ON APPROXIMATE SOLUTIONS OF SOME DIFFERENCE EQUATIONS

JANUSZ BRZDĘK and PAWEŁ WÓJCIK ${ }^{\boxtimes}$

(Received 14 October 2016; accepted 18 October 2016; first published online 1 December 2016)

Abstract

In this paper we present a simple (fixed point) method that yields various results concerning approximate solutions of some difference equations. The results are motivated by the notion of Ulam stability.

2010 Mathematics subject classification: primary 39B82; secondary 39A06, 47H10, 47J05, 47J25.
Keywords and phrases: Hyers-Ulam stability, linear recurrence, difference equation, Banach space, metric space, fixed point theorem.

1. Introduction

Let (M, ρ) be a metric space, \mathbb{J} be either \mathbb{N} (positive integers) or \mathbb{Z} (integers) and $p \in \mathbb{N}$. We study the approximate solutions in M of the difference equations

$$
\begin{align*}
x_{n+p} & =T_{n}\left(x_{n}, x_{n+1}, \ldots, x_{n+p-1}\right), & & n \in \mathbb{J}, \tag{1.1}\\
x_{n} & =T_{n}\left(x_{n+1}, x_{n+2}, \ldots, x_{n+p}\right), & & n \in \mathbb{J}, \tag{1.2}
\end{align*}
$$

or, in other words, we investigate solutions $\left(x_{n}\right)_{n \in \mathbb{J}} \in M^{\rrbracket}$ ($M^{\mathbb{J}}$ denotes, as usual, the family of all sequences $\left(x_{n}\right)_{n \in \mathrm{~J}}$ in M) of the inequalities

$$
\begin{gather*}
\rho\left(z_{n+p} ; T_{n}\left(z_{n}, z_{n+1}, \ldots, z_{n+p-1}\right)\right) \leqslant \delta_{n+p}, \quad n \in \mathbb{J}, \tag{1.3}\\
\rho\left(z_{n} ; T_{n}\left(z_{n+1}, z_{n+2}, \ldots, z_{n+p}\right)\right) \leqslant \delta_{n}, \quad n \in \mathbb{J}, \tag{1.4}
\end{gather*}
$$

for $T_{n}: M^{p} \rightarrow M$ and $\delta_{n} \in \mathbb{R}_{+}$(positive reals). Such investigations are connected with the issue of Ulam stability, which has been a very popular subject for many years and covers a broad variety of mathematical objects (for example, differential, difference, functional, integral and operator equations); we refer to $[2,6]$ for further information and some recent related results. This type of stability is connected with the following natural question: When is an approximate (in some sense) solution of an equation somehow close to a solution of the equation?

Such questions appear in natural ways. For instance, if we cannot determine a suitable description of solutions to an equation, then we can try to find functions of

[^0]simpler forms satisfying the equation only approximately (with a particular error) and show that each such function is close (in some sense) to a solution of the equation. The theory of Ulam stability provides convenient tools for such investigations. The case $p=1$ and $\mathbb{J}=\mathbb{N}$ has been studied for (1.1) in [3] (cf. [1, 7-9]). In particular, it has been proved in [3, Theorem 2] that if there is $\left(\alpha_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}_{+}^{J}$ with
\[

$$
\begin{equation*}
\rho\left(T_{n}(x), T_{n}(y)\right) \leqslant \alpha_{n} \rho(x, y), \quad n \in \mathbb{N}, \quad \limsup _{n \rightarrow \infty} \frac{\delta_{n} \alpha_{n}}{\delta_{n+1}}<1 \tag{1.5}
\end{equation*}
$$

\]

then there are a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in M and a positive real $\mu \in \mathbb{R}_{+}$with $x_{n+1}=T_{n}\left(x_{n}\right)$ and $d\left(z_{n}, x_{n}\right) \leqslant \mu \delta_{n}$ for $n \in \mathbb{N}$. Moreover, [3, Theorem 1] contains the following result.

Theorem 1.1. Let $(X,+)$ be an abelian group, d be a complete and invariant metric in $X, a_{n}: X \rightarrow X$ be a continuous isomorphism for every $n \in \mathbb{N}$, and let $\left(\delta_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}_{+}^{\mathbb{N}}$, $\left(\alpha_{n}\right)_{n \in \mathbb{N}} \in[0,+\infty)^{\mathbb{N}}$ and $\left(z_{n}\right)_{n \in \mathbb{N}},\left(b_{n}\right)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$. Suppose that

$$
\begin{equation*}
d\left(z_{n+1}, a_{n}\left(z_{n}\right)+b_{n}\right) \leqslant \delta_{n+1}, \quad n \in \mathbb{N}, \quad \liminf _{n \rightarrow \infty} \frac{\delta_{n} \alpha_{n}}{\delta_{n+1}}>1 \tag{1.6}
\end{equation*}
$$

and $d\left(a_{n}(x), a_{n}(y)\right) \geqslant \alpha_{n} d(x, y)$ for $x, y \in X, n \in \mathbb{N}_{0}$. Then there is a unique $\left(x_{n}\right)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$ with $x_{n+1}=a_{n}\left(x_{n}\right)+b_{n}$ for $n \in \mathbb{N}$ and $\sup _{n \in \mathbb{N}} d\left(z_{n}, x_{n}\right) / \delta_{n}<\infty$.

Those results have been obtained in a quite involved way. We present a simple fixed point method that yields various more general results of the same type. In particular, we generalise, complement and extend the results in [3] (see Theorems 2.1 and 2.3 and Remark 2.4). Namely, we consider a more general difference equation (1.1) (for any $p \in \mathbb{N}$ and without assuming any group structure in M), prove analogous results for (1.2) and consider simultaneously also the case where \mathbb{N} is replaced by \mathbb{Z}. Since we also study the case $\mathbb{J}=\mathbb{Z}$, we assume conditions somewhat stronger than (1.5) and (1.6), but in this way we obtain more precise results.

A kind of completeness is generally necessary to obtain such stability results (cf. [2]); for example, completeness of d in Theorem 1.1. We show, in particular, that even if such completeness is lacking, then this method allows us to obtain a suitable substitute of such stability; namely, there are sequences satisfying the considered equation with 'arbitrarily small error' (in some sense).

Stability of (1.1) for arbitrary p was considered in [4], but in a Banach space and with $T_{n}\left(x_{1}, \ldots, x_{p}\right) \equiv \sum_{i=1}^{p} \xi_{i} x_{i}+\beta_{0}$ and $\delta_{n}=\delta$ for $n \in \mathbb{N}$ and some $\delta \in \mathbb{R}_{+}$, where ξ_{i} are fixed scalars and β_{0} a given element of the Banach space. So, our results also generalise and complement those in [4] to some extent (see also [1]).

In what follows, as before, (M, ρ) is a metric space, \mathbb{J} is either \mathbb{N} or \mathbb{Z} and $p \in \mathbb{N}$. Moreover, $T_{n}: M^{p} \rightarrow M$ and $\delta_{n} \in \mathbb{R}^{+}$for $n \in \mathbb{N}$ are given. To avoid any confusion in what follows, let us explain that, given $\left(a_{n}\right)_{n \in \mathrm{~J}} \in M^{\mathbb{J}}$, the symbol $\left(a_{n-1}\right)_{n \in \mathrm{~J}}$ denotes the sequence $\left(b_{n}\right)_{n \in \mathrm{~J}}$ in M given by $b_{n}:=a_{n-1}$ for $n \in \mathbb{J}$.

2. Main results

Theorem 2.1. Let $\left(z_{n}\right)_{n \in \mathbb{J}} \in M^{\mathbb{J}}, \Theta_{n}: \mathbb{R}_{+}^{p} \rightarrow \mathbb{R}_{+}$for $n \in \mathbb{N}, \vartheta \in(0,1)$,

$$
\begin{align*}
& \rho\left(T_{n}(\bar{y}), T_{n}(\bar{w})\right) \leqslant \Theta_{n}\left(\rho\left(y_{1}, w_{1}\right), \ldots, \rho\left(y_{p}, w_{p}\right)\right) \tag{2.1}\\
& \quad \text { for } \bar{y}=\left(y_{1}, \ldots, y_{p}\right), \bar{w}=\left(w_{1}, \ldots, w_{p}\right) \in M^{p}, n \in \mathbb{J}, \\
& \sup _{i \in \mathbb{J}} \frac{\Theta_{i}\left(a_{i}, \ldots, a_{i+p-1}\right)}{\delta_{p+i}}<\vartheta \sup _{i \in \mathbb{J}} \frac{a_{i}}{\delta_{i}}, \quad\left(a_{n}\right)_{n \in \mathbb{J}} \in \mathbb{R}_{+}^{\mathbb{J}} \tag{2.2}
\end{align*}
$$

and suppose that (1.3) holds. Then, for each $\varepsilon \in(0,1)$, there is $x=\left(x_{n}\right)_{n \in \mathrm{~J}} \in M^{\mathrm{J}}$ with

$$
\begin{equation*}
\rho\left(x_{n+p}, T_{n}\left(x_{n}, \ldots, x_{n+p-1}\right)\right) \leqslant \varepsilon \delta_{n+p}, \quad \rho\left(z_{n}, x_{n}\right) \leqslant \frac{\delta_{n}}{1-\vartheta}, n \in \mathbb{J} . \tag{2.3}
\end{equation*}
$$

Next, if the metric ρ is complete, then there is a solution $u=\left(u_{n}\right)_{n \in \mathbb{J}} \in M^{\rrbracket}$ of (1.1) such that $\sigma:=\sup _{n \in \mathbb{J}} \rho\left(z_{n}, u_{n}\right) / \delta_{n} \leqslant 1 /(1-\vartheta)$; moreover, if $\mathbb{J}=\mathbb{Z}$, then there exists only one solution $u=\left(u_{n}\right)_{n \in \mathbb{J}} \in M^{\mathbb{J}}$ of (1.1) with $\sigma<\infty$.

Proof. Write $\rho_{\infty}(u, w):=\sup _{n \in \mathbb{J}} \rho\left(u_{n}, w_{n}\right) / \delta_{n}$ for $u=\left(u_{n}\right)_{n \in \mathbb{J}}, w=\left(w_{n}\right)_{n \in \mathbb{J}} \in M^{\mathbb{J}}$ and $\mathcal{M}:=\left\{y=\left(y_{n}\right)_{n \in \mathbb{J}} \in M^{\mathbb{J}}: \rho_{\infty}(y, z)<\infty\right\}$ and set

$$
\mathcal{T}(y):= \begin{cases}\left(T_{n-p}\left(y_{n-p}, \ldots, y_{n-1}\right)\right)_{n \in \mathbb{J}} & \text { if } \mathbb{J}=\mathbb{Z} \\ \left(z_{1}, \ldots, z_{p}, T_{1}\left(y_{1}, \ldots, y_{p}\right), T_{2}\left(y_{2}, \ldots, y_{p+1}\right), \ldots\right) & \text { if } \mathbb{J}=\mathbb{N}\end{cases}
$$

for every $y=\left(y_{n}\right)_{n \in \mathrm{~J}} \in \mathcal{M}$. Then $\left(\mathcal{M}, \rho_{\infty}\right)$ is a metric space, $\rho_{\infty}(z, \mathcal{T}(z)) \leqslant 1$ and

$$
\begin{align*}
\rho_{\infty}(\mathcal{T}(y), \mathcal{T}(w)) & =\sup _{i \in J} \frac{\rho\left(T_{i}\left(y_{i}, \ldots, y_{i+p-1}\right), T_{i}\left(w_{i}, \ldots, w_{i+p-1}\right)\right)}{\delta_{p+i}} \\
& \leqslant \sup _{i \in J} \frac{\Theta_{i}\left(\rho\left(y_{i}, w_{i}\right), \ldots, \rho\left(y_{i+p-1}, w_{i+p-1}\right)\right)}{\delta_{p+i}} \tag{2.4}
\end{align*}
$$

for every $y=\left(y_{n}\right)_{n \in \mathrm{~J}}, w=\left(w_{n}\right)_{n \in \mathrm{~J}} \in \mathcal{M}$. Next, note that condition (2.2) implies $\sup _{i \in \mathrm{~J}} \Theta_{i}\left(\rho\left(y_{i}, w_{i}\right), \ldots, \rho\left(y_{i+p-1}, w_{i+p-1}\right)\right) / \delta_{p+i} \leqslant \vartheta \rho_{\infty}(y, w)$ for all sequences $y=\left(y_{n}\right)_{n \in \mathrm{~J}}$, $w=\left(w_{n}\right)_{n \in \mathcal{J}} \in \mathcal{M}$, whence, from (2.4), we deduce that $\rho_{\infty}(\mathcal{T}(y), \mathcal{T}(w)) \leqslant \vartheta \rho_{\infty}(y, w)$ for every $y=\left(y_{n}\right)_{n \in \mathbb{J}}, w=\left(w_{n}\right)_{n \in \mathbb{J}} \in \mathcal{M}$. So, $\mathcal{T}: \mathcal{M} \rightarrow \mathcal{M}$ is a contraction with the constant ϑ. Hence, $\rho_{\infty}\left(\mathcal{T}^{n}(z), \mathcal{T}^{n+1}(z)\right) \leqslant \vartheta^{n} \rho_{\infty}(z, \mathcal{T}(z))$ for $n \in \mathbb{N}$. Fix $\varepsilon \in(0,1)$. Clearly, $\vartheta^{n_{0}} \rho_{\infty}(z, \mathcal{T}(z)) \leqslant \varepsilon$ for some $n_{0} \in \mathbb{N}$. Take $x:=\mathcal{T}^{n_{0}}(z)$. Then it is easily seen that $\rho_{\infty}(z, x) \leqslant \sum_{i=0}^{n_{0}-1} \rho_{\infty}\left(\mathcal{T}^{i}(z), \mathcal{T}^{i+1}(z)\right) \leqslant \sum_{i=0}^{n_{0}-1} \vartheta^{i} \rho_{\infty}(z, \mathcal{T}(z)) \leqslant 1 /(1-\vartheta)$ and $\rho_{\infty}(x, \mathcal{T}(x)) \leqslant \varepsilon$, which means that (2.3) holds.

Assume that the metric space (M, ρ) is complete. Then so is $\left(\mathcal{M}, \rho_{\infty}\right)$ and by the Banach contraction principle there is a unique fixed point $u \in \mathcal{M}$ of \mathcal{T} and $\rho_{\infty}(u, z) \leqslant \rho_{\infty}(z, \mathcal{T}(z)) /(1-\vartheta) \leqslant 1 /(1-\vartheta)$. Since $u=\mathcal{T}(u), u$ is a solution to (1.1).

Finally, let $\mathbb{J}=\mathbb{Z}$ and $v=\left(v_{n}\right)_{n \in \mathbb{J}} \in \mathcal{M}$ be a solution to (1.1). Then $v=\mathcal{T}(v)$, whence v is a fixed point of \mathcal{T} and consequently $u=v$.

It follows from the proof that $u=\left(u_{n}\right)_{n \in \mathbb{J}}$ in Theorem 2.1 can be chosen, for $\mathbb{J}=\mathbb{N}$, with $u_{i}=z_{i}$ for $i=1, \ldots, p$. Clearly, there is only one such solution, but generally the uniqueness property, as for $\mathbb{J}=\mathbb{Z}$, does not hold for $\mathbb{J}=\mathbb{N}$.

Remark 2.2. Let $\tau_{n, i} \in[0, \infty)$ for $n, i \in \mathbb{Z}$ and $\Theta_{n}(\bar{a}):=\max _{i=1, \ldots, p} \tau_{n, i} a_{i}$ for $n \in \mathbb{J}$, $\bar{a}=\left(a_{1}, \ldots, a_{p}\right) \in \mathbb{R}_{+}^{p}$. Then, for example, (2.2) follows with $\vartheta:=\vartheta_{0}$ from the condition

$$
\begin{equation*}
\vartheta_{0}:=\sup _{i \in \mathbb{J}} \max _{k=0, \ldots, p-1} \frac{\delta_{i+k} \tau_{i, i+k}}{\delta_{p+i}}<1, \tag{2.5}
\end{equation*}
$$

because $\tau_{i, i+k} / \delta_{p+i} \leqslant \vartheta_{0} / \delta_{i+k}$ for $i \in \mathbb{J}, k=0, \ldots, p-1$ and consequently

$$
\sup _{i \in \mathbb{J}} \max _{k=0, \ldots, p-1} \frac{\tau_{i, i+k} a_{i+k}}{\delta_{p+i}} \leqslant \sup _{i \in \mathbb{J}} \max _{k=0, \ldots, p-1} \vartheta_{0} \frac{a_{i+k}}{\delta_{i+k}}=\vartheta_{0} \sup _{i \in \mathbb{J}} \frac{a_{i}}{\delta_{i}}, \quad\left(a_{n}\right)_{n \in \mathbb{J}} \in \mathbb{R}_{+}^{\mathbb{J}} .
$$

If $\Theta_{n}(\bar{a})=\sum_{i=1}^{p} \tau_{n, i} a_{i}$ for $n \in \mathbb{J}$ and $\bar{a}=\left(a_{1}, \ldots, a_{p}\right) \in \mathbb{R}_{+}^{p}$, then analogously it is easy to show that (2.2) holds for instance with $\theta=p \theta_{0}$ when $\theta_{0}<1 / p$ is defined by (2.5). Clearly, for $p=1$, condition (2.5) corresponds to the second inequality in (1.5), because (with $\tau_{j}:=\tau_{j, j}$ for $j \in \mathbb{J}$) it has the form

$$
\begin{equation*}
\vartheta:=\sup _{j \in \mathbb{J}} \frac{\delta_{j} \tau_{j}}{\delta_{j+1}}<1 . \tag{2.6}
\end{equation*}
$$

Theorem 2.3. Let $\left(z_{n}\right)_{n \in \mathbb{J}} \in M^{\mathbb{J}}, \Theta_{n}: \mathbb{R}_{+}^{p} \rightarrow \mathbb{R}_{+}$for $n \in \mathbb{N}$, (1.4) and (2.1) hold and

$$
\begin{equation*}
\sup _{i \in \mathbb{J}} \frac{\Theta_{i}\left(a_{i+1}, \ldots, a_{i+p}\right)}{\delta_{i}} \leqslant \vartheta \sup _{i \in \mathbb{J}} \frac{a_{i}}{\delta_{i}}, \quad\left(a_{n}\right)_{n \in \mathbb{J}} \in \mathbb{R}_{+}^{J}, \tag{2.7}
\end{equation*}
$$

with some $\vartheta \in(0,1)$. Then, for each $\varepsilon \in(0,1)$, there is $x=\left(x_{n}\right)_{n \in \mathbb{J}} \in M^{\mathbb{J}}$ with

$$
\rho\left(x_{n}, T_{n}\left(x_{n+1}, \ldots, x_{n+p}\right)\right) \leqslant \varepsilon \delta_{n}, \quad \rho\left(z_{n}, x_{n}\right) \leqslant \frac{\delta_{n}}{1-\vartheta}, n \in \mathbb{J} .
$$

Next, if ρ is complete, then there is a unique solution $u=\left(u_{n}\right)_{n \in \mathbb{J}} \in M^{\mathbb{J}}$ of (1.2) with $\sigma:=\sup _{n \in \mathbb{J}} \rho\left(z_{n}, u_{n}\right) / \delta_{n}<\infty$; moreover, $\rho\left(z_{n}, u_{n}\right) \leqslant \delta_{n} /(1-\vartheta)$ for $n \in \mathbb{J}$.

Proof. Write $\rho_{\infty}(u, w):=\sup _{n \in \mathbb{J}} \rho\left(u_{n}, w_{n}\right) / \delta_{n}$ for $u=\left(u_{n}\right)_{n \in \mathbb{J}}, w=\left(w_{n}\right)_{n \in \mathbb{J}} \in M^{\mathbb{J}}$ and $\mathcal{M}:=\left\{y=\left(y_{n}\right)_{n \in \mathbb{J}} \in M^{\mathbb{J}}: \rho_{\infty}(y, z)<\infty\right\}$ and set $\mathcal{T}(y):=\left(T_{n}\left(y_{n+1}, \ldots, y_{n+p}\right)\right)_{n \in \mathbb{J}}$ for $y=\left(y_{n}\right)_{n \in \mathbb{J}} \in \mathcal{M}$. Then $\left(\mathcal{M}, \rho_{\infty}\right)$ is a metric space, $\rho_{\infty}(z, \mathcal{T}(z)) \leqslant 1$ and

$$
\begin{aligned}
\rho_{\infty}(\mathcal{T}(y), \mathcal{T}(w)) & =\sup _{i \in \mathbb{J}} \frac{\rho\left(T_{i}\left(y_{i+1}, \ldots, y_{i+p}\right), T_{i}\left(w_{i+1}, \ldots, w_{i+p}\right)\right)}{\delta_{i}} \\
& \leqslant \sup _{j \in \mathbb{J}} \frac{\Theta_{i}\left(\rho\left(y_{i+1}, w_{i+1}\right), \ldots, \rho\left(y_{i+p}, w_{i+p}\right)\right)}{\delta_{i}} \leqslant \vartheta \rho_{\infty}(y, w)
\end{aligned}
$$

for every $y=\left(y_{n}\right)_{n \in \mathrm{~J}}, w=\left(w_{n}\right)_{n \in \mathrm{~J}} \in \mathcal{M}$. So, $\mathcal{T}: \mathcal{M} \rightarrow \mathcal{M}$ is a contraction with the constant ϑ. The rest of the proof is analogous as for Theorem 2.1.

Some consequences of Theorems 2.1 and 2.3 (in the case $p=1$) are described in the subsequent remark.

Remark 2.4. Now consider a situation corresponding to Theorem 1.1. Namely, let $S_{n}: M \rightarrow M$ be surjective for $n \in \mathbb{J},\left(\gamma_{n}\right)_{n \in \mathbb{J}},\left(\eta_{n}\right)_{n \in \mathbb{J}} \in \mathbb{R}_{+}^{J},\left(w_{n}\right)_{n \in \mathbb{J}} \in M^{\mathbb{J}}$ and

$$
\begin{align*}
\rho\left(w_{n+1}, S_{n}\left(w_{n}\right)\right) \leqslant \eta_{n+1}, & n \in \mathbb{J}, \tag{2.8}\\
\rho\left(S_{n}(x), S_{n}(y)\right) \geqslant \gamma_{n} \rho(x, y), & x, y \in M, n \in \mathbb{J} . \tag{2.9}
\end{align*}
$$

Then S_{n} must be bijective for each $n \in \mathbb{J}$ (by (2.9)). Write

$$
T_{n}:=S_{n+1}^{-1}, \quad z_{n}:=S_{n}\left(w_{n}\right), \quad \delta_{n}:=\eta_{n+1} \quad \text { and } \quad \alpha_{n}:=\gamma_{n+1}^{-1} \quad \text { for } n \in \mathbb{J} .
$$

Then, from (2.8) and (2.9),

$$
\rho\left(z_{n}, T_{n}\left(z_{n+1}\right)\right)=\rho\left(S_{n}\left(w_{n}\right), T_{n}\left(S_{n+1}\left(w_{n+1}\right)\right)\right)=\rho\left(S_{n}\left(w_{n}\right), w_{n+1}\right) \leqslant \eta_{n+1}=\delta_{n}
$$

and $\rho\left(T_{n}(z), T_{n}(w)\right) \leqslant \alpha_{n} \rho(z, w)$ for $n \in \mathbb{J}, z, w \in M$, whence (1.4) and (2.1) hold for $p=1$ and $\Theta_{n}(a) \equiv \alpha_{n} a$. If we assume additionally that $\sup _{n \in \mathbb{J}} \eta_{n+1} /\left(\eta_{n} \gamma_{n}\right)<1$, then $\sup _{n \in \mathrm{~J}}\left(\delta_{n+1} \alpha_{n}\right) / \delta_{n}<1$, which implies (2.7) for $p=1$. So, we have reduced that situation to a particular case of Theorem 2.3. Thus, we obtain a generalisation of Theorem 1.1. An analogous result can be derived from Theorem 2.1 when (2.8) is replaced by the condition $\rho\left(w_{n}, S_{n}\left(w_{n+1}\right)\right) \leqslant \eta_{n}$ for $n \in \mathbb{J}$ and (2.9) holds; thus, we obtain a generalisation of [3, Theorem 2].

3. Final remarks

The next example shows that $\vartheta=1$ cannot be admitted in (2.6) (that is, in (2.5) with $p=1$) in the general situation. Namely, let X be a normed space with $\operatorname{dim} X \geqslant 2$ and $T_{n}: X \rightarrow X$ be a linear isometry for $n \in \mathbb{N}$. Then each T_{n} is a Lipschitz mapping with a constant $\vartheta=1$. Assume that there is $w \in X$, which is a fixed point of each T_{k}; take w with $\|w\|=1$.

Fix $\delta>0, \gamma>0$ and $m_{0} \in \mathbb{N}$ with $\gamma \pi<m_{0} \delta$. Define $\left(z_{n}\right)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$ by

$$
z_{n}:=2 \gamma \sin \left(\frac{\pi}{2} \cdot \frac{n}{m_{0}}\right) w, \quad n \in \mathbb{N} .
$$

Then $\sup _{n \in \mathbb{N}}\left\|z_{n+1}-T_{n}\left(z_{n}\right)\right\| \leqslant \delta$, because

$$
\begin{aligned}
\left\|z_{n+1}-T_{n}\left(z_{n}\right)\right\| & =\left\|2 \gamma \sin \left(\frac{\pi}{2} \cdot \frac{n+1}{m_{0}}\right) \cdot w-2 \gamma \sin \left(\frac{\pi}{2} \cdot \frac{n}{m_{0}}\right) \cdot T_{n}(w)\right\| \\
& =2 \gamma\left|\sin \left(\frac{\pi}{2} \cdot \frac{n+1}{m_{0}}\right)-\sin \left(\frac{\pi}{2} \cdot \frac{n}{m_{0}}\right)\right| \cdot\|w\| \\
& \leqslant 2 \gamma\left|\frac{\pi}{2} \cdot \frac{n+1}{m_{0}}-\frac{\pi}{2} \cdot \frac{n}{m_{0}}\right| \leqslant 2 \gamma \cdot \frac{\pi}{2} \cdot \frac{1}{m_{0}}<\delta, \quad n \in \mathbb{N} .
\end{aligned}
$$

Let $\left(x_{n}\right)_{n \in \mathbb{N}_{0}} \in X^{\mathbb{N}}$ and $x_{n+1}=T_{n}\left(x_{n}\right)$ for $n \in \mathbb{N}$. Then, for each $k \in \mathbb{N}$,

$$
\begin{gathered}
\left\|z_{2 k m_{0}}-x_{2 k m_{0}}\right\| \geqslant|2 \gamma| \sin \left(\frac{\pi}{2} \cdot \frac{2 k m_{0}}{m_{0}}\right)\left|-\left\|x_{0}\right\|\right|=\left\|x_{0}\right\|, \\
\left\|z_{(4 k+1) m_{0}}-x_{(4 k+1) m_{0}}\right\| \geqslant|2 \gamma| \sin \left(\frac{\pi}{2} \cdot \frac{(4 k+1) m_{0}}{m_{0}}\right)\left|-\left\|x_{0}\right\|\right|=\left|2 \gamma-\left\|x_{0}\right\|\right|,
\end{gathered}
$$

because $\left\|x_{k}\right\|=\left\|x_{0}\right\|$. This means that $\sup _{n \in \mathbb{N}}\left\|z_{n}-x_{n}\right\| \geqslant \gamma$.

Similar nonstability results, as described above, have been obtained in [5] also in the case where $p=1$ and $\lim _{n \rightarrow \infty} \delta_{n} \alpha_{n} / \delta_{n+1}=1$. On the other hand, in several similar cases with $p>1$, the stability results can be derived from [4] (cf. [2]).

References

[1] R. P. Agarwal, B. Xu and W. Zhang, 'Stability of functional equations in single variable', J. Math. Anal. Appl. 288 (2003), 852-869.
[2] N. Brillouët-Belluot, J. Brzdęk and K. Ciepliński, 'On some recent developments in Ulam's type stability', Abstr. Appl. Anal. 2012 (2012), Article ID 716936, 41 pp.
[3] J. Brzdęk, D. Popa and B. Xu, 'The Hyers-Ulam stability of nonlinear recurrences', J. Math. Anal. Appl. 335 (2007), 443-449.
[4] J. Brzdęk, D. Popa and B. Xu, 'Remarks on stability of linear recurrence of higher order', Appl. Math. Lett. 23 (2010), 1459-1463.
[5] J. Brzdęk, D. Popa and B. Xu, 'On nonstability of the linear recurrence of order one', J. Math. Anal. Appl. 367 (2010), 146-153.
[6] S.-M. Jung, D. Popa and M. Th. Rassias, 'On the stability of the linear functional equation in a single variable on complete metric groups', J. Global Optim. 59 (2014), 165-171.
[7] D. Popa, 'Hyers-Ulam-Rassias stability of the general linear equation', Nonlinear Funct. Anal. Appl. 7 (2002), 581-588.
[8] D. Popa, 'Hyers-Ulam-Rassias stability of a linear recurrence', J. Math. Anal. Appl. 309 (2005), 591-597.
[9] D. Popa, 'Hyers-Ulam stability of the linear recurrence with constant coefficients', Adv. Difference Equ. 2005 (2005), 101-107.

JANUSZ BRZDEK, Institute of Mathematics, Pedagogical University of Cracow, Podchorążych 2, 30-084 Kraków, Poland
e-mail: jbrzdek@up.krakow.pl
PAWEŁ WÓJCIK, Institute of Mathematics, Pedagogical University of Cracow,
Podchorążych 2, 30-084 Kraków, Poland
e-mail: pwojcik@up.krakow.pl

[^0]: (C) 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

