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DETERMINANTAL FORMS FOR SYMPLECTIC
AND ORTHOGONAL SCHUR FUNCTIONS

A.M.HAMEL

ABSTRACT. Symplectic and orthogonal Schur functions can be defined combinato-
rially in amanner similar to the classical Schur functions. This paper demonstrates that
they can also be expressed as determinants. These determinants are generated using
planar decompositions of tableaux into strips and the equivalence of these determinants
to symplectic or orthogonal Schur functions is established by Gessel-Viennot lattice
path techniques. Results for rational (also called composite) Schur functions are also
obtained.

1. Introduction. Recent work on the symplectic and orthogonal tableaux and the
associated symmetric functions has focused on Robinson-Schensted-typealgorithmsand
Cauchy-type identities. See Berele [3], Sundaram [27] [28], Proctor [19] [20] [21] [22],
Okada[17] [18], Benkart and Stroomer [2]. Here we devel op determinantal expressions
for the characters of the symplectic and orthogonal groups Sp(2n) and SO(2n + 1)
and prove their validity using the techniques of Hamel and Goulden [8]. Some of the
determinants generated are symplectic and orthogonal analogues to the Jacobi-Trudi,
dual Jacobi-Trudi, and Giambelli determinants defined for the classical Schur functions,
and our methods are valid not only for the ordinary symplectic Schur function and so-
Schur function, but for skew versions of these as well (defined below). We follow the
notation of Macdonald [16] and Sundaram [27].

Let A be apartition of k with at most | parts, i.e. A = (A\g, ..., A) where A\ > A, >
-+» > )\ are nonnegative integers and Ay + Ap +--- + A\ = k () isthe i-th part of \).
The empty partition () of 0 hasno parts. A partition can be representedin the plane by an
arrangement of boxes called a Ferrersdiagram, or simply a diagram. This arrangement
is top and left justified with \; boxesin the i-th row and we say it has standard shape.
Given two partitions, A and ;, we define a Ferrers diagram with skew shape A /u for
wi < Ai, i > 1 asan arrangement of boxes where there is a box in row i, column j iff
pi <j < \i. Geometrically, thisis the Ferrers diagram of A with the Ferrers diagram of
w removed from its upper |eft hand corner. From this point of view, the standard shape A
isjust the skew shape \ / 1 with 1 = ). Definethe content of abox « in aFerrersdiagram
asthe quantity j — i where « liesin columnj and row i of the Ferrers diagram (referred to
as box (i, j) where convenient). Associated with each skew shape is a conjugate shape.
The conjugate of askew shape \ /11 is defined to be the skew shape \’ / 1’ whose Ferrers
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diagram is the transpose of the Ferrers diagram of A /.. More explicitly, the number of
boxesin thei-th row of X"/’ isthe number of boxesin thei-th column of A /.

Fix aset of dlements1 < 1 < 2 < 2--- < n < n. The following definition is the
skew version of one due to King [13].

DEFINITION 1.1. A symplectic tableau, SP, /,,, of shape )\ / uu isafilling of the Ferrers
diagram of A /p with theintegers1 <1 <2< 2--- <n< nsuchthat

1. theentriesweakly increase along the rows and strictly increase down the columns,

2. the boxes of content —i contain entries which are greater than or equal to i + 1.

We refer to the second condition as the symplectic condition. For standard shape
tableaux the following condition is usually called the symplectic condition:

(@D} all entriesin row i are greater than or equal to i.

The condition (1) and condition 2 of Definition 1.1 are easily seen to be equivalent for
standard shape since thefirst box in row i + 1 has content —i.

The skew symplectic Schur function, sp, /,,(X), in the variables, x1, X, %2, % % . . .,
Xn, X5 1, iS given by

$,,00= 3 1 xX I x;"

SP,/, €SPy, BESP,

where the sum is over al tableaux SP, /, of shape A /u, the first product is over all
unbarred integers « in SP, ,, the second product is over all barred integers 3 in SP, /,,,
and m(c) (resp. m(3)) isthe multiplicity of « (resp. 3) in SP, /., i.€. the number of times
o (resp. §) appearsin abox of the tableau.

There are several equivalent tableau definitions of orthogonal tableaux for SO(2n+ 1)
(seeKing [13], Proctor [22], and K oike and Terada[14]). The definition wetakeisaskew
version of the one in Sundaram [27], and is very close to the definition of symplectic
tableaux.

DEFINITION 1.2. Anso-tableau, SO, /,,, of shape ) / pisafilling of the Ferrersdiagram
of A/p withtheelements1 <1 <2< 2--- <n < n< oo suchthat
1. the entries weakly increase along the rows and, when restricted to 1 < 1<2<
2...<n<n, strictly increase down the columns,
2. the boxes of content —i contain entries which are greater than or equal to i + 1,
3. the entries equal to co form ashape which is such that no two symbols oo appear
in the same row.

The skew so-Schur function, so, ,,,(X), in the variables, xi, %%, %2, 5% . . ., X0, X5 1,
isgiven by

— —m(3)
0,,0= > I XTI ™,
S0, ,, «€S0,/, B€S0,,
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FIGURE 1: Example of a strip.

where the sum is over all tableaux SO, /, of shape A /1, the first product is over all
unbarred integers ot in SO, /,,, the second product is over all barred integers 3 in SO, /,,,
and m(a) (resp. m(0)) is the multiplicity of « (resp. 3) in SO, /..

Notethat the oo arein asense” dummy elements’ sincethey contribute 1 to the weight
of the tableau.

Koike and Terada[14] also define skew SP(2n) and SO(2n + 1) tableaux; however,
their definition differs substantially from ours. They restrict the integers that are allowed
to appear so that only those greater than the number of parts of 1 are permitted and they
use the alternative formulation of the symplectic condition givenin (1).

The form of this paper is as follows. Section 2 provides background material from
Hamel and Goulden [8], giving the details necessary to define the determinants we
generate. Section 3 states and proves two main results, one for symplectic tableaux and
one for so-tableaux. Section 4 includes some similar results for rational (also called
composite) tableaux. As has been pointed out by Stembridge [25], the standard shape
symplectic tableaux can be considered to be special cases of standard shape rational
tableaux, and hence the results in Section 4 generalize the results in Section 3.

2. Stripsand outsidedecompositions. Thissection givesthetoolsneededto define
classes of determinants equal to the symplectic Schur function and so-Schur functions.
Thetraditional ways of decomposing a tableau to generate a determinant use decompo-
sitions by rows (Jacobi-Trudi), columns (dua Jacobi-Trudi) or hooks (Giambelli). We
generalizethese notionshereto allow decompositionsby strips. Theterminology follows
that of Hamel and Goulden [8].

DEFINITION 2.1. A stripfinaskew shapediagramisaskew diagram with an edgewise
connected set of boxesthat contains no 2 x 2 block of boxes.

DEFINITION 2.2. The starting box of a strip is the box which is bottommost and
leftmost in the strip. The ending box of a strip is the box which istopmost and rightmost
in the strip.

Figure 1illustrates these concepts, where the starting box is marked with an x and the
ending box is marked with an 0. We say a box is approached from the left (resp. from
below) if either there is abox immediately to its left or the box is on the left perimeter
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FIGURE 2: Example of an outside decomposition.

of the diagram (resp. there is a box immediately below it or the box is on the bottom
perimeter of the diagram).

DEFINITION 2.3. Suppose 01,03, . ... 6m are strips in a skew shape diagram of A/
and each strip has a starting box on the left or bottom perimeter of the diagram and an
ending box on theright or top perimeter of the diagram. Thenif the digjoint union of these
strips is the skew shape diagram of X/, we say the totally ordered set (61, 6-. . . . . m)
isa(planar) outside decomposition of A/ .

Given a diagram and an outside decomposition of that diagram, then if the diagram
is filled with integers to form a symplectic or so-tableau, the portion of the tableau that
corresponds to a strip in the outside decomposition forms a symplectic or so-tableau of
strip shape. Hence, given an outside decomposition of ashape, asymplectic or so-tableau
of that shape can be thought of as a union of symplectic or so-tableaux of strip shape.

The restrictions of the definition of outside decomposition force the following prop-
erty:

PROPERTY 2.4. Boxes of the same content are approached from the same directionin
their respectivestrips; that is, they are either all approached from below or al approached
from the left.

Figure 2 gives an example of an outside decomposition into four strips: 8; = 1,
0, = 22/1, 63 = 3331/22, 64 = 21. In Figure 2 strips 61, 6> and 63 have boxes of
content zero approached from the left, while strips 03 and 64 have boxes of content two
approached from below.

To alow for a further level of generality we could include the possibility of null
strips. These are geometrically empty objects discussed in Hamel and Goulden [8] and
correspond to edgesrather than boxesin the diagram. Roughly speaking, they correspond
to azero part in apartition or to the case \; = ; in askew partition. A full consideration
is given in Hamel and Goulden [8]. We have omitted them here to streamline the
presentation; however, they are an option and can be included if desired.

In order to define the determinants in the main results we must define an additional
operation on strips. This noncommutative operation was first defined in Hamel and
Goulden[8].
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Case |. Suppose 6; and 6; have some boxes with the same content. Slide 6; along
top-left-to-bottom-right diagonals so that the box of content k in 6; is superimposed on
the box of content kin 6; for al k € Z. This procedureis well-defined by Proposition 2.4.
Define ¢, #6; to be the diagram obtained from this superposition by taking all boxes
between the ending box of ¢; and the starting box of 6; inclusive.

Case Il. Suppose 6; and 6; are two disconnected pieces and thus do not have any
boxes of the same content. The starting box of one will be to the right and/or above
the ending box of the other. To bridge the gap between 6; and 6;, insert boxes from the
ending box of one to the starting box of the other so that these inserted boxes follow
the approached-from-the-left or approached-from-below arrangement as do other boxes
of the same content in the outside decomposition (Property 2.4 ensures the boxes of the
same content are arranged in the same way). If there is a content such that there is no
box of that content in the diagram (and therefore no determination of the direction from
which the box is approached), then arbitrarily choose from which direction boxes of
this content should be approached, fix this choice for all boxes of the same content in
that particular diagram, and bridge the gap between 6; and 6; accordingly. Define 6, #6,
asin Case | with the following additional conventions: if the ending box of 6; is edge
connected to the starting box of §;, and occurs below or to the left of it, then 6; #6; = 0; if
the ending box of 6; is not edge connected but occurs below or to the left of the starting
box of 6;, 6; #6; is undefined.

Note that 6; #6; = 6;.

As an example consider again the stripsin Figure 2. Then

01#6, =2 6 #63 = 331/2
02#01 =11 03#92 =222/11
01#6; =31 O, #0604, =)

03#61 =111 04 #0, = 3222/111
01#60, = undefined 03#0, =1

0,#61 = 2111 041063 = 43331222

In the next section we show how to obtain a determinant from this information.

3. Themain results. We now state the two main results of this paper:

THEOREM 3.1. Let \/u be a skew shape partition. Then for any outside decomposi-
tion, (01.6,. .. .. Om), of X/ 1,

Sp)\/u (X) = det(qjﬂ, #6 (X)) mxm’

where spy =1 and SPyngefined = O-

THEOREM 3.2. Let A/ be a skew shape partition. Then for any outside decomposi-
tion, (01.6. . ... Om), of X/,

50, /,,(X) = det(s0y, 4, (X))

mxm’

where soy = 1 and SOyngefined = O.
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FIGURE 3: Two outside decompositions and the corresponding lattice paths.

For the diagram and outside decomposition in Figure 2, Theorem 3.1 gives the
following determinant:

Py P2 Pz 0

det ( SPn SP2y1 SPs31p2 1
\ P11 SP22z/11 Psszryz2 SPss;
P21 SP1 SPazzziyzz P

Under the same conditions, Theorem 3.2 gives the following determinant;

S0p S0 S031 0

det| 1 SO2/1 SO331/2 1
SO111 SOp/11  SOs3s1/22  SO3331
SO2111 SO1 SOs3331/22  SO21
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In Hamel and Goulden [8], the Gessel-Viennot lattice path procedure is used to
construct a bijection establishing afamily of determinantal results for Schur functions.
We now show that this procedure extends easily to a hijection for symplectic Schur
functions. We refer the reader to Hamel and Goulden [8] where certain essential details
of the proof have been verified.

The proof hinges on an application of Theorem 1.2 of Stembridge [26]. This theorem
isageneralization of the Gessel-Viennot procedureto acyclic digraphs. Given an acyclic
digraph, let w(e) be the weight function defined on the edge e, let W(P) = Tlecp W(E)
be the weight of a path in the digraph, let P (ua, ) be the set of paths from u, to vy,
let P (u.v) (resp. Po(u, v)) denote the set of r-tuples (resp. nonintersecting r-tuples) of
paths (P, ..., Pr) withu = ug,..., U aset of starting pointsand v = vy, ..., vV, aset

of ending points and such that P; € P (ui.v), and let GF[P (u, V)] = Zpep W(P) be the
generating function for these paths according to the weight. The theorem states that if

u=(ug,..., U)andv = (vq,..., v;) are two r-tuples of vertices in an acyclic digraph,
andif the only non-intersecting r-tuples of pathsfrom u to some permutation of v connect
utovifori=1...., r, then

GF[Po(u, v)] = det(GF[P (ui. v))]).

PROOF OF THEOREM 3.1. : Let the y-axis be labeled by 1, 1. 2, 2..... Before de-
scribing the paths we need some guidelines to permissible steps and path restrictions.
There arefour types of permissible steps: up-vertical stepsthat increasethe y-coordinate
by 1; down-vertical stepsthat decreasethe y-coordinate by 1; right-horizontal (referred
to simply as horizontal) steps that increase the x-coordinate by 1; and down-diagonal
(referred to simply as diagonal) steps that increase the x-coordinate by 1 and decrease
they-coordinate by 1. We specify some additional restrictions; adown-vertical step must
not precede an up-vertical step, an up-vertical step must not precede a down-vertical
step, a down-vertical step must not precede a horizontal step, and an up-vertical step
must not precede a diagonal step. Because of the symplectic condition, we require an
additional restriction not present in Hamel and Goulden [8], aleft boundary in the form
of a“backwards|attice path” from (0, 1) to (0, 1) to (0, 2) to (—1, 2) to (—1. 2) to (—1, 3)
to (—2,3) to (—2, ?_>) etc. See Figure 3 wherethis boundary is indicated by a dotted line.
A path may touch but not cross the left boundary. This boundary may be interpreted as
representing a“ phantom” zeroth column in the symplectic tableau, acolumn containing
1,2,3,4,....Wealsorequirethat all stepsbetweenlinesx=candx=c+1foralce z
are either all horizontal or all diagonal. The determination of whether these steps are
horizontal or diagonal is made by the outside decomposition in the following manner. If
boxes of content d are approached from the |eft, then stepsbetweenx =dandx=d+1
must be horizontal; if the boxes of content d are approached from below, then steps
between x = d and x = d + 1 must be diagonal. We are now ready to construct paths
corresponding to strips.

Consider an outside decomposition (61, . . . , 6m) of /. We will construct a nonin-
tersecting m-tuple of lattice pathsthat correspondsto a symplectic tableau of shape A / 11
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with the outside decomposition (61, . . . , ), such that the i-th path correspondsto the
i-th strip and beginsat P; and endsat Q;, i = 1,..., m as described now. Fix points
P = (t—s—(t—s) +1) if strip i has starting box on left perimeter in box (s t) of
the diagram and if t — s < O (i.e. P; is on the left boundary), or P; = (t — s, 1) if strip
i has starting box on left perimeter in box (s, t) of the diagram and if t — s > O, or
P, = (t — s, 00) if strip i has starting box on the bottom perimeter in box (s,t) of the
diagram (P; = (t — s, 00) if both),i = 1,..., m. Fix pointsQ = (v—u+1,1)if stripi has
ending box on the top perimeter in box (u, v) of the diagram, or Q; = (v—u+1, co) if strip
i has ending box on the right perimeter in box (u, v) of the diagram (Q; = (v —u+ 1, 00)
if both),i=1,....m.

For strip 6; construct a path starting at P; (called the starting point) and ending at Q;
(called the ending point) as follows: if a box containing i (resp. |_) and at coordinates
(a, b) in the diagram is approached from the left in the strip, put a horizontal step from
(b—ai)to(b—a+1i) (resp. (b —a,i) to (b — a+1,i)); if abox containing i (resp.
i_) and at coordinates (a, b) in the diagram is approached from below in the strip, put a
diagonal step from (b — a.i) to (b — a+ 1. 1) (resp. (b — a,i + 1) to (b — a+ 1.1)). Notice
that the physical locations of the termination points of the steps are independent of the
outside decomposition and depend only on the contents of the boxes. See Figure 3 in
which first the ending points of steps are shown alone and then compl ete paths for two
different outside decompositions are shown. Note that no two paths can have the same
starting and/or ending points, since that would imply two boxes of the same content on
the same section of perimeter. Connect these nonvertical steps with vertical steps. It is
routine to verify that there is a unique way of doing this.

We must verify that an intersecting m-tuple of lattice paths does not correspond to a
symplectictableau. Thisfollowsfrom the column strictnessand row weaknessconditions
on the symplectic tableau and also from the fact strips are themselves skew diagrams.
The argument is a case-by-case analysiswhich follows exactly asin Hamel and Goulden
[8]. For full detailswe refer the reader to that paper. However, we do construct a sample
case now. The other cases are similar.

Suppose we have an intersecting m-tuple of lattice paths, and suppose a horizontal
step at height ain path i intersects an up-vertical stepin path j. Suppose further that path
j has a step at height d (necessarily horizontal) before the up-vertical steps and a step at
height e (necessarily horizontal) after the up-vertical steps. We show by contradiction it
is not possible for this configuration to correspond to a tableau.

Suppose on the contrary that it did. The content of the box containing e is one more
than the content of the box containing a, and e > a, so by column strictness and row
weakness, the box containing e is right of and below (or beside) the box containing a.
The content of the box containing d is the same as the content of the box containing
a, and d < a, so again by column strictness and row weakness, the box containing d
is above and to the left of the box containing a. But the box containing e and the box
containing d are in the same strip, yet located on different sides of the box containing a.
This provides a contradiction.
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The construction described above for producing paths given symplectic tableaux is
reversible, and now we verify that a nonintersecting m-tuple of lattice paths obeying the
path conditions correspondsto a sympl ectic tableau and an outside decomposition where
each path in the nonintersecting m-tuple givesrise to a symplectic tableau of strip shape.
The choice of the starting and ending points and the restrictions on the steps ensure that
the m-tuple corresponds to a diagram of the required shape, but we must show that the
entries in the tableau obey the column strictness and row weakness rules and also the
symplectic condition. We begin by ensuring that alattice path that starts at P; and ends
at Q; corresponds to the strips ¢; #6;. (Note that the situation in which P; is to the right
of Q; and hence no lattice path is possible, correspondsto 6; #6; being undefined). The
proof follows exactly asin Hamel and Goulden [8]. Begin with the empty partition. If the
|attice path has no nonvertical steps, then 6; #6; is empty aswewould expect. Otherwise,
at iteration k, if the k-th nonvertical step from the left in the lattice path is horizontal
ending at (i, j), then place a box containing j in the symplectic tableau to the right of
the previous box; if it is diagonal ending at (i, j), then place a box containing j in the
symplectic tableau on top of the previousbox. Thefact that adown-vertical step doesnot
precede a horizontal step ensuresthat a horizontal step is at a height higher than or the
same as the step just before it. This meansthe entriesin arow of the symplectic tableau
are weakly increasing. The fact that an up-vertical step does not precede adiagonal step
ensuresthat adiagonal step endsat aheight strictly lower than the step just beforeit. This
meansthe entriesin a column of the symplectic tableau are strictly increasing. Since the
symplectic tableau is built by placing boxes always to the right or on top, we know the
shapeis astrip. Moreover, since the starting and ending points come from ¢; and ¢;, since
boxes of the same content correspond to the same type of step, and since the # operation
is based on boxes of the same content, we know the strip is §; #6;.

Now let T(l,j) denote the entry in box (I.j) of the symplectic tableau. We claim
T(,)) <T(+1,j)and T(l,j) < T(l,j+1). Theseinequalities are obviousif the boxesin
guestion are in the same strip. Suppose they are not. Then the first claim follows from
the fact that the paths are nonintersecting. To see this, suppose that the step starting at
linex = cin path i starts at height t. If this step is horizontal, T(l.j) = t (resp. t), and the
step starting at line x = ¢ — 1 but in path i + 1 must end at height t (resp. t + 1) or higher
to avoid intersection, implying T(I + 1,j) > t (resp. t + 1). If this step is diagonal, then
thebox (I +1, ) must bein the samestrip as(l. j), and so column strictnessis guaranteed
by the conditions internal to a path. The second claim follows again by the fact that the
paths are nonintersecting. To see this, suppose that the step starting at line x = cin path
i starts at height t (resp. t). If this step is horizontal, T(l,j) = t (resp. t), and the step
starting at line x = ¢+ 1 but in path i + 1 must start at height t (resp. t + 1) or higher,
implying T(l.j + 1) > t (resp. t). If the step is diagonal, T(.j) =t — 1 (resp. t), and the
step starting at linex = ¢+ 1in pathi + 1 must start at height t (resp. t) or higher, implying
T(.j+1) >t— 1(resp.t).

We must verify that both theindividual strips and the entire tableau are symplectic. In
both casesthisfollows from the left boundary and from the content-based nature both of
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the symplectic condition and the lattice path environment. The left boundary effectively
implies that a step between linesx = —c and x = —c + 1 must occur at aheight of c+ 1
or higher, i.e. the corresponding box of content —c must contain an integer greater than
or equal to ¢ + 1—the symplectic condition. This makes the situation clear for entire
tableaux and also for individual strips, if we make this additional proviso: strips 6; and 6,
for all i and j areto be considered as retaining their original contents (and passing them
on to 6; #6;) and are not to be reinitialized with content O for the upper left hand corner,

so that

can still satisfy the symplectic condition if the contents of the boxes are, say, 2 and 1
respectively and not 0 and —1. The same content-intact provision has also been used
previously in the case of factorial Schur functions, symmetric functions whose variables
are modified by content. See Hamel [9].

For each horizontal or diagonal step that ends at (i. j), we choose a weight of x;. For
each horizontal or diagonal step that ends at (i, j), we choose a weight of xj*1. For each
up-vertical or down-vertical step, regardless of position, we choose a weight of one.
Since there is a one-to-one correspondence between lattice paths and symplectic skew
tableaux whose shape is a strip, the generating function for these lattice paths is the
symplectic Schur function for the shape of a strip.

The proof now follows by the well-known Gessel-Viennot | attice path procedure. To
obtain the full generality we require, we invoke the broader result of Stembridge [26,
Theorem 1.2]. To do this we must insure that the only m-tuples of nonintersecting paths
from starting points Py, ... ., Pm to ending points Qs . . ., Qm must connect P; to Q; for

i =1,...,m; however, thisis routine. Note that the introduction of aleft boundary does
not interfere with the intersecting/nonintersecting properties of the lattice paths. As has
been demonstrated in Stembridge [26], the underlying structure does not have to be a
lattice at all, but may be as general a structure as an acyclic digraph. Note additionally
that although Stembridge does not impose conditions on which steps may follow each
other (as we do in this proof), his theorem is still applicable for the step restrictions
actually serve to define the digraph in which Stembridge’s theorem is set (i.e. in the
digraph, vertices are all integer lattice points, and edges are defined as follows: if boxes
of content d are approached from the left, there are up-vertical edgesfrom (d. k) to (d, k)
and from (d, k) to (d, k + 1), and there are horizontal edges from (d, k) to (d + 1, k) and
(d,K) to (d + 1K) for al k and k; if boxes of content d are approached from below there
are down-vertical edges from (d. k) to (d. k — 1) and (d.K) to (d. k), and diagonal edges
from (d. k) to (d + 1. k) and (d. k) to (d + 1. k — 1)). n

We now present two corollaries to Theorem 3.1. One is an identity involving a
determinantal form which hasappeared previously in theliterature; the other isaversion
of Theorem 3.1 for odd symplectic groups.

The literature contains some determinantal forms for Sp(2n), although the subject
does not appear to be as well-developed as for the classical Schur functions. There
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FIGURE 4: An outside decomposition of a skew symplectic tableau and the associated 4-tuple of
lattice paths.

are bideterminantal forms dating back to Weyl [29] and Littlewood [15] and also more
recent results due to Proctor [22]. Determinantal resultsin which each matrix element is
expressed asadifference of symmetric functionscanalso befoundin King[12], El Samra
and King [5], Koike and Terada [14], Sagan [23], Stembridge [26] and Proctor [21]
[22]. In addition El Samra and King [5] give a determinant which is a special case of
Theorem 3.1 above for an outside decomposition into hooks (a Giambelli-type result,
see Macdonald [16, p. 30]).

COROLLARY 3.3 (EL SAMRA AND KING [5]). Let A bea partition. Then
sp, = det(sp (X))

Ai—i+1,11

PROOF. Theorem 3.1 with outside decomposition 6; = A1, , = 1171, 63 = A, — 1,
04 = 17272, ... Oy_1 = A — I + 1, 0 = 1% where there are r boxes on the main
diagonal of X (i.e. r boxesof content 0). ]

A second corollary to Theorem 3.1 concernsthe odd sympl ectic groups as defined by
Proctor [19]. The odd symplectic tableaLix are an easy generalization of the symplectic
tableaux we defined in Section 1. We generalize Proctor’s original definition to skew
shape.

DEFINITION 3.4. An odd symplectic tableau, SPO, , of shape \ /i isafilling of the
Ferrersdiagram of A/ with theintegers1 <1< 2<2--- <n<n< n+ 1suchthat
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FIGURE 5: Outside decompositions of two so-tableavix and the corresponding paths.

1. the entries are weakly increasing along the rows and strictly increasing down the
columns,
2. the boxes of content —i contain entries which are greater than or equal to i + 1.

We can define a Schur-type function for these tableaux. The odd skew symplectic
Schur function, spo, ,,(X), in the variables, x1. x;*, %2, % %, . . . Xns X3 L, Xne1, iS given by

_ —m(B)
0, /,,(X) = > I X I Xg ",
SPO, ,, «€SPO, ), BESPO, /,

wherethesumisover all odd symplectictableaux SPO, /,, of shape A / 1, thefirst product
isover all unbarred integers « in SPO, ,, the second product is over all barred integers
Bin SPO, /,, and m(a) (resp. m(3)) is the multiplicity of o (resp. 3) in SPO, /,,.

COROLLARY 3.5. Let A /1 be a skew shape partition. Then for any outside decompo-
sition, (A1.602. . ...60m), of A/,

Spo)\//l (X) = det(SF)09| #91 (X)) mxm’

where spoy = 1 and SPOyngefined = O-

https://doi.org/10.4153/CJM-1997-013-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-013-5

SYMPLECTIC AND ORTHOGONAL SCHUR FUNCTIONS 275

PrOOF. Use the same lattice path set-up as for Theorem 3.1 with the y-axis labeled
1,1,2,2,...,n,n.n+ 1. Then Stembridge’s generalization [26] of the Gessel-Viennot
lattice path argument provides the proof, asin Theorem 3.1. ]

The proof of Theorem 3.2 is quite similar to that of Theorem 3.1. Since an so-tableau
consists of a symplectic tableau adjoined to a (possible discontinuous) strip filled with
00's, the only difference between the proofs of Theorem 3.2 and Theorem 3.1 will be
accounting for the presence of co. The oo has special characteristics which distinguish
it from the integersfilling the so-tableau. It is permitted to appear more than once in the
same column but not more than oncein each row. Thiscanbetranslated as*“ oo isinserted
row strictly and column weakly.” Hence an so-tableau has two types of entries, those
inserted row weakly and column strictly, and those inserted row strictly and column
weakly. But this is precisely the arrangement for supersymmetric tableaux, tableaux
which contain 1, 2, ... forming arow weak, column strict “inside shape,” and 1. 2/, . ..
forming arow strict, columnweak “ outside shape.” Thesetableaux can be weighted by X
for eachentry i andy; for each entry i, and supersymmetric Schur functions can bedefined
using this weighting. Results similar to Theorems 3.1 and 3.2 but for supersymmetric
Schur functions can also be obtained in two different ways, either indirectly by replacing
{X. %2, ...} by {X1. X2 - . . , 1, Y2, . . . } in the main result of Hamel and Goulden [8] and
applying wy where wy is the operator wys, (Y) = sy/(Y), or directly using lattice paths as
has been donein Hamel [10].

PROOF OF THEOREM 3.2:. L abel they-axiswith 1, 1.2.2.....n,n,co.Wecall heights
corresponding to any oneof 1,1,2,2,...,n,ninteger levels. Fix aleft boundary asin
Theorem 3.1. Define lattice paths with five types of permissible steps—the four asin
Theorem 3.1, and up-diagona steps from height n to height oo that increase the x-
coordinate by 1 and increase the y-coordinate by 1. We distinguish between horizontal
stepsat integer levelsand horizontal stepsat co. The steps are subject to samerestrictions
asin Theorem 3.1 plusthe following additional restrictions: an up-vertical step must not
precede a horizontal step at a oo level, and a down-vertical step must not precede an
up-diagonal step. We also require that all steps between linesx = cand x = c+ 1 for
all c are either 1) horizontal at oo or down-diagonal, or 2) horizontal at integer levels
or up-diagonal. The determination of whether the steps are of type 1) or 2) is made by
the outside decomposition: if boxes of content d are approached from the | eft, then steps
between x = d and x = d + 1 must be of type 2); if the boxes of content d are approached
from below, then steps between x = d and x = d + 1 must be of type 1). Fix starting
points and ending points asin Theorem 3.1 with the adjustment that the y-coordinate of
the highest pointsis oo + 1 instead of oo (thisis so thereis no conflict with the co used
here asa symbol). Given an so-tableau of shape ) / . with an outside decomposition, we
can construct an m-tuple of nonintersecting lattice paths. For each strip construct a path
asfollows: if abox containsi or i, place astep as in the proof of Theorem 3.1. If abox
contains oo, is at coordinates (a, b) in the diagram, and is approached from the left in the
strip, put an up-diagonal step from (a — b, n) to (a — b + 1, 0o); if it is approached from
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below, put a horizontal step from (a — b, 00) to (a— b + 1, 00). Connect these steps with
vertical steps. It isroutine to verify that there is a unique way of doing this.

We verify that an intersecting m-tuple of lattice paths does not correspond to an so-
tableau. This can beverified by acase-by-caseanalysisasin Theorem 3.1. Precisedetails
on cases for lattice paths with the five distinct types of steps used here can be found in
Hamel [10] where decomposition results for the Schur Q-functions and supersymmetric
functions are proved.

The construction described abovefor generating paths given so-tableaux isreversible,
and now weverify that anonintersecting m-tuple of | attice paths obeying these conditions
correspondsto an so-tableau with the given outside decomposition. We begin by ensuring
that alattice path thet starts at P; and endsat Q; correspondsto the strip ¢; #6;. The proof
is as follows. Begin with the empty partition. At iteration k, if the k-th nonvertical step
fromtheleft ishorizontal or down-diagonal, proceed asin Theorem 3.1. If itishorizontal
ending at (i, 00), then place a box containing oo on top of the previous box. If it is up-
diagonal ending at (i, 00), then place a box containing oo in the so-tableau beside the
previous box. As in the proof of Theorem 3.1, the path restrictions ensure the entries
in arow of the so-tableau are weakly increasing, and integer entries in a column of the
so-tableau are strictly increasing. Since the so-tableau is built by placing boxesawaysto
theright or on top, we know the shapeisa strip. Moreover, since the starting and ending
points come from 6; and 6;, since boxes of the same content correspond to the same type
of step, and since the # operation is based on boxes of the content, we know the strip is
0; #6;.

Let T(l,j) denote the entry in box (I, ) of the so-tableau. The inequalities T(l,j) <
T(,j+2) and T(l.j) < T(+1,j) for T(l.j) integer (row weaknessand column strictness)
follow from the arguments in the proof of Theorem 3.1 and from the fact co is greater
than1,1,2,2, ....n, n. Now consider thecasewhereT(l, ) is co. Wemust show T(l, j+1)
doesnotexistand T(l,j) = T(I1+1,]). Theseassertionsare obviousif theboxesin question
arein the samestrip, so supposethey are not. Consider T(l. j +1). Supposethe stepin path
i starting at line x = ¢ and representing T(l, j) ends at height co. Then the step starting at
linex =c+1butinpathi+1 must start at a height higher than oo to avoid intersection.
Thisisimpossible and hence T(l. j + 1) does not exist. Consider now T(l + 1., j). Suppose
again the step in path i starting at line x = ¢ and representing T(l, j) ends at height co.
If this step is horizontal, the step starting at linex = ¢ — 1 but in path i + 1 must end at
a height higher than oo to avoid intersection, implying T(l + 1,j) does not exist. If this
step is up-diagonal, the step starting at thelinex = ¢ — 1 but in path i + 1 must end at
height co and T(I + 1. ) = oo.

The verification that the symplectic condition is satisfied for these so-tableaux follows
from the same argument asin Theorem 3.1.

For each horizontal or diagonal step that ends &t (i, j), we choose a weight of x;. For
each horizontal or diagonal step that ends at (i.ﬁ, we choose a weight of xj*1. For each
horizontal or diagonal step that ends at (i, c0), choose a weight of one. For each up-
vertical or down-vertical step, regardless of position, we choose a weight of one. Since
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FIGURE 6: Example of rational tableaux and their complements.

there is a one-to-one correspondence between lattice paths and skew so-tableaux whose
shape is a strip, the generating function for these lattice paths is the so-Schur function
for the shape of astrip.

The proof now follows as in Theorem 3.1 by Stembridge’s generalization of Gessel-
Viennot [26, Theorem 1.2]. ]

4. Rational tableaux. This final section gives determinantal results for rational
Schur functions (also called composite Schur functions). The tableaux underlying these
functions are rational tableaux defined originally for standard shape by King [11]. We
take a modified version due to Stembridge [25]. First, however, we define a new type
of shape. A Ferrers diagram of shape/p; A/ is defined as follows. Take the Ferrers
diagram of v/ p and reflect it first about a vertical axis along its left perimeter and then
about a horizontal axis along its top perimeter. Place it to the | eft of the Ferrers diagram
of A/ such that the content zero boxes form a continuous diagonal. See the diagrams
on the left side of Figure 6.
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FIGURE 7: Transformation from rational to symplectic tableau.

DEFINITION 4.1. A rational tableau, Ty /7., /,, Of shapev /p; A/, where we let Ty
denotether /p portionand T, ,,, denotethe \ / ;1 portion and wherewe let T; (i, j) (resp.
T,,u(1.])) denote the entry in box (i.j) of T;/; (resp. T, ), is afilling of the Ferrers
diagram of shaper/p; A / u such that

1. T;/7isfilled withintegersfrom1 <2 < --- <.

2. Ty, isfilled withintegersfrom1 <2 <--- <n.

3. The entries in T, strictly decrease in the columns and weakly decrease in the

v/p
rows.
4. The entries in T, strictly increase in the columns and weakly increase in the
rows.

5 i :T77G. D) <i[+1{i: Ty ,G.) <i}| <ifori<i<n

The skew rational Schur function, s;/7.,/,(X), in the variables, xi, x %, %2, %%, . . .,
Xn, X5 1, is given by

Sy = > I X 1 x,™,

Tosmasn @€ T BET5

where the sum is over al tableaux T /7., /,, of shape v/p; A/, thefirst product is over
all unbarred integers o in T,/ ,, the second product is over all barred integers 3 in T 5,
and m(a) (resp. m(3)) is the multiplicity of o (resp. 8) in T7/55 /.-

As mentioned in Section 1, the standard shape symplectic tableaux are actually a
specia case of the standard shape rational tableaux. This correspondence has been
outlined by Stembridge [25] and proceeds as follows. Let T5., be a standard shape
rational tableau such that, if we ignore the bars on elements in T; and rotate X to the
sameorientation as A, then Ty = T, and such that the largest entry islessthan or equal to
2n+1. Let T} bethe tableau obtained from T, by replacing2 <3< --- <2n<2n+1
by 1 < 1<---<n<n (note T, will not contain 1 because of restriction 5 in
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Definition 4.1). Then T; satisfies the symplectic condition and is a symplectic tableau.
See Figure 7.

Rational tableaux are also related to ordinary tableaux, and a rational tableau gives
rise to an ordinary tableau in the following manner. Take the complementin1,2,....n
of the entries in each column of T;/; and place these complements to the left of the
columnsin T, , such that the resulting diagram has shape /o, whereit is most natural
to define”y /o in terms of columns:

N = N—v, q+tpi+pi—p, i 151 V1
i A vi+l<i<vi+)

i—vy
f_[mtpi—p, i 1<i<n
! [L-, I/1+1§i§1/1+)\1.

I—vy

/ —
o

Call the tableau of shapey /o the complement of the tableau of shaper/p; A/ . See
Figure 6.
It isthen obviousthat, for n > A\ + v/,

2 (xaxa - %) 8770 /u(X) = 8y 0 (X),

wheres, ,,(X) isthe ordinary skew Schur function of shapey / o asdefinedin Macdonald
[16] or Sagan [24].
A special caseof (2) is

(€) (X1 -+ X)S(X) = spw(X).

We can use (2) and (3) and the main result of Hamel and Goulden [8] to prove a
determinantal result, Theorem 4.3, for rational Schur functions. However, this result
does not apply to all outside decompositions, but only to those having the form described
in the next definition (see Figure 8). The restriction to such outside decompositionsis a
restriction necessitated by a transformation performed in the proof, and it is likely that
amore general form of Theorem 4.3—one as general as Theorems 3.1 and 3.2—can be
proved.

DEFINITION 4.2. A columns-first outside decomposition (61, . . ., 6m) of shapev/p;
A/ is an outside decomposition suchthat 6 = v, —p; .62 =v, 1 —p, 1,....0,, =
v} — pj andsuchthat (6,,+1. . . . . 6m) is an outside decomposition of A / x where the only

strip allowed to start in the first column of A / i is the strip starting in the (A, 1) box.

Given any columns-first outside decomposition of v/ p; A / i thereis arelated outside
decomposition, 6°, of the complement, v/, where strips 6% = 1"/6; for 1 <i <4 and
0f =6 forvy+1<i<m

THEOREM 4.3. Letv/p; A/ 1 be a shape. Then for any columns-first outside decom-
position (A, . . . , 6m) of v/ p; A / w and corresponding outside decomposition (65. . . . . 6%)
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FIGURE 8: Example of a columns-first outside decomposition.

of v/a,
S/ /u(X)
(Sln O #69) (X)) 1<i<im:1<j<in : (89?#95 (X)) 1<i<1,1+1<j<m
=det
\ ( 0/ (O #065),:(05 #07) (07 #07); ) ) pHl<i<misi<n (39i #6) (X)) v1+1<i<mpi+1<j<m

where (67 #6); is the first column of 6f #6.

PrROOF. From Theorem 3.1 of Hamel and Goulden [8], the following identity holds:
4 Sy /o(X) = det(sy,44,/(X)).-

Apply (2) to theleft hand side of (4); apply (3) to each of thefirst 1 columns on the
right hand side of (4). The result follows. ]

The determinants (for n = 7) corresponding to the outside decompositionin Figure 8
are asfollows (note s;x = 0 for k > n).

Soa7542(X)
Si1111 Sin S111 S11 1 0 0 O
S Sunn S S11 S 0 0 O
0 Sy Suaat Sun S 1 0 Oo
—get| © 0 Sunn S S S1 1 0
0 0 Sp111111 Sp11111 Sp111 S s 0
0 0 Sgztm111/1 Samanr/1r Sa2n11/1 Sa2ny1 Saz1 S3
0 0 Su11111 Sp1111 Sp11 Sn ss O
0 0 0 0 Spu1/1 211 S2/1 1
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S Sg Smm Smm 1 o 0 0

1 st s smm S1 0 0 0

0 1 sz s S11 1 0 0

— 0 0 s S Si1 S1 1 0
SAE;5431(X) - det 0 0 S@;l %1 So111 S S 0
0 O sy31 Spar Swamjs Swnj1 Sizjnr S8

0 0 1 s s su s O

0 0 © 0 Spmijn S211 S2in S

The following corollary due to Balankentin and Bars [1] for standard shape has
been proved by Cummins and King [4] using the same complementing transformation
technique asin the proof of Theorem 4.3.

COROLLARY 4.4. Letv; A beashape. Then
Sia(X)
= det ( (e’/,’/rﬁri” (X)) 1<i<m+A11<]<v1 " (ek,’f,/l —jrvHi (X)) 1<i<v1+A 1 +1<j <o +>\1) ’

where eis the elementary symmetric function (i.e. & = Sy).

PrOOF. Theorem4.3withoutsidedecompositionf; = v{forl <i <wjandf; =\, ;

forvi+1<i <\ +vy. ]
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