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CLOSED AND PRIME IDEALS IN THE ALGEBRA

OF BOUNDED ANALYTIC FUNCTIONS

RAYMOND MORTINI

Let H be the Banach algebra of all bounded analytic functions

in the unit disc. We present a complete description of the closed

primary (respectively prime) ideals contained in a maximal ideal
CO

of the Shilov boundary of H . The paper is also concerned with
00

chains of prime ideals in H

1. Introduction

One major problem in the analysis of the ideal structure of Banach

algebras is the characterisation of the closed ideals. In the disc algebra

A{ID\ , for example, the structure of these ideals has been determined by

Beurling and Rudin (see LS, p.88]). The situation in H is much more

difficult. In section 2 of this paper we determine the structure of the
oo

closed ideals in H which are contained only in maximal ideals of the set

of fibres M> » where X runs through a compact set of Lebesgue measure

zero of the unit circle T . Using this result we then give a complete

characterisation of the closed primary ideals contained in a maximal ideal

of the Shilov boundary of H

Received 19 March 1986. The author is deeply indebted to Pamela
Gorkin who pointed out to him a proof of Theorem 3.3.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/87
SA2.00 + 0.00.

https://doi.org/10.1017/S0004972700013186 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013186


214 Raymond Mortini

Another fundamental problem in H is the characterisation of the

closed prime ideals. Whereas in the disc algebra every closed prime ideal

is maximal, there exist in- H non-maximal closed prime ideals. In view

of this situation a conjecture of Ailing [7] states that a non-maximal

prime ideal in H is closed if and only if it coincides with the set of

all functions that vanish on a nontrivial Gleason part. In this paper we

give a partial answer to this problem.

In a recent paper [5] , Gorkin has shown that each maximal ideal
00

that does not belong to the Shilov boundary of H or the unit disc

contains an infinite chain of prime ideals. This leads us to the question
00

of whether the set of all prime ideals contained in a maximal ideal of H

forms a chain, as is the case in the ring H(ID) of all analytic functions
oo

in the unit disc ID . The situation in H is, however, completely

different. In section 4 of the present paper we prove that the prime ideals

contained in a maximal ideal m are linearly ordered by set inclusion if

and only if m belongs to the Shilov boundary or the open unit disc ID .

DEFINITIONS AND NOTATION. Let H° be the Banach algebra of all

bounded analytic functions in the open unit disc JD under the supremum

norm. Let us denote by M. the fibre of the maximal ideal space M over
A

the po in t z = X, |X| = 1 , t ha t is M i s the s e t of a l l maximal ideals
A

m in M such that the function X - z belongs to m , and by f the Gelfand

transform of / .

In the sequel let X be the Shilov boundary of H , Q the set of

all those maximal ideals m whose Gleason part R(m) is non-trivial and

X% = X n Mx , |X| = 1 .

We shall call an ideal primary if it is contained in a unique maximal

ideal.

If if is a compact set of Lebesgue measure zero of the unit circle

T = {z e 0: |z| = 1} , then we denote by Pv the A (E>) peak-function
A

associated with the set K ; that is Pv is a function in A(JD) such

that 1 for z e K and |P«(s) | < 1 for z e W \ K • It is

https://doi.org/10.1017/S0004972700013186 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013186


Ideals and Analytic Functions 2 1 5

known that such a function always exists (see Hoffman [S], p.81).

2. Closed ideals in H™

It is known Csee Hoffman 18 , p.88]) that in the disc algebra A(2D)

every closed primary ideal I which is contained in the maximal ideal

M±= {f e AW) : /(I) = 0} has the form

I = exp (-»S) <.
where a 2 0 and J = M-. is the closure of the principal ideal (1-3) .

In the first theorem of this section we show that, in some sense, a similar

CO

result holds for the algebra H

THEOREM 2.1. (Hedenmalm 16, p.132). Let I be a closed ideal in

H that is contained only in a maximal ideals of the fibre M, . Then

there exists an a > 0 such that

I = exp (-a ̂ f ) J,

where J is a closed ideal that contains the outer function 1-z .

Theorem 2.1 is due to Hedenmalm [6], who gave a non constructive

proof using Banach space techniques. We present in the following a

constructive proof.

Proof. Let <j> be the greatest common divisor of the inner parts

of the functions in I . <j> has the factorisation <f> = B<i>^2 , where B

is a Blaschke product, ((>1 a singular inner function with discrete measure

and $2 a singular inner function with continuous measure. Because J

lies only in maximal ideals of the fibre M.. , it is easy to see that

B = <f>_ = 1 , and <j>. has only one discontinuity at the point 3 = 1 (see

for example, Hoffman [S, Ex.13, p.75, and Theorem, p.161]). Therefore, $

has the form
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= exp I-a r I , where a t 0
I 1-2 )

00

Hence J has the form I = $J , where J = {f e H -. f$ e 1} i s a closed
00

ideal in H . In the sequel we shall show that the outer function 1-3

belongs to J .

In the first two steps we construct a uniformly bounded sequence

00

gn = BG of functions in H such that g converges uniformly to 1

outside every neighbourhood U^(l) = (a e. JD : \z-l\ < 6} of the point

f 1+sl3 = 1 and such tha t exp -B~ ff € J for some B ^ 0 .

it
In what follows, H(z,t) = -^r— denotes the Herglotz kernel.

e -z

Step 1. Let f =f 0 be any function of J . The W factorisation
theorem yields the representation / = BSJ} , where B i s a Blaschke

1 °°
product, G (z) = exp •=— / H(z,t)d (t) a function in H such that

the Borel measure u has no mass at the point 3 = 1 and So has at most

[ 1+3-6 i—I
1-3 \

(B s Q) .

Because the regular measure y has no mass at the point 3 = 1,

Ls y(.{l}) = 0 , wi

point 3 = 1 such that

that is y(.{l}) = 0 , we can choose open arcs E c 3JZJ containing the

M(£„) ̂  - , |u| = v+ + V~ ,

EncEn-l (M £ J y ) •

Define the functions G and H by

C (a) = exp i - / E{z,t)d (t) , J5T (3) = exp ^ - / E{z,t)d (t) .
n * E*, V T\E V

It is now easy to check that the sequence G converges uniformly to 1
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outside every neighbourhood of the point 2 = 1 . Note tha t G = G H

Let E' be any open arc containing z = 1 such that E' c E for

a fixed n e If . Now we factorise the Blaschke factor B of the function

/ into a product B = B1 B~ of two Blaschke products such tha t the

the zeros a . of B, are accumulating only on the se t E' and

those of B ^ 1 only on the se t T\E' .

-(n)

Hence Pn (s) = II —. j—-.— converges uniformly to 1
i=N \a{.' | l-a!n)3

on each compact set of -EA£M • N o w w e choose N = N(n) so that

Kil (Z) - X| *k On
k 6

n
where «n = dist d , ^ ) - Let B^ = P ^ } . Then the functions gn =

converge uniformly to 1 outside each neighbourhood of the point z = 1 .

We remark furthermore that \\g || ̂  max {l,||/||} . Thus the

sequence S^g (1-z) converges uniformly on ID to 5g(l-z) , that is

(3) \\S&gn(l-z) - SB(l-z)|| * 0 (n -»• ~) .

Step 2. We are now going to show that the functions Sog belong to
P n

the ideal J .

By the first step, f has the form

where B is a finite Blaschke product and where the function h =
n n

~ In]
B B, H are bounded away from zero in a neighbourhood of the point 3 = 1

Thus the functions h are not contained in any maximal ideal of the fibre

Mĵ  . Because J is contained only in maximal ideals of the fibre M, , we
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can conclude that the ideal (J,h ) = fl°° . Hence there exist functions

x e if and y g J such that

Multiplying both sides by Sj!n / we see that

which proves the assertion of the second step.

Hence the functions SRg (1-z) are in J . The ideal J being

closed, we can conclude then from (3) that

<4) SAl-zl £ J .
P

Step 3. Since the greatest common divisor of the inner parts of the

functions in J is invertible, we remark that for every e > 0 there

exists a function f e J such that f = S g , where the Borel measure

associated to the singular inner part of the function g e H has no mass

at the point 3 = 1 and where • S (z) = exp -e •= .
e (̂ J.-2J

Since the function f = Szg can now be factorised, as in the first

step, into the product / = BSZG^ , where y({l}) = 0 , we can conclude

from (4) that S£(l-3) e J for every e > 0 , in particular for e = — .

Since the functions S .(z) = «/exp I- r~A converge uniformly to 1

outside every neighbourhood of 1 in ID , we have

\\si/na-z) - ci-«)||ni.o .

Thus, since J is closed, the outer function 1-3 belongs to J Q

REMARK. Because the closure of the ideal (1-3) coincides with

the ideal M = {/ e ff"': / = 0 on M. } = {/ e H™-. lim f(.z) = 0} (note
1 s-KZ

that | | / ( l - s M ) - / | | +0 for f e M) , Theorem 2.1 implies that M c J .
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Using the theorem of Beurling and Rudin about the characterisation

of the closed ideals in the disc algebra A (JZ5). (see Hoffman [S], p.85) ,

we can generalise Hedenmalm's result with our methods in the following

sense:

THEOREM 2.2. Let I be a closed ideal in s" that is contained

only in maximal ideals of the set of fibres M. > where A runs through a

compact set K c T of Lebesgue measure zero. Then there exists an inner

function <j> whose boundary singularities are contained in the set K such

that

I = W ,

where J is a closed ideal that contains the outer function 1~PK i Vv

being the A (ID) peak function of the set K .

REMARK. Because the closure of the ideal ^~Pv> coincides with the

ideal M = {f e H°: f = 0 on U M̂ } = {f e E°: lim f(z) = 0} , Theorem
z-+\
XeK
00

2.2 implies that M c J . Thus the situation in H is similar to that

in the disc algebra A (ID) , where, under equivalent assumptions, J

coincides with the ideal M = {/ e A (JD) : f = 0 on K} .

Proof. Let <(> be the greatest common divisor of the inner parts of

the functions in I . If X is a boundary singularity of <)> , then there

exists a sequence z in JD converging to X such that <(> (3 ) •+ 0 .

Hence <j> lies in a maximal ideal m of the fibre M (see Hoffman 18,

p.161]). Under the assumptions of the theorem, it is now clear that I

has the form I = fyJ , where the boundary singularities of <C a r e contained

in the set K and where J is the closed ideal {f e H : /<(i e 1}.

In the next two steps the proof continues in the same manner as

before; we have now only to factorise the functions f e. J in the

following form:

(1) / = BSvGv , v = v(f) , P =
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here B is a Blaschke product, 5y a singular inner function and G (2)

1 °°
= exp — / B(z,t)d (t) a zero free function in H such that u (K) = 0 .

zTT y U

Thus we can conclude that S d-Pj^) e ^ •

In order to prove the third step, we remark that by the Beurling-Rudin

theorem and the fact that the greatest common divisor of the inner parts

of the functions of J is invertible, the closure of the ideal generated

by the functions

coincides with the closure of the principal ideal generated by l-p«- •

Hence the function 1-p*, belongs to J D

Using Theorem 2.1 we can give a complete characterisation of the

closed primary ideals contained in a maximal ideal of the Shilov boundary.

Thus we solve a problem raised by Hoffman (see 16, p.74]).

00

Before we proceed, we present some background. Let L be the

Banach algebra of all essentially bounded, complex valued functions on

the unit circle T under the supremum norm ||*|l,» and A^ = H |M̂  the

restriction algebra of B to the fibre M . It is well known (see

Hoffman LS, p.187]) that A is isometrically isomorphic to the quotient

algebra H°°/M , where M is the closed ideal M = {/ e ff°°: f E 0 on M^.

Let B°° + C = {f + g- f e H°°, g e C] . A theorem Axler [2, p.567] states

that for each f e L there exists a Blaschke product B such that

Bf e B + C. Axler's proof shows that this result can be extended to

sequences of functions. Using this theorem and its proof, one can show

that

J = if e L°°: Bf\X e I\X for some Blaschke product B}

00 CO

is a closed ideal in L whenever I is a closed ideal in B containing

M . A slightly different version of the following was shown to me by

Gorkin.
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THEOREM 2.3. Let I be a closed primary ideal contained in a

maximal ideal m of the Shilov boundary X of H° . Then I is maximal.

Proof. Since J is primary, the greatest common divisor of the inner

parts of the functions in J is invertible. This follows from the fact

that for every noninvertible singular inner function <j> there exists a

sequence {z ) in JD such that $ (.z ) •* 0 (see Hoffman IS, Ex.13, p.

73]) and that the closure of {z } in M contains infinitely many points

m e tf\JD (see Garnett [4, p.190]). Without loss of generality we may

assume that I c m e y f where X. = M. n X . Theorem 2.1 implies that J

contains the ideal

M = {/ e H°: f = 0 on 1^} .

By the remark above, the ideal

J = if e L°: Bf\x. e ilX. for some Blaschke products}

is then closed in L . Because J is assumed to be primary, it is

obvious that J has this property too.

On the other hand, every closed primary ideal in L ^ C(X) is

known to be maximal. Hence J is maximal; from which we can conclude

00

that J n H = m . Thus for every function fern there exists a function

gel and a Blaschke product B such that (Bf-g) |#, = 0 . Since >T is

the Shilov boundary of A. , we have Bf-g = 0 on M. ; hence

Bf-g e M c J . since B i m and I c m is primary, the ideal (I,B) is

the whole algebra H . Hence there exist functions x e H and y e J

such that 1 = y+xB . Multiplying by / we have / = fy+x(Bf) e I .

Thus I = m . D

We remark that a characterisation of the closed primary ideals

contained in a maximal ideal whose Gleason part R(m) is nontrivial is

known (see Hedenmalm [6, p.14]). Indeed, if J e m is such- an ideal, then

I has the form

I = In = {/ e H°: f°9e (.Z-Z^H") t
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where 0 is the analytic disc from JD onto Rim) such that $(s ) = m .

On the other hand, however, a characterisation of the closed primary

ideals contained in a maximal ideal m e. M\{ g u X) , that is a maximal

ideal whose Gleason part is trivial, but which does not belong to the

Shilov boundary, is still unknown. But we conjecture that the following

is true:

Conjecture 1. Let I be a closed primary ideal contained in a

maximal ideal m e M\ (g u X) . Then I is maximal.

In the final part of section 2, we consider ideals of the form

I = {/ e H : f = 0 in a neighbourhood of m in the topological

space X.},

where m i s a maximal ideal of J. = X n M. . Note that X. 4= M. . In

view of the results in the algebra L = C(X) , we could expect that every

ideal of the form J would be dense in the corresponding maximal ideal.

But this does not hold. Indeed, we have the following result :

PROPOSITION 2.4. Let A be a uniform algebra, M its maximal ideal

space and X its Shilov boundary. Suppose that for every x e X the ideal

I = {f e A: f = 0 in a neighbourhood of x in the topological space X)

is dense in x . Then X = M .

Proof. Assume that there exists an element m e M\X . Since

J = x for a l l x e X , we can conclude that there exists for each x a
x

f u n c t i o n f e I , / E O i n a n e i g h b o u r h o o d Uix) o f x , s u c h t h a t
XX X

f te) 41 0 . Hence X = J->Y U(x) . Because X is compact, there exist

thus finitely many functions / ,...,/ e A such that the function
Xl Xn

Xl Xn

vanishes identically on X , and hence on M , because X is the Shilov

boundary of A . Buth this contradicts the fact that
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(7n)*"f On) =)= ° by construction.
1 n

Thus X = M .

3. Closed prime ideals in H°°

In a recent paper [JO] we have proved that each prime ideal which

contains an interpolating Balschke product is primary. The next

proposition will show that such an ideal cannot be closed unless it is

maximal.

THEOREM 3.1. Let P be a closed prime ideal containing an inter-

polating Blaschke product. Then P is maximal.

Proof. Let m be a maximal ideal that contains P . Because P

contains an interpolating Blaschke product, it is by [J0] or [9, p.52],

primary. Hence P is a closed primary ideal which lies in a maximal

ideal m whose Gleason part is nontrivial. Thus, by the remark after

Theorem 2.3, P has the form

P = {f e fl°°: f° $ e (z-zo)
nHm}

for an integer n e JN . Because the order of the zero m of the inter-

polating Blaschke product is 1, it is easily seen that n = 1 . Hence

P = {/ e H°: f o * e (z-z0) H°] .

But the last ideal coincides with m , thus P = m. D

Remark. After this work was finished, I learned that Theorem 3.1

has also been proved by Gorkin [5] (independently).

In the next proposition we consider closed prime ideals contained in

a maximal ideal of the Shilov boundary.

PROPOSITION 3.2. Let P be a closed prime ideal contained in a

maximal ideal m of the Shilov boundary X of H . Then P contains

the ideal Im = [f e H°: f = 0 in a neighbourhood of m in the

topological space X.) for some \ e T .
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Proof. Without loss of generality we may assume that P c m e X. ,

where X. = M. n X . Let / be any function of the ideal J and U a

neighbourhood of m on which / vanishes identically. Because the

restriction algebra A. of H to M. is regular on X^ (Hoffman [S,

p. 189]) , there exists a function g e H such that

g = 0 on Xx \ U , but g(jn) + 0

Thus fg = O on X. and hence on M. , because X. is the Shilov

boundary of 4. .

Because P is prime, it is easily seen that the greatest common

divisor of the inner parts of the functions in P is invertible. In order

to apply Theorem 2.1, we have yet to show that the ideal P is contained

only in maximal ideals of the fibre M, .

Assume that there also exists a maximal ideal m of the fibre Ma ,

a ^ 1 , that contains P . Then the factorisation

/ = (S2 exp i / H{z,t)dv(t)) {B2 exp ̂ - / ff(s,t)<yt)

where E is an open arc such that 1 e E , a i S and B. (respectively

B ) are Blaschke products whose zeros accumulate only at E (respectively

at T \ E) , shows that P cannot be prime.

Hence by Theorem 2.1 we conclude that P contains the ideal

{f e H ; f = o on M } = (1-3) ; in particular fge.P. since P is

prime and g i m , we get f e P . This yields the assertion Im c P . D

We are now able to characterise the closed prime ideals contained in
CO

a maximal ideal of the Shilov boundary of B

CO

THEOREM 3.3. Every closed prime ideal in H contained in a

maximal ideal m of the Shilov boundary is maximal.

https://doi.org/10.1017/S0004972700013186 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013186


Bounded analytic functions 225

Proof. We proceed as in the proof of Theorem 2.3. Let P be the

closed prime ideal and m the maximal ideal containing it. We remark that

by Proposition 3.2 P contains the ideal

M = {/ e H°: f = 0 on 1^} .

Thus we can conclude that the ideal

J = {f e L°: Bf\X^ £ P\X for some Blaschke product B}

is closed. By Proposition 3.2 and the fact that A = H |M is regular on

X , we see that J is primary. Hence J is, as a closed primary ideal

oo oo

in L , maximal. This implies that J n H = m . By exactly the same

arguments as in the proof of Theorem 2.3 there exists for every f e m a

function g e P and a Blaschke product B such that Bf-g e M c P .

Since P is prime and B i P c m , we see that f e P . Thus P = m. •

Note that, unlike conjecture 1, there exist non-maximal closed prime

ideals which are contained in a maximal ideal m I X whose Gleason part

is trivial. Indeed, by a result of Budde [3, p.11], every nontrivial Gleason

part R(w) contains a maximal ideal, whose Gleason part is trivial, in its

closure. Hence the ideal

P = {f e. H°: f = 0 on R(m) } ,

which is a closed prime ideal, is such an example.

It is therefore of great interest to characterise the closed prime
00

ideals in H . in view of this, Ailing conjectured:

Conjecture. (Ailing C H ) . Let P be a non-maximal closed prime

oo

ideal in H . Then there exists a maximal ideal m whose Gleason part

is nontrivial such that

P = {/ e ff°°: / = 0 on R(m)} .

Our next proposition together with Proposition 3.1 and Theorem 3.3

will yield a partial solution to the conjecture of Ailing.
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DEFINITION. An ideal J e f f " i s called free, if the functions in
I have no common zeros in ID .

Let m e M and f{m) = 0 . Then

ord(/,m) = sup{« e W-. f = fy-- -fn , f^im) = 0, i = 1,... ,n}

will denote the order of the zero of / at n .

PROPOSITION 3.4. Let P be a free prime ideal in H° and m be

a maximal ideal that contains P . Then the following assertions are

equivalent:

CD P does not contain any interpolating Blaschke product.

(2) For every f e P we have ord(f,m) = «= .

(5) P c {/ e H°: f = 0 on RCm)} .

Proof. CD =* (2): Since P does not contain any interpolating

Blaschke product, every function / e P can be factorised into a product

f = fxf2 of two functions in ff°° such that f^(m) = f2i.m) = 0 (see [JO]

or C9, p.53, theorem 5.5]). The fact that P is prime implies that at

least one of the factors /. or / lies in P . So continuing, we get

the assertion (2) .

(21 =» (.3) : Follows directly from a theorem of Hoffman (see [3,

p.403, Lemma 1.2]) .

(3) =* (1): Xf P contained an interpolating Blaschke product B ,

then P would be primary by [10] or [9, p.52]. Furthermore, the Gleason

part R(m) of m would be nontrivial. Thus (3) cannot hold. D

Remark. If we take the converse of the assertions in Proposition 3.4,
00

we obtain a charac ter i sa t ion of those primary prime ideals in H which are

contained in a maximal ideal meg-.

PROPOSITION 3.4'- Let P be a prime ideal in H and m a maximal
ideal that contains P . Then the following assertions are equivalent:

(1) P contains an interpolating Blaschke product.
(2) There exists an f e. p such that ord(f,m) = 1.
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(3) P i s p r i m a r y and m e g .

Now we can state the main result of this section.

THEOREM 3.5. Let P be a non-maximal closed prime ideal in H° .
Then P is contained in the ideal of all those functions that vanish on a
Gleason part, which is disjoint from the Shilov boundary, that is

P c {/ e H°: f H 0 on RCm) } , m <} X .

Proof. Follows directly from Proposition 3.1, 3.4 and Theorem

3.3. D

4. Chains of prime ideals in H°°

In a recent paper [5], Gorkin has shown that each maximal ideal

m e M\(X u ID) contains an infinite chain of prime ideals. It is now of

great interest to ask whether all the prime ideals contained in a maximal

ideal form a chain; a situation which occurs, as is known (see Henriksen

[7, p.716]), in the ring H(ID) of all analytic functions in the unit disc.

Our next theorem now gives a complete answer to this problem.

THEOREM 4.1. The set of prime ideals contained in a maximal ideal

m of H is linearly ordered (by set inclusion) if and only if m belongs

to the unit disc ID or to the Shilov boundary X .

Proof. Since the case that m belongs to the unit disc is trivial,

we show in the first step that the prime ideals contained in a maximal ideal
00

m of the Shilov boundary X are linearly ordered. Note that H is a

pseudoBezout ring; that is, any two functions in ff°° have a greatest

common divisor {gcd) (see v.Renteln [IJ, p.519]).

Let P and Q be two prime ideals contained in a maximal ideal

m e X . Suppose that there exists a function f e P \ Q and a function

g € Q \ P • Let d = gcd(fig) • Hence there exist two bounded analytic

functions F and G which have no proper common divisor such that

f = dP (1) g = dG (2) .
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Because g <} P , we can conclude from (2) tha t d <| P • Thus the primeness

of P and (1) y ie ld tha t F e P . In the same manner we conclude tha t

G e Q . Hence the functions F and G are both in m (remark that

P,Q <= m) . But god (F,G) = 1; thus the ideal (F,G) contains (by v.

Renteln [77, p.523]) an inner function <j> ; in pa r t i cu la r <j> e m .

However |$(ml | = 1 for every m e X and a l l inner function (see Hoffman

IS, p.179]) . Thus we have e i t h e r P c Q or Q c p .

In the f ina l s t ep , we show that the prime ideals contained in a

maximal ideal m t ha t does not belong to the Shilov boundary or to the

u n i t d i s c , are not l inea r ly ordered. Indeed, we shal l construct two prime

i d e a l s Pern and Q c m such that P 4 Q and Q 4 P •

Let m e M \ (X u ID) . We choose two functions f and g of m

such t h a t gcd(f,g) = 1 . For example, l e t / be a Blaschke product in

m , which ex i s t s by a theorem of D.J. Newman (see Hoffman IS, p.179]) ,

and g the outer function z-a , where a e T i s sui tably chosen.

00

We define the following multiplicatively closed subsets of H :

Sj, = {hf1-. h e H°. h i m, n e IN u {0}} ,

S = {hgn: h e H°, h $ m, n e M u {0}} .
y

Since gcd(f,g) = 1 , it is easy to see that (g) n S« = 0 and (/) n 5
J y

By the lemma of Krull each super ideal P => (g) , (respectively

Q 3 (.f)) , which is maximal with respect to P n 5/. = 0 , (respectively

Q r\ S = 0) , is a prime ideal. By construction P and Q are contained

in the maximal ideal m . But on the other hand, f e S~ implies / | P

and g e S implies g $ Q . Thus P \ Q and Q \ P . Q
y
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