A Theorem on Bordering Symmetrical Determinants whose Elements are of the form $a^{r}{ }_{a} a^{\alpha}{ }_{s}$

By J. J. Nassau.

(Received and Read 2nd June 1928.)

1. The following is a generalization of a theorem stated by Professor H.S. Uhler and demonstrated by the writer in the American. Mathematical Monthly of October 1927.

Let N denote the bordered symmetrical determinant
where $n>k, k>p$ and $c_{r s}=\sum_{j=1}^{j=n} a_{r, j} a_{s, j}$ and the " a ", s belong to the matrix

$$
M=\left(\begin{array}{cccccc}
a_{11} & a_{12} & \cdot & . & \cdot & a_{1 n} \\
a_{21} & a_{22} & \cdot & \cdot & \cdot & a_{2 n} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
a_{k 1} & a_{k 2} & . & \cdot & . & a_{k n}
\end{array}\right)
$$

Then N equals $(-1)^{p}$ times the sum of the squares of $\binom{n}{k-p}$ determinants of order k every one of which has for the first k columns the matrix

$$
\left(\begin{array}{cccccc}
b_{11} & b_{12} & \cdot & \cdot & \cdot & b_{1 p} \\
b_{21} & b_{22} & \cdot & \cdot & \cdot & b_{2 p} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
b_{k_{1}} & b_{k_{2}} & \cdot & \cdot & \cdot & b_{k p}
\end{array}\right)
$$

and the remaining $k-p$ monomial columns constitute collectively one of the combinations of n columns of the matrix M taken $k-p$ at a time.
2. In as much as the generality of the proof is not destroyed, for simplicity a special value of p is chosen. Let $p=2$, and denote

$$
d_{r s} \equiv \sum_{j=1}^{j=1} b_{r, j} b_{s, j}
$$

The result of compounding the matrix

$$
\left(\begin{array}{cccccccc}
b_{11} & b_{12} & a_{11} & a_{12} & \cdot & \cdot & \cdot & a_{1 n} \\
b_{21} & b_{22} & a_{21} & a_{22} & \cdot & \cdot & \cdot & a_{2 n} \\
\cdot & \cdot \\
b_{k 1} & b_{k 2} & a_{k 1} & a_{k 2} & \cdot & \cdot & \cdot & a_{k n}
\end{array}\right)
$$

with its conjugate is a square matrix. The determinant $D_{b_{11}{ }_{12}}$ of this matrix ${ }^{1}$ is

$$
\begin{aligned}
& \left|\begin{array}{cccccc}
d_{11}+c_{11} & d_{12}+c_{12} & . & . & . & d_{1 k}+c_{1 k} \\
d_{21}+c_{21} & d_{22}+c_{22} & \cdot & \cdot & . & d_{2 k}+c_{2 k} \\
\cdot & \cdot & \cdot & \cdot & \cdot & . \\
. & . & \cdot \\
d_{k 1}+c_{k 1} & d_{k 2}+c_{k 2} & \cdot & . & . & d_{k k}+c_{k k}
\end{array}\right| \\
& =\left|\begin{array}{cccccc}
a_{11} & a_{12} & \cdot & \cdot & \cdot & a_{1 k} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
a_{k 1} & a_{k 2} & \cdot & \cdot & \cdot & a_{k k}
\end{array}\right|^{2}+\left|\begin{array}{cccccc}
a_{11} & a_{13} & \cdot & \cdot & \cdot & a_{1}, k+1 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
a_{k 1} & a_{k 3} & \cdot & \cdot & \cdot & \cdot \\
a_{k, k+1}
\end{array}\right|^{2}+\ldots . \\
& +\left|\begin{array}{cccccc}
b_{11} & a_{11} & \cdot & \cdot & \cdot & a_{k, k-1} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
b_{k 1} & a_{k 1} & \cdot & \cdot & \cdot & a_{k, k-1}
\end{array}+\left|\begin{array}{ccccccc}
b_{12} & a_{11} & \cdot & \cdot & \cdot & a_{1, k-1} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
b_{k 2} & a_{k 1} & \cdot & \cdot & \cdot & a_{k, k-1}
\end{array}\right|^{2}+\ldots \ldots\right. \\
& +\left|\begin{array}{cccccc}
b_{11} & b_{12} & a_{11} & \cdot & \cdot & a_{1, k-2} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
b_{k 1} & b_{k 2} & a_{k 1} & \cdot & \cdot & \cdot \\
a_{k, k-2}
\end{array}\right|^{2}+\left|\begin{array}{cccccc}
b_{11} & b_{12} & a_{11} & \cdot & \cdot & a_{1, k-3} a_{1, k-1} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
b_{k 1} & b_{k 2} & a_{k 1} & \cdot & \cdot & \cdot \\
a_{k, k-3} & a_{k, k-1}
\end{array}\right|^{2} \\
& +\ldots \text {. } 1 \text {) }
\end{aligned}
$$

3. The left-hand side of (1) is composed:

First, of a determinant without any d 's, that is $\left|c_{11} c_{22} \ldots c_{k k}\right|$.
Secondly, the sum of $k p$ determinants derived from determinants having each one column of d 's. That is

$$
\begin{align*}
& b_{21}\left|\begin{array}{cccccc}
c_{11} & b_{11} & c_{13} & \ldots & c_{1 k} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdot \\
c_{k 1} & b_{k 1} & c_{k 3} & \ldots & c_{k k}
\end{array}\right|+b_{22}\left|\begin{array}{cccccc}
c_{11} & b_{12} & c_{13} & \cdots & c_{1 k} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
c_{k 1} & b_{k 2} & c_{k 3} & \cdots & \cdots & c_{k k}
\end{array}\right|+\ldots \tag{2}
\end{align*}
$$

[^0]If the lst, $(p+1),(2 p+1) . .$. terms are grouped and the 2 nd, $(p+2),(2 p+2) . .$. terms are grouped likewise, the above sum takes the form

$$
-\left|\begin{array}{ccccccc}
0 & b_{11} & b_{21} & . & . & . & b_{k 1} \\
b_{11} & c_{11} & c_{12} & . & . & . & c_{1 k} \\
. & \cdot & . & \cdot & . & . & . \\
b_{k 1} & c_{k 1} & c_{k 2} & . & . & . & c_{k k}
\end{array}\right|-\left|\begin{array}{ccccccc}
0 & b_{12} & b_{22} & . & . & . & b_{k 2} \\
b_{12} & c_{11} & c_{12} & . & . & . & c_{1 k} \\
. & . & . & . & . & . & . \\
b_{k 2} & c_{k 1} & c_{k 2} & . & . & . & c_{k k}
\end{array}\right|
$$

By the theorem referred to in the beginning of this paper, the last two determinants are equivalent to the sum

$$
\begin{aligned}
& \left|\begin{array}{cccccc}
b_{11} & a_{11} & \cdot & . & . & a_{1, k-1} \\
\cdot & \cdot & \cdot & . & . & \cdot \\
b_{k 1} & a_{k 1} & \cdot & . & . & a_{k, k-1}
\end{array}\right|^{2}+\left|\begin{array}{ccccccc}
b_{11} & a_{11} & . & . & . & a_{1, k-2} & a_{1 k} k \\
\cdot & \cdot & \cdot & . & . & . & . \\
b_{k 1} & a_{k 1} & . & . & \cdot & a_{k, k-2} & a_{k k}
\end{array}\right|^{2}+\ldots \\
& +\left|\begin{array}{cccccc}
b_{12} & a_{11} & \cdot & \cdot & \cdot & a_{1, k-1} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
b_{k 2} & a_{k 1} & \cdot & \cdot & \cdot & a_{k, k-1}
\end{array}\right|^{2}+\left|\begin{array}{ccccccc}
b_{12} & a_{11} & \cdot & \cdot & \cdot & a_{1, k-2} & a_{1 k} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
b_{k 2} & a_{k 1} & \cdot & \cdot & \cdot & \cdot & a_{k, k-2}
\end{array} a_{k k}\right|^{2}+\ldots
\end{aligned}
$$

Thirdly, of the sum of $2!\binom{k}{2}$ determinants derived from determinants having each two columns of " d "'s at a time, that is:
from which we obtain

$$
(-1)^{p}\left|\begin{array}{llllllll}
0 & 0 & b_{11} & b_{21} & . & . & . & b_{k 1} \tag{3}\\
0 & 0 & b_{12} & b_{22} & . & . & . & b_{k 2} \\
b_{11} & b_{12} & c_{11} & c_{12} & . & . & . & c_{1 k} \\
b_{21} & b_{22} & c_{21} & c_{22} & . & . & . & c_{2 k} \\
& . & . & . & . & . & . & . \\
. & . \\
b_{k 1} & b_{k 2} & c_{k 1} & c_{k 2} & . & . & . & c_{k k}
\end{array}\right|
$$

Lastly, all the determinants having $p+1$ or more, columns of d 's are equal to zero, for they will have two or more columns the same.
4. The right-hand side of (1) is composed, first of the sum of $\binom{n}{k}$ determinants without b 's and is equivalent to the determinant of the square matrix obtained by compounding the matrix

$$
\left(\begin{array}{cccccc}
a_{11} & a_{12} & \cdot & \cdot & \cdot & a_{1 n} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
a_{k 1} & a_{k 2} & \cdot & \cdot & \cdot & a_{k n}
\end{array}\right)
$$

with its conjugate; and hence is equal to $\left|c_{11} c_{22} \ldots c_{k k}\right|$. This corresponds to the first determinant considered on the left side of (1).

The second group of $p\binom{n}{k-1}$ determinants of the right side, having each one column of b 's, is equivalent to (2). Therefore the remaining terms of the right side are equivalent to (3), the only determinant left on the left side. Hence the theorem.

[^0]: 1 Scott and Mathews, Theory of Determinants, p. 54.

