefficient in converting, for instance, ALA to EPA and
DHA. Even with a diet deficient in DHA, the brain cells’ ability to
synthesise DHA from ALA is very low(126). One study indicates a
very low share of plasma ALA, < 0·2%, deployed to the synthesis
of DHA via EPA(124). Indeed, it has been claimed an extremely
low level of conversion of the precursor ALA to EPA, < 5%(127),
and to DHA, < 0·05%(128). Several enzymes are required to
elongate and desaturate ALA or other shorter and less
unsaturated n-3 PUFA into DHA. Research has found evidence
suggesting that DHA formation may be regulated independently
of other FA in the pathway and that DHA binding to PPARα
suppresses transcription of the Δ-6 desaturase gene, thereby
down-regulating conversion of ALA to DHA(129). Indeed, it
should be noted that the rate-limiting step in DHA synthesis
is precisely the desaturation of ALA by Δ-6 desaturase.
An overview of the possible routes for attaining DHA in the
human organism, taking into account enzyme action, conversion
rates, genetic factors, and dependence on the starting n-3 PUFA,
is presented in Table 5.

Conclusions

DHA is mainly found in seafood, being rich sources of DHA
such as marine fish and shellfish. Oily fish such as herring,
salmon, sardine and tuna provide the highest amount of DHA
per meal. DHA intake may be associated with several health
endpoints ranging from inflammatory processes, asthma and
rheumatoid arthritis to CVD and diabetes mellitus as well as to
depression and cancer. Particularly, DHA has an important role
in the nervous system, which is highlighted by its prominence
in neural tissues. DHA may lead to the formation of
docosanoids such as NeuroPs or NPD1. Namely, the action of
NPD1 in the central nervous system is influential in different
ways. It is known that NPD1 leads to homeostatic signalling in
response to cellular and systemic imbalances. Nevertheless,
much needs to be known about the mechanisms and roles of
NPD1. For instance, NPD1 as a possible modulating agent of
transport mediated by ApoE and its effect on β-APP processing
is not fully understood. In spite of this, there seems to be some
protection against cognitive decline with ageing and even
improved memory and reaction time in healthy young adults.
Indeed, for ageing-related MCI, some studies suggest that DHA
may improve cognitive abilities. Nonetheless, for healthy
subjects or MCI and AD patients, the evidence is still not
convincing. In this context, it is worthwhile noting that for
ApoE4 allele-negative AD patients, DHA produced a benefit in
the cognitive score. Future studies should take the DHA
bioavailability issue into account in order to achieve better
results. On the other hand, research should try to separate the
role of DHA and of EPA through studies using DHA only
instead of fish oil rich also in EPA. Moreover, DHA in each main
lipid class should be quantified instead of global DHA. Finally,
future RCT and observational studies should always take into
account the genetic traits of the population, since some effects
may only be detected in subgroups with specific alleles.
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