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The Numerical Range of 2-Dimensional
Krein Space Operators

Hiroshi Nakazato, Natália Bebiano, and João da Providência

Abstract. The tracial numerical range of operators on a 2-dimensional Krein space is investigated.

Results in the vein of those obtained in the context of Hilbert spaces are obtained.

1 Introduction and Main Results

For J = Ir ⊕ (−Is), consider C
r+s endowed with an indefinite inner product [ · , · ]

defined by [ξ, η] = 〈 Jξ, η〉.Denote by U (r, s) the group of complex matrices U such

that U JU ∗
= J. For n × n complex matrices A,C , consider the J-tracial numerical

range

(1.1) W J
C (A) = {tr(CUAU−1) : U ∈ U (r, s)}.

The theory of numerical ranges on an indefinite inner product space has been in-

vestigated by some authors (see [1,2,4–6] and the references therein). Our aim is the

characterization of (1.1) for n = 2 and r = s = 1. By adding appropriate multiples

of I to the non-scalar matrices A, C , without loss of generality these matrices may be

assumed to have rank one. If C is a rank one operator on C
r+s, there exist non-zero

vectors η, ζ satisfying

(1.2) Cξ = [ξ, η]ζ, ∀ξ ∈ C
r+s.

Considering an orthonormal basis {ξ1, . . . , ξn} with respect to the definite inner

product 〈 · , · 〉, we get tr(CUAU−1) = [UAU−1ζ, Jη], and so (1.1) is written as

W J
C (A) = {[U−1AUζ, η] : U ∈ U (r, s)}.

In the sequel, we consider the case n = 2 and r = s = 1 and we assume that A is a

rank one operator defined by

(1.3) Aξ = [ξ, κ]τ , ∀ ξ ∈ C
r+s.

Simple calculations yield [U−1AUζ, η] = [Uζ, κ][Uη, τ ], where U runs over the

3-dimensional simple Lie group SU (1, 1), that is, the subgroup of U (1, 1) consti-

tuted by the matrices with determinant 1 (see [3]). So we are concerned with the

description of the set of the complex plane

W J
C (A) = {[Uζ, κ][Uη, τ ] : U ∈ SU (1, 1)}.
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In this paper we treat the case when η, ζ, κ, τ are non-neutral vectors, that is, vec-

tors with nonvanishing norm relative to the indefinite inner product. The results

obtained in this case, or the methods developed in its analysis, will be useful to solve

the problem when some of the vectors η, ζ, κ, τ are neutral.

Throughout, we use the notation a = tr(A), a ′
= tr(A JA∗ J), c = tr(C), c ′ =

tr(C JC∗ J).

Our main result is the following.

Theorem 1.1 Let C,A be 2 × 2 complex rank one matrices and let η, ζ, κ, τ be non-

neutral vectors. The following cases may occur:

(i) If c ′a ′ < 0, then W J
C (A) = C.

(ii) If c ′ > 0 and a ′ > 0, then W J
C (A) is a closed connected region limited by one

branch of a hyperbola, or, in the case of degeneracy of this conic, a closed half-

plane.

For c ′ < 0 and a ′ < 0,W J
C (A) is given as follows:

(iii) For every ξ ∈ C
2, if either [Cξ,Cξ] ≥ 0 and [Aξ,Aξ] ≥ 0, or if [Cξ,Cξ] ≤ 0

and [Aξ,Aξ] ≤ 0, then W J
C (A) = C;

(iv) For every ξ ∈ C
2, if either [Cξ,Cξ] ≥ 0 and [Aξ,Aξ] ≤ 0, or if [Cξ,Cξ] ≤ 0

and [Aξ,Aξ] ≥ 0, then W J
C (A) is an unbounded closed connected region limited

by an ellipse.

Moreover, the above conics are expressed as

(x cos θ + y sin θ − λ0)2

α2
+ ǫ

(−x sin θ + y cos θ)2

β2
= 1,

where λ0 = (ca)/2, θ = argλ0,

α = (a ′c ′)1/2/2 + ǫ/2[(|c|2 − c ′)1/2(|a|2 − a ′)1/2],(1.4)

β = (1/2)[|c ′|1/2(|a|2 − a ′)1/2 + |a ′|1/2(|c|2 − c ′)1/2],(1.5)

being ǫ = −1 and ǫ = 1 for (ii) and (iv), respectively.

2 Preliminary Results

Proposition 2.1 Let C,A be non-zero rank one operators given by (1.2) and (1.3),

respectively. If the vectors η, ζ, κ, τ are non-neutral, then W J
C (A) is a closed subset of C.

Proof For α, β ∈ C, consider the matrix U ∈ SU (1, 1) whose first and second

rows are (α, β̄) and (β, ᾱ), respectively. By similarity transformations performed by

matrices of SU (1, 1), the non-neutral vectors ζ , τ may be replaced by vectors with

one vanishing component. So we may consider that ζ = (1, 0)T or ζ = (0, 1)T , and

τ = (1, 0)T or τ = (0, 1)T . We show that if |α| → ∞, then |[Uζ, κ]| → ∞. Indeed,

since κ is non-neutral, its components (κ1, κ2) satisfy |κ1| 6= |κ2|. If ζ = (1, 0)T ,

then [Uζ, κ] = κ1α− κ2β. Analogously, if ζ = (0, 1)T , then [Uζ, κ] = βκ1 − ακ2.
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In either case, recalling that |α|2 − |β|2 = 1, we conclude that |[Uζ, κ]| → ∞ as

|α| → ∞. It may be similarly shown that |[Uη, τ ]| = |[η,U−1τ ]| → ∞ as |α| → ∞.

We prove the closedness of W J
C (A). Let zn = tr(CUnAU−1

n ), Un ∈ U (1, 1), n ∈ N,

be an arbitrary sequence of points in W J
C (A) converging to a (finite) complex number

z0 = tr(CU0AU−1
0 ). Let U0 = limn→+∞ Un. By the first part of the proof, we may

conclude that U0 ∈ U (1, 1), and so the closedness follows

By replacing the inner product [ξ1, ξ2] by −[ξ1, ξ2], we may consider that either

(i) ζ = τ = (1, 0)T or (ii) ζ = (0, 1)T , τ = (1, 0)T holds. Substituting C by UCU−1

for some U = diag(1, exp(iθ)), θ ∈ R, we may assume that the components of

η = (η1, η2) have a real ratio. Similarly, the components of κ = (κ1, κ2) may be also

assumed to have a real ratio. The following possibilities may occur:

(i-1) ζ = τ = (1, 0)T , |η1| > |η2|, |κ1| > |κ2|,
(i-2) ζ = τ = (1, 0)T , |η1| > |η2|, |κ2| > |κ1|,
(i-3) ζ = τ = (1, 0)T , |η2| > |η1|, |κ1| > |κ2|,
(i-4) ζ = τ = (1, 0)T , |η2| > |η1|, |κ2| > |κ1|,
(ii-1) ζ = (0, 1)T , τ = (1, 0)T , |η1| > |η2|, |κ2| > |κ1|,
(ii-2) ζ = (0, 1)T , τ = (1, 0)T , |η1| > |η2|, |κ1| > |κ2|,
(ii-3) ζ = (0, 1)T , τ = (1, 0)T , |η2| > |η1|, |κ2| > |κ1|,
(ii-4) ζ = (0, 1)T , τ = (1, 0)T , |η2| > |η1|, |κ1| > |κ2|.
Proposition 2.2 treats the case (ii-1), since we may assume that η1 = 1, −1 < q =

η2 < 1, κ2 = −1, −1 < k = κ1 < 1.

Proposition 2.2 Let A and C be 2 × 2 rank one complex matrices such that c ′ < 0

and a ′ < 0. If [Aξ,Aξ] ≥ 0 and [Cξ,Cξ] ≤ 0 for every ξ ∈ C
2, then W J

C (A) is

an unbounded closed connected region limited by an ellipse with center (ac)/2, whose

major axis is contained in the line z = (ac)t, t ∈ R, being the length of the semi-major

axis α and of the semi-minor axis β given, respectively, by (1.4) with ǫ = 1 and (1.5).

Proposition 2.3 treats the case (i-1). In this case, we may assume that η1 = 1,

−1 < q = η2 < 1, κ1 = 1, −1 < k = −κ2 < 1. Moreover, we may take 0 ≤ k, q < 1.

Proposition 2.3 Let A and C be 2 × 2 rank one complex matrices such that a ′ > 0

and c ′ > 0. If [Aξ,Aξ] ≥ 0 and [Cξ,Cξ] ≥ 0 for every ξ ∈ C
2, then W J

C (A) is an

unbounded closed connected region limited by one branch of the hyperbola with center

(ac)/2 whose principal axis is contained in the line z = (ac)t, t ∈ R, being the length of

the semi-principal axis α and of the semi-transverse axis β given, respectively, by (1.4)

with ǫ = −1 and (1.5).

Moreover, if α > 0, then (ac)/2 /∈ W J
C (A) and (ac) ∈ W J

C (A). On the other hand,

if α ≤ 0, then (ac)/2, (ac) ∈ W J
C (A). If α = 0, then

W J
C (A) = {z ∈ C : ℜ([z − (ac)/2]ac) ≥ 0}.

Proposition 2.4 deals with the case (ii-4). In this case, we may consider η2 = 1,

−1 < q = η1 < 1, κ1 = 1, −1 < k = −κ2 < 1.
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Proposition 2.4 Let A and C be 2 × 2 rank one complex matrices such that c ′ > 0

and a ′ > 0. If [Aξ,Aξ] ≥ 0 and [Cξ,Cξ] ≤ 0 for every ξ ∈ C
2, then W J

C (A) is an

unbounded closed connected region limited by one branch of the hyperbola centered at

(ac)/2, whose principal axis is contained in the line z = (ac)t, t ∈ R, being the length of

the semi-principal axis α and of the semi-transverse axis β given, respectively, by (1.4)

with ǫ = −1 and (1.5).

Moreover, if α > 0, then (ac)/2 /∈ W J
C (A) and (ac) ∈ W J

C (A). If α < 0, then

(ac)/2, (ac) ∈ W J
C (A). If α = 0, then W J

C (A) = {z ∈ C : ℜ([z − (ac)/2]ac) ≥ 0}.

If one of the conditions (i-2), (i-3), (ii-2), (ii-3) holds, then condition (i) of Propo-

sition 2.5 holds. If condition (i-4) is satisfied, then condition (ii) holds. Under these

conditions, W J
C (A) is the whole complex plane.

Proposition 2.5 Let A and C be 2 × 2 complex matrices with rank one. If either

(i) (a ′c ′) < 0, or (ii) a ′ < 0, c ′ < 0, and [Aξ,Aξ] ≥ 0, [Cξ,Cξ] ≥ 0 for every

ξ ∈ C
2, then W J

C (A) = C.

3 Proof of Proposition 2.2

Under the hypothesis of Proposition 2.2, we have

C =

(

0 0

1 −q

)

, A =

(

k 1

0 0

)

, 0 ≤ q, k < 1

and

W J
C (A) = {(α + qβ)(α + kβ) : α, β ∈ C, |α|2 − |β|2 = 1}

=
{

(cosh t exp(iθ) + k sinh t)(cosh t exp(iφ) + q sinh t) :

0 ≤ t < +∞, 0 ≤ θ, φ ≤ 2π
}

.

(3.1)

For fixed t, θ, the set of points (cosh t exp(iθ) + k sinh t)(cosh t exp(iφ) + q sinh t),

0 ≤ φ ≤ 2π, is a circle with center

(3.2) z(t, θ) = q sinh t(cosh t exp(iθ) + k sinh t)

and radius r(t, θ) satisfying

(3.3) R = r(t, θ)2
= cosh2 t (k2 sinh2 t + 2k sinh t cosh t cos θ + cosh2 t).

For x0 = ℜ(z(t, θ)) and y0 = ℑ(z(t, θ)), we easily obtain

(3.4) x0 = kq sinh2 t + q sinh t cosh t cos θ, y0 = q sinh t cosh t sin θ.

If q = 0, then z(t, θ) = 0. The continuous function r(t, θ) defined on [0,+∞) ×
[−π,+π] ranges over [m0,+∞), m0 being the minimum of the function r(t,−π) =
1
2
(1+cosh(2t)−|k| sinh(2t)). The minimum of r(t,−π), t ≥ 0, is (1/2)(1+

√
1 − k2),

because the minimum of f (t) = cosh t − |k| sinh t , t ≥ 0, is attained at 0 < t0 =

arctanh(|k|), and equals
√

1 − k2. Thus, Proposition 2.2 follows for q = 0.

Now, we assume q 6= 0 and, by changing the roles of k and q, we also assume that

k 6= 0.
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Proposition 3.1 For −1 < k, q < 1, kq 6= 0, let C =
(

0 0
1 −q

)

, A =
(

k 1
0 0

)

. Then

(i) The set W J
C (A) is connected, symmetric with respect to the real axis and also sym-

metric to the line ℜ(z) = −k q/2.

(ii) The inclusion relation W J
C (A) ⊂ {z ∈ C : |z + k q/2| ≥

√
1 − k2/2} holds.

(iii) ∂W J
C (A) has no isolated points.

Proof We claim that the set described by z(t, θ) in (3.2), t ≥ 0, 0 ≤ θ ≤ 2π, is the

complex plane. For x0 = ℜ(z(t, θ)), y0 = ℑ(z(t, θ)), there exist t ∈ [0,+∞) and θ ∈
[0, 2π] such that x0 = kq sinh2 t + q sinh t cosh t cos θ and y0 = q sinh t cosh t sin θ.

Indeed, consider the polynomial function in sinh t given by f (t) = (x0−kq sinh2 t)2+

y2
0 − q2 sinh2 t cosh2 t . Since f (0) ≥ 0 and limt→∞ f (t) = −∞, a value of t may be

found for which f (t) = 0. Then an appropriate value of θ is easily determined and

the claim follows.

Taking into account (3.1), (3.2), (3.3) and (3.4), W J
C (A) may be expressed as

(3.5) W J
C (A) =

{

(x0 + i y0) +
√

R(x0, y0) exp(iθ) : (x0, y0) ∈ R
2, 0 ≤ θ ≤ 2π

}

.

We claim that R = R(x0, y0) is given by

R =
1

2q4
(q4 + 2k q3 x0 + 2q2x2

0 + 2q2 y2
0+

|q3|
√

4(x0 + k q/2)2 + 4(1 − k2)y2
0 + (1 − k2)q2).

Indeed, eliminating t and θ in (3.1), (3.2), and (3.3), we get

H(x0, y0, r) = q4R2 + (−q4 − 2kq3x0 − 2q2x2
0 − 2q2 y2

0)R

+ (k2q2x2
0 + 2kqx3

0 + x4
0 + k2q2 y2

0 + 2kqx0 y2
0 + 2x2

0 y2
0 + y4

0) = 0.

Setting R̃ =
1

2q4 (q4 + 2k q3 x0 + 2q2x2
0 + 2q2 y2

0), we find

R = R̃ ± 1

2q4
|q3|

√

4(x0 + k q/2)2 + 4(1 − k2)y2
0 + (1 − k2)q2.

Since R̃ =
1
q2 ((x0 + k q/2)2 + y2

0) + 2−k2

4
, performing some calculations we get the

relation R − R̃ ≥ 1
2
(cosh(2t) − sinh(2t)) > 0, and the claim follows.

The connectedness of W J
C (A) and the symmetries of W J

C (A) with respect to

ℑ(z) = 0 and to ℜ(z) = −k q/2 follow from (3.5), taking into account that R is

invariant under the two transformations y0 → −y0 and x0 + kq/2 → −x0 − kq/2.

(ii) We have

4q4[R(x0, y0) − ((x0 + kq/2)2 + y2
0)]

≥ q4(2 − k2) + 4q2(1 − q2)((x0 + kq/2)2 + 4q2 (1 − q2) y2
0)
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and the right-hand side approaches +∞ as (x0 + k q/2)2 + y2
0 → +∞. Moreover,

R(x0, y0) − {(x0 + k q/2)2 + y2
0} ≥ 1 − k2

4
+

√

1 − k2

√

(x0 + k q/2)2 + y2
0.

Hence

r(x0, y0) ≥
√

(x0 + kq/2)2 + y2
0 +

√

1 − k2/2,

and so (ii) follows.

(iii) By the Tarski–Seidenberg theorem, ∂W J
C (A) is a semi-algebraic set and lies on

an algebraic curve. It consists of some arcs and isolated points. By Proposition 2.1,

the set W J
C (A) is closed in C. If z is an isolated point of ∂W J

C (A), then z is also an

isolated point of W J
C (A), contradicting the connectedness of W J

C (A). Thus, ∂W J
C (A)

has no isolated points.

Next, we determine ∂W J
C (A). Since it is the image of the algebraic set SU (1, 1)

under the quadratic map U 7→ [Uζ, κ][Uη, τ ], for η, ζ, κ, τ non-neutral vectors, by

the Tarski–Seidenberg theorem we may conclude that ∂W J
C (A) lies on an algebraic

curve. By Proposition 3.1(iii), ∂W J
C (A) has no isolated points. The number of non-

smooth boundary points of W J
C (A) is finite. Every non-smooth boundary point is

the limit of a sequence of smooth boundary points of W J
C (A). Suppose that Z0 is a

smooth point of ∂W J
C (A) at which the tangent of ∂W J

C (A) is given by

ℜ(z exp(−iθ0)) = ℜ(Z0 exp(−iθ0))

for some θ0 ∈ R. We assume that Z0 + t exp(i(θ0)) /∈ W J
C (A) for 0 < t < ǫ, where ǫ

is a sufficiently small positive number. By Proposition 3.1(iii), there exists a complex

number x0 + i y0 for which either of the following holds:

Z0 = x0 + i y0 + r(x0, y0) exp(i(θ0)) and
( ∂r

∂x
,
∂r

∂y

)
∣

∣

∣

(x0,y0)
= −(cos(θ0), sin(θ0)),

Z0 = x0 + i y0 − r(x0, y0) exp(i(θ0)) and
( ∂r

∂x
,
∂r

∂y

)
∣

∣

∣

(x0,y0)
= (cos(θ0), sin(θ0)).

In either case, we have

(3.6) (grad r)2|(x0,y0) =

( ∂r

∂x

) 2∣
∣

∣

(x0,y0)
+

( ∂r

∂y

) 2∣
∣

∣

(x0,y0)
= 1.

We determine the set of points x0 + i y0 for which (3.6) holds. By the implicit

function theorem, we get ∂r
∂x

= − (∂H/∂x)
(∂H/∂r)

, ∂r
∂y

= − (∂H/∂y)
(∂H/∂r)

. If (x0, y0) satisfies the

condition (3.6), then it verifies L(x, y, r) = (∂H/∂x)2 + (∂H/∂y)2 − (∂H/∂r)2
= 0.

Eliminating r from the equations H(x0, y0, r) = 0 and L(x0, y0, r) = 0, and setting

M(x0, y0) = 4(1−q2)x2
0 + 4k q(1−q2)x0 + 4(1− k2)(1−q2) y2

0 + k2 q2 −q4 we obtain

(x2
0 + y2

0)(x2
0 + 2kqx0 + k2q2 + y2

0) × M(x0, y0)2
= 0.
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Since ∂W J
C (A) has no isolated points, we may disregard the two candidates (x0, y0) =

(0, 0) and (x0, y0) = (kq, 0). So we concentrate on the remaining candidate, the

ellipse M(x0, y0) = 0. We examine the gradient of the function r(x0, y0) on this

ellipse. By the implicit function theorem, we conclude that ∂W J
C (A) is contained in

Υ =

{

x + i y =

(

x0 −
(2x0 + kq)(x2

0 + y2
0 + kqx0 − q2R)

2q2(2x2
0 + 2kqx0 + 2y2

0 − 2q2R + q2)

)

+ i
(

y0 −
y0(2x2

0 + 2kqx0 + 2y2
0 − 2q2R + k2q2)

q2(2x2
0 + 2kqx0 + 2y2

0 − 2q2R + q2)

)

: (x0, y0) ∈ R
2,M(x0, y0) = 0

}

.

The ellipse M(x0, y0) = 0 has the parametric representation

x0 = −kq

2
+

√
1 − k2q2 cosφ

2
√

1 − q2
, y0 = q2 sinφ

2
√

1 − q2
, φ ∈ [0, 2π]

and R =
2−k2−q2+2

√
1−k2

√
1−q2+k2 q2 sin2 φ

4(1−q2)
. By direct computation, it may be seen that

(x, y) ∈ Υ satisfies the equation

(3.7)
(x + k q/2)2

(1/2)(1 +
√

1 − k2
√

1 − q2)]2
+

y2

[(1/2)(
√

1 − k2 +
√

1 − q2)]2
= 1.

By Proposition 3.1, ∂W J
C (A) is non-empty and every continuous arc in C joining the

point k q/2 and a sufficiently large number L has a common point with ∂W J
C (A).

Thus, ∂W J
C (A) is given by (3.7). Since L ∈ W J

C (A) and kq/2 /∈ W J
C (A), then W J

C (A)

is the unbounded set limited by the above ellipse and Proposition 2.2 follows.

4 Proof of Proposition 2.3

By the hypothesis, we get

C =

(

1 −q

0 0

)

, A =

(

1 k

0 0

)

, −1 < q, k < 1,

and so

W J
C (A) = {(α + kβ)(α + qβ) : α, β ∈ C, |α|2 − |β|2 = 1}

=
{

(cosh t + k sinh t exp(−iθ))(cosh t + q sinh t exp(iψ))

: 0 ≤ t <∞, 0 ≤ θ, ψ ≤ 2π
}

.

(4.1)

Thus, W J
C (A) is expressed as the union of the family of circles with center

z = x + i y = cosh2 t + k sinh t cosh t exp(−i θ),
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and radius r such that

R = r2
= q2 sinh2 t (cosh2 t + k2 sinh2 t + 2k sinh t cosh t cos θ).

The functions x = x(t, θ), y = y(t, θ), r = r(t, θ) satisfy the relation

H(x, y, r) = R2 − 2q2 (x2 − x + y2)R − k2 q2 R

+ q4(x4 − 2x3 + x2 + y4 + 2x2 y2 − 2x y2 + y2) = 0.

We prove that the locus of the points z = x(t, θ) + i y(t, θ), t ≥ 0, 0 ≤ θ ≤ 2π, is

given by

(4.2)
{

(x, y) ∈ R
2 : x > 1/2,

(x − (1/2))2

[(1/2)(
√

1 − k2)]2
− y2

(k/2)2
≥ 1

}

.

This reduces to showing that

(4.3)
{

cosh t + k sinh t exp(−iθ) : 0 ≤ t <∞, 0 ≤ θ ≤ 2π}

= {(x, y) ∈ R
2 : x > 0,

x2

1 − k2
− y2

k2
≥ 1

}

,

−1 < k < 1, k 6= 0. We consider the map from the cylinder [0,+∞) × T
1 into

C ∼= R
2 defined by z(t, θ) = x + i y = cosh t + k sinh t cos θ − i sinh t sin θ. The set

(4.4) Γ = {cosh t + k sinh t exp(−iθ) : 0 ≤ t < +∞, 0 ≤ θ ≤ 2π}

is closed in C and its boundary has no isolated points. Its boundary points are nec-

essarily critical values of the differential map z = z(t, θ). The Jacobian of the map is

given by
∂(x,y)
∂(t,θ)

=
∂x
∂t

∂y
∂θ − ∂x

∂θ
∂y
∂t

= −k sinh t (k cosh t + sinh t cos θ). Thus, the critical

points (t, θ) satisfy k cosh t +sinh t cos θ = 0 or t = 0. The critical points (0, θ) corre-

spond to the critical value 1. Now we determine the critical values corresponding to

k cosh t + sinh t cos θ = 0. Substituting x = cosh t + k sinh t cos θ, y = − sinh t sin θ

in the polynomial F(x, y) =
x2

1−k2 − y2

k2 − 1, we get

F(x, y) =
(k cosh t + k sinh t cos θ)2

1 − k2
≥ 0.

Having in mind that ℜ(cosh t + k sinh t exp(−iθ)) = cosh t + k sinh t cos θ > 0, we

conclude that

∂Γ ⊂ {(x, y) ∈ R
2 : x > 0,

x2

1 − k2
− y2

k2
= 1}

and

Γ ⊂ {(x, y) ∈ R
2 : x > 0,

x2

1 − k2
− y2

k2
≥ 1}.
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Since 1 is a critical value not belonging to the hyperbola x2/(1− k2)− y2/k2
= 1, the

connectedness of (4.4) implies (4.3).

Following the proof of Proposition 2.2, we consider the polynomial L(x, y, r) =

[(∂H/∂x)2 + (∂H/∂y)2 − (∂H/∂r)2]/4. By eliminating r from the equations

H(x, y, r) = 0 and L(x, y, r) = 0, we obtain

(x2 + y2)((x − 1)2 + y2){4(1 − q2) (x − 1/2)2/(1 − k2) − 4(1 − q2)y2/k2 − 1} = 0.

It can be easily seen that the right branch of the hyperbola

4(1 − q2)(x − 1/2)2/(1 − k2) − 4(1 − q2)y2/k2
= 1

is contained in the interior of (4.2), while its left branch lies on the exterior of the

set (4.2).

We may disregard the two points (x, y) = (0, 0) and (x, y) = (1, 0). The equation

H(x, y, r) = 0 has two solutions in R = r2, say R j(x0, y0), j = 1, 2, R1 > R2. We

evaluate the envelopes of the two families of circles (x−x0)2 +(y− y0)2
= R j(x0, y0),

where (x0, y0) satisfy

4(1 − q2) (x0 − 1/2)2/(1 − k2) − 4(1 − q2)y2
0/k2 − 1 = 0, x0 > 1/2.

We assume that
√

1 − k2
√

1 − q2 − k q 6= 0, k
√

1 − q2 − q
√

1 − k2 6= 0,

or equivalently, q 6= k, q 6=
√

1 − k2. In the case
√

1 − k2
√

1 − q2 − k q > 0, the

envelope corresponding to the bigger radius lies on the right branch of the hyperbola

(4.5)
(x − 1/2)2

[(1/2)(
√

1 − k2
√

1 − q2 − k q)]2
− y2

[(1/2)(k
√

1 − q2 + q
√

1 − k2)]2
= 1.

In the case
√

1 − k2
√

1 − q2 − k q < 0, the envelope lies on the left branch of the

hyperbola. The envelope corresponding to the smaller radius lies on the right branch

of the hyperbola

(4.6)
(x − 1/2)2

[(1/2)(
√

1 − k2
√

1 − q2 + k q)]2
− y2

[(1/2)(k
√

1 − q2 − q
√

1 − k2)]2
= 1.

In the case q =
√

1 − k2, the hyperbola (4.5) reduces to the straight line x = 1/2,

being the hyperbola (4.6) replaced by the straight line y = 0. To conclude the proof,

we notice that

W J
C (A) ⊂ {r exp(iφ) : 0 ≤ r <∞,−π < φ < π, |φ| ≤ arcsin(k) + arcsin(q)}.

This is a consequence of (4.1) and of the set inclusion

{(cosh t + k sinh t exp(−i θ) : 0 ≤ t <∞, 0 ≤ θ ≤ 2π}
⊂ {r + k z : 0 ≤ r < +∞, |z| ≤ r}
= {r exp(iφ) : 0 ≤ r <∞,−π/2 < φ < π/2, | sinφ| ≤ k}.

Thus, −1 /∈ W J
C (A). Since 1 ∈ W J

C (A), Proposition 2.3 follows.

https://doi.org/10.4153/CMB-2008-011-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-011-1


The Numerical Range of 2-Dimensional Krein Space Operators 95

5 Proof of Proposition 2.4

Under the conditions of Proposition 2.4, we have

W J
C (A) = {(β + kα)(β + qα) : α, β ∈ C, |α|2 − |β|2 = 1}.

If q = 0 and k 6= 0, recalling Proposition 2.3, it may be easily seen that

W J
C (A) = {sinh2 t + k sinh t cosh t exp(iφ) : 0 ≤ t <∞, 0 ≤ φ ≤ 2π}

= {(x, y) ∈ R
2 : x > −1/2,

(x + 1/2)2

[(1/2)
√

1 − k2]2
− y2

(k/2)2
≥ 1}.

In the case k = 0, q 6= 0, a similar result holds. So we may assume that q 6= 0, k 6= 0.

In this case, W J
C (A) is the union of the family of circles with center

z(t, φ) = cosh2 t + k sinh t cosh t exp(iφ) − 1,

and radius r such that

R(t, φ) = r2
= q2 cosh2 t (sinh2 t + k2 cosh2 t + 2k sinh t cosh t cosφ).

The following relation holds

H(x, y, r) = R2 − 2q2(x2 + x + y2)R − k2q2R

+ q4(x4 + 2x3 + x2 + y4 + 2x2 y2 + 2xy2 + y2) = 0.

Using the new variable x1 = x + (1/2), this polynomial is written

(5.1) R2 − 2q2(x2
1 + y2 − (1/4))R − k2q2R

q4(x4
1 − (1/2)x2

1 + y4 + 2x2
1 y2 + (1/2)y2 + (1/16)),

and it can be easily seen that the centers z(t, φ) describe the set

(5.2)
{

(x, y) ∈ R
2 : x1 > 0,

x2
1

[(1/2)
√

1 − k2]2
− y2

(k/2)2
≥ 1

}

.

The polynomial H in (5.1), expressed in the new variable x̂ = x − (1/2), coincides

with (4.2). Moreover, since the sets (4.2) and (5.2) coincide, the result follows as in

Proposition 2.3.
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6 Proof of Proposition 2.5

In the case (i-2), we may assume that η = 1, −1 < q = η2 < 1, κ2 = −1, −1 < k =

κ1 < 1. Under these assumptions, we have

(6.1) W J
C (A) = {(β + kα)(α + qβ) : α, β ∈ C, |α|2 − |β|2 = 1}.

In the case (i-3), we may assume that η2 = 1, −1 < q = η1 < 1, κ1 = 1, −1 < k =

−κ2 < 1, and so

(6.2) W J
C (A) = {(α + kβ)(β + qα) : α, β ∈ C, |α|2 − |β|2 = 1}.

In the case (i-4), we may assume that η2 = 1, −1 < q = η1 < 1, κ2 = −1,

−1 < k = κ1 < 1, and we get

W J
C (A) = {(β + kα)(β + qα) : α, β ∈ C, |α|2 − |β|2 = 1}.

By (6.1) and (6.2), we observe that the cases (i-2) and (i-3) are identified under

the exchange of the roles of k and α by q and α, respectively.

We prove the proposition in the case (i-4). If q = 0, then

W J
C (A) = {sinh2 t exp(iθ) + k sinh t cosh t exp(iφ) : 0 ≤ t <∞, 0 ≤ θ, φ ≤ 2π}.

This set is invariant under the multiplication z 7→ z exp(i ψ). The continuous func-

tion f : R → [0,+∞) defined by f (t) = sinh2 t + k sinh t cosh t, satisfies f (0) = 0

and limt→+∞ f (t) = +∞. By the intermediate value theorem, for every positive real

number r, there exists t ∈ [0,+∞) such that f (t) = r. Hence, W J
C (A) = C.

Let −1 < k, q < 1 and k 6= 0, q 6= 0. Then

W J
C (A) =

{

(sinh t exp(iθ) + k cosh t)(sinh t exp(iφ) + q cosh t) :

0 ≤ t < +∞, 0 ≤ θ, φ ≤ 2π
}

.

Thus, W J
C (A) is the union of the family of circles centered at

z = x + i y = qk cosh2 t + q sinh t cosh t exp(iθ),

and with radius r such that

R = r2
= sinh2 t(sinh2 t + k2 cosh2 t + 2k sinh t cosh t cos θ).

The functions x = x(t, θ), y = y(t, θ), r = r(t, θ) satisfy the relation

H(x, y, r) = q4r4 +q2(−2x2−2y2 +2kqx−q2)r2 +(x2 + y2)(x2 + y2−2kqx+k2q2) = 0.

The points z = x(t, θ) + i y(t, θ), t ≥ 0, 0 ≤ θ ≤ 2π, form the family of circles

with center at qk cosh2 t and radius q sinh t cosh t . Since

{k cosh2 t + sinh t cosh t exp(iθ) : 0 ≤ t < +∞, 0 ≤ θ ≤ 2π}
= {k/2 + k/2 cosh(2t) + (1/2) sinh(2t) exp(iθ) : 0 ≤ t < +∞, 0 ≤ θ ≤ 2π} = C,
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the points z(t, θ) describe the whole complex plane. By eliminating R from the equa-

tions L(x, y, r) = [(∂H/∂x)2 + (∂H/∂y)2 − (∂H/∂r)2]/4 = 0 and L(x, y, r) = 0,

and setting E = {4(1 − q2) x2 + 4(1 − k2)(1 − q2)y2 − 4k q(1 − q2) x + k2 q2 − q4},

we obtain

(6.3) K(x, y) = (x2 + y2)((x − k q)2 + y2)E = 0.

We may disregard the two points (x, y) = (0, 0) and (x, y) = (k q, 0). Rewrit-

ing the ellipse E = 0 in (6.3) using the new variable x1 = x − k q/2, the ellipse is

parametrized as

x1 =
q2

√
1 − k2

2
√

1 − q2
cos(φ), y =

q2

2
√

1 − q2
sin(φ), 0 ≤ φ ≤ 2π.

On this ellipse the solutions of the equation H(x, y, r) = 0, are

r2
1 =

1

8(1 − q2)
{(2 − k2)(2 − q2) + 4

√

(1 − k2)(1 − q2) − k2 q2 cos(2φ)},

r2
2 =

1

8(1 − q2)
{(2 − k2)(2 − q2) − 4

√

(1 − k2)(1 − q2) − k2 q2 cos(2φ)}.

The boundary of W J
C (A) is contained in the curves with parametric equations

(X1(φ),Y1(φ)) =

(

x1 −
∂r1

∂x1

, y − ∂r1

∂y

)

, (X2(φ),Y2(φ)) =

(

x1 −
∂r2

∂x1

, y − ∂r2

∂y

)

.

We show that these curves do not pass through the origin (x1, y) = (0, 0). Indeed,

suppose that
(

x1 − ∂r j

∂x1
, y− ∂r j

∂y

)

= (0, 0), j = 1, 2. By the implicit function theorem,

we get

− ∂r j

∂x1

= − x1(k2q2 + 4q2R j − 4x2
1 − 4y2)

q2r j(−2q2 + k2q2 + 4q2r j − 4x2
1 − 4y2)

,

−∂r j

∂y
= − y(−k2q2 + 4q2R j − 4x2

1 − 4y2)

q2r j(−2q2 + k2q2 + 4q2r j − 4x2
1 − 4y2)

.

Since these partial derivatives are proportional to x1 and y, respectively, we necessar-

ily have

k2q2 + 4q2r2
j − 4x2

1 − 4y2
= −k2q2 + 4q2r2

j − 4x2
1 − 4y2.

This is impossible, since k 6= 0 and q 6= 0. Therefore, there exist positive numbers

0 < ǫ < L0 for which

(6.4) ∂W J
C (A) ⊂ {x + i y : ǫ2 ≤ (x − kq/2)2 + y2 ≤ L2

0}.

In order to show that W J
C (A) = C, we consider the function g : R → R defined

by g(t) = (sinh t + k cosh t)(sinh t + q cosh t). This function satisfies g(t) ∈ W J
C (A)
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for every t ∈ R and g(0) = k q. Since sinh t1 + k cosh t1 = 0 for some t1 ∈ R,

we have g(t1) = 0 for certain t1 ∈ R. The intermediate value theorem implies that

g(t2) = (k q)/2 for some t2 ∈ R. If t → +∞, then g(t) → +∞. Then (6.4) implies

that W J
C (A) = C.

Next, we prove the proposition in the case (i-2). If q = 0, we clearly have

W J
C (A) = {k cosh2 t + sinh t cosh t exp(iθ) : 0 ≤ t <∞, 0 ≤ θ ≤ 2π} = C.

If q 6= 0, W J
C (A) is the union of the family of circles with center

z = x + i y = k cosh2 t + sinh t cosh t exp(iθ)

and r satisfying

R = r2
= q2 sinh2 t(sinh2 t + k2 cosh2 t + 2k sinh t cosh t cos θ).

The functions x, y,R satisfy the relation

(6.5) H(x, y, r) = R2−q2(2x2−2kx+2y2 +1)R+q4(x2 + y2)(x2−2kx+k2 + y2) = 0.

By eliminating R from the equations H(x, y, r) = 0 and L(x, y, r) = (∂H/∂x)2 +

(∂H/∂y)2 − (∂H/∂r)2
= 0, we obtain

K(x, y) = (x2+y2)((x−k)2+y2){4(1−q2) (x−k/2)2+4(1−k2)(1−q2)y2+1−k2} = 0,

and so ∂W J
C (A) is empty. Since W J

C (A) is not empty, then W J
C (A) = C.

If (ii-2) occurs, we may assume that η1 = 1, −1 < q = η2 < 1, κ1 = 1, −1 < k =

−κ2 < 1, and so

(6.6) W J
C (A) = {(β + kα)(α + qβ) : α, β ∈ C, |α|2 − |β|2 = 1}.

On the other hand, if (ii-3) holds we may consider η2 = 1, −1 < q = η1 < 1,

κ2 = −1, −1 < k = κ1 < 1, and we get

(6.7) W J
C (A) = {(α + kβ)(β + qα) : α, β ∈ C, |α|2 − |β|2 = 1}.

By (6.6) and (6.7), the cases (ii-2) and (ii-3) are identical after exchanging the roles

of k and β by q and β, respectively.

If k = 0, then

W J
C (A) = {q sinh2 t + sinh t cosh t exp(iθ) : 0 ≤ t <∞, 0 ≤ θ ≤ 2π} = C.

If k 6= 0, then W J
C (A) is expressed as the union of the family of circles centered at

z = x + i y = q sinh2 t + sinh t cosh t exp(iθ) and with radius r such that

R = r2
= k2 cosh2 t(cosh2 t + q2 sinh2 t + 2q sinh t cosh t cos θ).

The following relation holds

R2 − k2(2x2 + 2qx + 2y2 + 1)R + k4(x2 + y2)(x2 + 2qx + k2 + y2) = 0.

Replacing k and q by −q and −k, respectively, this equation reduces to (6.5). There-

fore, ∂W J
C (A) is empty and so W J

C (A) = C.
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Final Remarks

It may be easily seen that Propositions 2.1–2.4 are unified in Theorem 1.1.

In the case (ii), if both C and A are J-Hermitian rank one matrices, then W J
C (A)

reduces to a closed half-line. In the case (iv), if at least C or A is a non-zero nilpotent

matrix, then ∂W J
C (A) is a circle. The proofs of the results here presented are rather

involved. It would be challenging to obtain easier proofs, as well as to characterize

W J
C (A) for neutral vectors.
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