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NOTIONS OF TOPOS

Ross STREET

A Grothendieck topos has the property that its Yoneda embedding

has a left-exact left adjoint. A category with the latter

property is called lex-total. It is proved here that every lex-

total category is equivalent to its category of canonical sheaves.

An unpublished proof due to Peter Freyd is extended slightly to

yield that a lex-total category, which has a set of objects of

cardinality at most that of the universe such that each object in

the category is a quotient of an object from that set, is

necessarily a Grothendieck topos.

Lex-total categories were introduced in [7, p. 377] and were shown to

include Grothendieck toposes. These notions require the specification of a

strongly inaccessible cardinal N . A set is called small when it has

cardinality less than K , and is called moderate when it has cardinality

less than or equal to N . (Note that "small" may mean "finite" and

"moderate" then means "countable".) Let 5 denote the category of small

sets.

A category E is lex-total when E has small homsets and the Yoneda

embedding y : E •*• [E°P, 5] has a left adjoint z which preserves finite

limits. Part of a theorem of Giraud [3, p. 303] states that a category E

is a Grothendieck topos if and only if E has small homsets, every

5-valued canonical sheaf on E is representable, and E has a small

generating set of objects. (Recall that the canonical topology on a
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category is the largest topology for which the representable functors are

sheaves; canonical sheaves are sheaves for the canonical topology.)

The purpose of this article is to consider some relationships among

the following conditions on a category E with small homsets:

(1) E is a Grothendieck topos;

(2) E is lex total;

(3) every S-valued canonical sheaf on E is representable and

E has all small colimits;

(U) E is an elementary topos with all small colimits;

(5) E is a pretopos with all small coproducts and the latter

are preserved by pullback.

(For the definitions of "elementary topos" and "pretopos", see [4, p. 23,

p. 238].)

The following implications hold:

(1*)

- (5) .

If E has a generating small set of objects all the conditions (l)-(5) are

equivalent. The dotted implications in the above diagram hold under a size

condition apparently weaker than requiring a generating small set.

(1) -»• (2) was proved in [7] where it was also asserted that (2) •*• (1*)

provided E is well-powered.

CO ~*~ (5) is well-known elementary topos theory.

(3) •+ (5) is easy.

(2) + (3) is Theorem A below.

(2) -»• (l), under the assumption that E has a moderate set of

isomorphism classes of objects, was proved by Peter Freyd in correspondence
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with the author. The proof of Theorem B below is essentially Freyd's proof

modified to accommodate an apparently weaker assumption on E .

An example is given below to show that (U) does not imply (3).

Andre Joyal has suggested that (5) is a good notion of topos. Small

generating sets may not exist in such categories (see the false toposes of

[3, Expose IV (2.8)]). Even if they do, they are not to be discovered

canonically: witness the proof of Theorem B which leans heavily on the

axiom of choice and proof by contradiction.

It is possible that there are lex-total categories (with very large

sets of isomorphism classes) which are not Grothendieck toposes. (An

example is not known to the author.) Even if this should be the case, it

is the contention of Bob Walters and the author that lex-total categories

are the good notion of topos. After all, what one expects of a topos is

that it should be a category of sheaves on some site. The only canonical

choice of site is the topos itself with the canonical topology. Theorem A

shows that lex total categories meet this criterion. Another important

property of lex-total categories is that colimit-preserving functors out of

them have right adjoints [7, p. 372]; this property, which takes the place

of the "generator" condition for many purposes, is not obviously satisfied

by categories for which (3) holds.

Several years ago the author conjectured that (3) implies (l).

However, we are unable to prove that (3) implies (2) even under the

assumption that E is well-powered.

The notion of lex-totality relative to a given size structure makes

sense in a very general setting and yields important concepts in other

particular cases. For example, for an elementary topos B , there is a

size structure on the bicategory of fibrations over B such that every

elementary topos with generators (in the internal sense [4]) over B gives

rise to a lex-total object of the bicategory [5]. All the good properties

of elementary toposes with generators over B are shared by the lex-total

objects. It seems unlikely, in the absence of the axiom of choice in B

that lex-total objects should all arise in this way.

Suppose AT is a category with pullbacks. For any family C of

arrows into some object u of X , let D{C) denote the free category on

the graph described as follows. There are objects £, and objects (C, i)
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where C» 1 are members of C . For each C> 1 in C , there are arrows

as shown below:

G <• (G, n) ••• n .

There is a functor k- : D(C) •* X which takes the above span to the

pullback of £> r) :

MS. i) * Mi
p.b.

The arrows E, : u are the components of a cocone : !<„ •*• u with

vertex u . A functor / : X°^ •*• Z is a sheaf for a topology on X when,

for each covering family C of arrows into u , the cocone A_ is taken

by / to a limit cone with vertex fu . The representable functors are

all sheaves precisely when the cocone X̂ , is a colimit cocone for all
o

covering families C . It follows easily that, for any topology for which

the representables are sheaves, all covering families must be extremal

epimorphic (terminology of [2, p. ITT]).

THEOREM A. Every S-valued canonical sheaf on a lex-total category

E is representable.

'Proof. First we shall show that the canonical topology on E

consists of the extremal epimorphic families. Since the representables are

to be sheaves, all covering families must be extremal epimorphic. Since

pulling back has a right adjoint for a lex-total category E , the extremal

epimorphic families do form a topology on E . It remains to show that the

representables are sheaves for this topology. Let C be an extremal

epimorphic family of arrows into u . In [E , S] the cocone

2/A., : ykg •*• yu factors as a a composite yk^ -*• p •*• yu where yk- •*• p is

a colimit cocone and p •*• yu is a monomorphism. Since z preserves all

colimits, preserves pullbacks, and has zy - 1 , we obtain a factorization

of X̂ , as k~ -*• zp -*• u where ?c_ -*• zp is a colimit and zp •*• u is a

monomorphism. Since k^ •* u is extremal epimorphic, zp -*• u is also
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extremal epimorphic and hence an isomorphism. So X : fc -»• K is a

colimit cocone as required.

Let S' denote a category of sets such that S and E are

categories in S' . Write E for the category of canonical S-valued

sheaves on E , and write E' for the category of canonical S'-valued

sheaves on E . We have the diagram

E'

where i, i' and the vertical functors are inclusions, ij = y , and a'

is the associated sheaf functor [I, p. 2U].

For each extremal epimorphio family C , the functor j preserves the

colimit X : kr •*• u . To see this, take / € E . We must prove that

E[yxc, l) = E{yu, f) •*• E[ykc, f) is a limit cone. But, by Yoneda's lemma,

the latter cone is isomorphic to f\r : fu •* fkr which is a limit cone

since f is a sheaf.

In order to prove the theorem we must show that, for each f € E , the

unit f •* yzf is invertible.

Certainly the arrows O : yu •* f from representables form an

epimorphic family C in \]P , s] . So X^ : k„ •*• f is a colimit cocone

in [E°v, S] and also in [E°v, 5'] . Since a' preserves colimits,

pullbacks, and has a'i' = 1 ,' we see that X • k •*• f is a colimit

cocone in E' . Since the cocone is in E , it is a colimit in E .

Applying z to the colimit \
Q : f in [^, S] , we obtain a

colimit cocone z\- : zk- •* zf which, since z preserves pullbacks, is

non-other than X : fe ->• zf where M is the family of all arrows into
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zf in E . Since j preserves such colimits, we obtain a colimit

yXM : ykM ~" ySf in ^ "

k(o, T )

In the above diagram k{a, T) is the pullback of a, T and

yzk(o, T ) is the pullback of ya', yx' . Moreover, / is a colimit over

all o, T of the diagrams involving k(a, T ) , yu, yv ; while yzf is a

colimit over all a', T' of the diagrams involving yzk{a, x), yu, yv .

Consider now the special case where / is a subobject of a

representable. Then f -*• yzf is monomorphic; so, in the above diagram,

k(a, x) -*• yzk(o, T ) is invertible. Thus f, yzf are colimits of

isomorphic diagrams and hence / •* yzf is invertible.

Return now to the general case. Since k(a, T ) is a subobject of

y(u x v) , the arrow k{a, x) -»- yzk(o, T ) is invertible. So again,

/% yzf are colimits of isomorphic diagrams. So / •*• yzf is invertible. d

The proof of the following result is a mild modification of a proof of

Peter Freyd.

THEOREM B. Suppose E ie a total category satisfying the following

two conditions:

(a) if a pushout of a monomorphism is an isomorphism then the

monomorphism is an isomorphism;

(b) there exists a moderate set M of objects of E such that,

for each object u of F ,- there exists an extremal

epimorphism v •*• u with v in M .

Then E has a strongly generating small set of objects.

Proof. Suppose E has no strongly generating small set of objects.

Then M is not small. We may assume E is skeletal. Well order the
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objects of M so that each iv € M | v 5 u] is small for each u in M

The latter set cannot strongly generate E . So there exists a

monomorphism V : m •* n in E which is not an isomorphism and yet

E[v, U ) : E[v, m ) •*• E(v, n ) is an isomorphism for all v 5 u . In

[£°p, S'] , form the colimit:

u € M .

More explicitly, for w € E , pw is the disjoint union of 1 and, for

each u € M , the set of arrows W •*• n which do not factor through u

Using (b), we have an extremal epimorphism V -*• w with V in M . It

follows that pw •*• pv is a monomorphism. Since E[v, \I ) = [y\i )v is an

isomorphism for all u > V , it follows that pv (and hence pw ) is

small. So p lands in 5 . So the above diagram is a colimit in

, S] . Apply 2 to obtain a colimit:

ZUi
-*• zp

in E .

For each object x of M , define e : zp •*• zp by E •;
X X

We next prove that the assignment x t—+• e is a monomorphism from M
3C

to £"(2p, 2p) . Suppose and x * x' . Then e 5 = e ,C
3C X X X

So

C^ factors through 2<o . It follows from the above colimit property of

2p that the diagram below is a pushout:
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u
m • n
x x

Using (a), we obtain that u is an isomorphism, a contradiction.

However, "E(zp, zp) is a small set. So M is small, a

contradiction. O

In a lex-total category, a pushout of a monomorphism is automatically

a puirback, so condition (a) holds.

COROLLARY. A lex-total category E is a Grothendieak topos if and

only if it satisfies condition (b) of Theorem B.

EXAMPLE. The "false toposes" of [3] provide examples of categories E

with small homsets which satisfy conditions (U), (5)5 and condition (b) of

Theorem B, and yet do not satisfy conditions (l), (2), (3).

To fix ideas we suppose x to be countable so that S is the

category of finite sets. Take G to be the infinite cyclic group and E

to be the category of finite G-sets. Then E satisfies (1*), (5) and has

a moderate set of isomorphism classes. An object of E can be regarded as

a finite set with a permutation on it. An atom of E is an object with.no

proper subobjects. Notice that there are atoms of all small cardinalities

(take the cycles!).

The covers for the canonical topology on E are the epimorphic

families. Let A denote a set of representatives for the isomorphism

classes of atoms! Each object of E can be covered by a family of

disjoint monomorphisms from objects of A . The topology on A (regarded

as a full subcategory of E ), induced by canonical topology of £ , is

generated by covers consisting of single arrows. (Every arrow in A is an

epimorphism in E .) By the comparison lemma [S, p. 288], each sheaf on A

has a unique (up to isomorphism) extension to a sheaf on E . Let

/ : A p •+ S be the coproduct of all the representables A[-, a) , a € A ;

note that f lands in S since each b (. A has an arrow into only a

small set of a € A . It is easily seen that f is a sheaf, and so
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extends to a sheaf g : E -*• S .

We claim g is not representable. Suppose g is represented by some

x € E . Then, for each b € A , we have E(b, x) S gb = /Z> ̂  X

It follows easily that, for each a i. A , there is a monomorphism a •*• x

which is impossible.

Thus E does not satisfy (3). ^
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