
Canad. J. Math. Vol. 66 (2), 2014 pp. 303–322
http://dx.doi.org/10.4153/CJM-2012-058-5
c©Canadian Mathematical Society 2013

Haar Null Sets and the Consistent
Reflection of Non-meagreness
Márton Elekes and Juris Steprāns

Abstract. A subset X of a Polish group G is called Haar null if there exist a Borel set B ⊃ X and Borel
probability measure µ on G such that µ(gBh) = 0 for every g, h ∈ G. We prove that there exist a
set X ⊂ R that is not Lebesgue null and a Borel probability measure µ such that µ(X + t) = 0 for
every t ∈ R. This answers a question from David Fremlin’s problem list by showing that one cannot
simplify the definition of a Haar null set by leaving out the Borel set B. (The answer was already known
assuming the Continuum Hypothesis.)

This result motivates the following Baire category analogue. It is consistent with ZFC that there
exist an abelian Polish group G and a Cantor set C ⊂ G such that for every non-meagre set X ⊂ G
there exists a t ∈ G such that C ∩ (X + t) is relatively non-meagre in C . This essentially generalizes
results of Bartoszyński and Burke–Miller.

1 Introduction

1.1 Haar Null Sets

Let us first give some motivation for studying Haar null sets in non-locally compact
groups. The following definition is due to Christensen [4] (and later, independently,
to Hunt, Sauer, and Yorke [12]).

Definition 1.1 A subset X of a Polish group G is called Haar null if there exist a
Borel set B ⊃ X and Borel probability measure µ on G such that µ(gBh) = 0 for
every g, h ∈ G.

(All measures in the paper are assumed to be countably additive.)
The above definition is justified by the following theorem.

Theorem 1.2 (Christensen [4]) A subset of a locally compact Polish group is Haar
null in the above sense if and only if it is of Haar measure zero.

Much is known about Haar null sets, e.g., they form a σ-ideal, but Fubini’s the-
orem fails, etc., and there is a huge literature devoted to them. See, for example,
the work of Mycielski, Dougherty, Solecki, Matoušková, Zajı́ček, Duda, Dodos, Shi,
Banakh, and Holický. (Note that some authors use the term shy for Haar null and
prevalent for co-Haar null.)
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Haar null sets have turned out to be very useful in numerous areas of mathematics.
First, they can serve as a measure theoretic counterpart of Baire category arguments,
even when no actual measure is present. Often the typical behaviour with respect
to this notion of Haar null dramatically differs from the one with respect to Baire
category.

Theorem 1.3 (Hunt [11]) { f ∈ C[0, 1] : ∃x ∃ f ′(x) ∈ R} is meagre and Haar null.

On the other hand, we have the following.

Theorem 1.4 (Zajı́ček [16]) { f ∈ C[0, 1] : ∃x ∃ f ′(x) ∈ [−∞,∞]} is meagre but
not Haar null.

The next two theorems concerning the cycle structure of permutations of the in-
tegers also illustrate the striking difference between meagre and Haar null.

Theorem 1.5 (Folklore) Co-meagre many elements of S∞ have infinitely many cycles
of length n for every n ∈ ω and no infinite cycles.

Theorem 1.6 (Dougherty-Mycielski [8]) Haar-a.e. elements of S∞ have infinitely
many infinite cycles and finitely many finite cycles.

Secondly, Haar null sets show up naturally as exceptional small sets.

Theorem 1.7 (Christensen [5]) Let X be a separable Banach space and f : X → R a
Lipschitz function. Then f is Gâteaux differentiable outside of a Haar null set.

1.2 Problem FC on Fremlin’s List

Having motivated this notion, let us now describe the starting point of this paper,
which is Problem FC on Fremlin’s list.1 The question essentially asks: “But do we
need this Borel set B in the definition of Haar null?” The question makes sense for
locally compact groups as well, so it was formulated originally for R for simplicity.
From now on we will slightly abuse notation and identify the Borel measure µ with
the outer measure generated by it.

Problem 1.8 Let X ⊂ R, and let λ denote Lebesgue (outer) measure.

λ(X) = 0 ⇐⇒ ∃ a Borel probability measure µ s.t. ∀t ∈ R µ(X + t) = 0?

Note that the left-to-right implication is obvious. Problem FC also asks if we can
find a counterexample X to the right-to-left implication when µ = µCantor is the usual
Cantor measure (“coin tossing measure”) on the Cantor set.

Problem 1.9 Let X ⊂ R.

∀t ∈ R µCantor(X + t) = 0 =⇒ λ(X) = 0?

1Originally, Problem FC consisted of Problem 1.8 and Problem 1.9, but after we had solved Problem 1.8
and communicated our results to Prof. Fremlin, he has modified the problem by mentioning our theorem
and erasing the corresponding half of the problem.

https://doi.org/10.4153/CJM-2012-058-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-058-5


Haar Null Sets and the Consistent Reflection of Non-meagreness 305

In fact, Fremlin remarks that the answer to both questions is negative if we assume
the Continuum Hypothesis. Let us now prove this for the sake of completeness.

Claim 1.10 Assume the Continuum Hypothesis. Then the answers to Problem 1.8 and
Problem 1.9 are negative; that is, ∃X ⊂ R with λ(X) > 0 such that µCantor(X + t) = 0
for every t ∈ R.

Proof Let C denote the Cantor set. It suffices to construct an X ⊂ R with λ(X) > 0
such that C ∩ (X + t) is countable for every t ∈ R.

Let us enumerate the reals as {tα : α < c} and the Borel sets of Lebesgue measure
zero as {Zα : α < c}.

At stage α let us pick an

xα ∈ R \
(
∪β<α(C − tβ) ∪ Zα

)
.

Set X = {xα : α < c}.
Then xα /∈ Zα shows that λ(X) > 0. Moreover, for α > β, xα + tβ /∈ C implies

C ∩ (X + tβ) ⊂ {xα : α ≤ β}, hence C ∩ (X + tβ) is countable.

Remark 1.11 In fact we only used cov(N) = cof(N) (see [2] for the definitions).
A more involved argument using ideas similar to the ones in Section 2 shows that
non(N) = c also suffices.

Therefore the real questions are whether we can find counterexamples in ZFC, that
is, without resorting to extra set-theoretic assumptions. Our first main goal will be
to show in Section 2 (Corollary 2.4) that Problem 1.8 actually has a negative answer
in ZFC.

Theorem 1.12 (First Main Theorem) Problem 1.8 has a negative answer; that is,
there exist X ⊂ R with λ(X) > 0 and a Borel probability measureµ such thatµ(X+t) =
0 for every t ∈ R.

Before formulating our second main result, which involves more set theory, let us
introduce some terminology.

Definition 1.13 Let X ⊂ R with λ(X) > 0 and µ be a Borel probability mea-
sure. We say that µ reflects the positive measure of X if there exists t ∈ R such that
µ(X + t) > 0.

Hence, taking Claim 1.10 into account, we can reformulate Fremlin’s second prob-
lem.

Problem 1.14 Is it consistent that µCantor reflects the positive measure of every X?

This problem is still open, but our second main goal will be to give an affirmative
answer to a category analogue in Section 3.

Now we describe this category analogue in a bit more detail. Theorem 1.12 states
that there exists a µ that does not reflect. Problem 1.14, which is still open, asks if a
fixed measure (µCantor) consistently reflects. So it is natural to ask the same question
about other (fixed) measures.
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Problem 1.15 Is it consistent that there exist an atomless singular Borel probability
measure µ such that for every X ⊂ R with λ(X) > 0 there exists t ∈ R such that
µ(X + t) > 0?

Unfortunately, this is also open. In order to get a better understanding of the
problem, let us consider the following category analogue. Recall that a set is a Cantor
set if it is homeomorphic to the classical middle-thirds Cantor set.

Problem 1.16 Is it consistent that there exist a Cantor set K such that for every non-
meagre set X ⊂ R there exists a t ∈ R such that K ∩ (X + t) is relatively non-meagre
in K?

There are numerous Polish groups that are called “the reals” in set theory. For
example, certain results are simpler to prove in Zω2 (the Cantor group) than in R, but
usually it is only a technical issue to convert the proofs to R (note that the dyadic
expansion shows that [0, 1) with addition modulo 1 and Zω2 are very similar, the only
difference is the presence of carried digits). For technical reasons we will replace R
with

R ′ =
∏

m∈ω
Zm+3,

where Zm+3 = {0, 1, . . . ,m + 2} with addition modulo m + 3. Again this group
can also be considered as “the reals”, since this is essentially an expansion with an
“increasing base”, as shown by the map

(1.1) (nm)m∈ω ∈ R ′ 7→
∑
m∈ω

nm

(m + 3)!
∈ R,

which is the analogue of the map (nm)m∈ω ∈ Zω2 7→
∑

m∈ω
nm
2m ∈ R that connects the

dyadic form of the reals with the usual one.
Our second main goal will be to give an affirmative answer to Problem 1.16 in

Section 3 (Theorem 3.35) for this slightly modified underlying group.

Theorem 1.17 (Second Main Theorem) It is consistent that there exists a Cantor set
CEK ⊂ R ′ such that for every non-meagre set X ⊂ R ′ there exists a t ∈ R ′ such that
CEK ∩ (X + t) is relatively non-meagre in CEK.

Here
CEK =

∏
m∈ω

(
Zm+3 \ {m + 2}

)
.

This set was first considered by Erdős and Kakutani in [9], hence the notation.
The rest of the introduction is devoted to some closely related known results and

historical remarks. If we forget about translates of a fixed Cantor set, then the affir-
mative answer to Problem 1.16 is already known. Interestingly, the following theorem
was proved independently in two papers.

Theorem 1.18 (Bartoszyński [1], Burke–Miller [3]) It is consistent that for every
non-meagre set X ⊂ R there exists a Cantor set K ⊂ R such that K ∩ X is non-meagre
in K.
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The next theorem still does not use translates, but already finds Cantor sets of
some special structure.

Theorem 1.19 (Ciesielski–Shelah [6]) For every non-meagre X ⊂ 2N×2N there exists
a homeomorphism ϕ : 2N → 2N such that X ∩ graph(ϕ) is non-meagre in graph(ϕ).

Remark 1.20 The Burke–Miller paper also has a certain measure version of their re-
sult, and the Ciesielski–Shelah theorem also has some measure analogue (Rosłanow-
ski–Shelah [15]), but these do not seem to say much about Problem 1.16.

2 The Negative Result: Solution to Problem 1.8

The heart of the proof of this result is the following theorem, which is based on ideas
from [7]. For the definition and basic properties of packing dimension, denoted by
dimp H, see [10] or [14].

Theorem 2.1 Let K ′ ⊂ R be a Cantor set with dimp K ′ < 1 and let T ⊂ R be such
that |T| < c. Then K ′ + T contains no measurable set of positive measure.

Proof Suppose on the contrary that K ′ + T contains a measurable set P of positive
measure. We may assume that P is compact. By throwing away all portions (i.e.,
relatively open nonempty subsets) of measure zero, we may also assume that every
portion of P is of positive measure. In particular, P has no isolated points. The idea
of the proof will be to construct a Cantor set P ′ ⊂ P such that P ′ ∩ (K ′ + r) is finite
for every r ∈ R. This clearly suffices, since a Cantor set is of cardinality continuum
and hence less than continuum many translates of K ′ cannot cover P ′, let alone P.

Let N be a positive integer and let us define FN to be the set of N-tuples that can
be covered by a translate of K ′, that is,

FN = {(x0, . . . , xN−1) ∈ RN : ∃t ∈ R such that {x0, . . . , xN−1} ⊂ K ′ + t}.

An easy compactness argument shows that FN is closed. Reformulating the definition
one can easily check that

FN = (K ′)N + R(1, . . . , 1),

where (1, . . . , 1) is a vector of N coordinates, and the operations are Minkowski sum
and Minkowski product. It is easy to see that FN is a Lipschitz image of (K ′)N ×
R, and using that Lipschitz images do not increase packing dimension as well as
dimp(A× B) ≤ dimp A + dimp B and dimp R = 1 we obtain

dimp FN ≤ N dimp K ′ + 1.

If we choose N large enough, actually if N > 1
1−dimp K ′ , then N dimp K ′ + 1 < N,

hence dimp FN < N. Let us fix such an N.

Lemma 2.2 Let Ji ⊂ R (i < N) be closed intervals such that int Ji ∩ P 6= ∅ (i < N).
Then there are disjoint closed intervals Ii ⊂ Ji (i < N) such that intIi ∩P 6= ∅ (i < N)
and ∏

i<N
(Ii ∩ P) ∩ FN = ∅.
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Proof Since every portion of P is of positive measure, we obtain

λN
( ∏

i<N
(int Ji ∩ P)

)
> 0,

hence
dimp

( ∏
i<N

(int Ji ∩ P)
)

= N > dimp FN .

Therefore ( ∏
i<N

(int Ji ∩ P)
)
\ FN 6= ∅,

and, since FN is closed,
∏

i<N (int Ji ∩ P) contains a non-empty relatively open set
avoiding FN . This open set contains a basic open set, so there are open intervals
J ′i ⊂ int Ji (i < N) intersecting P such that

∏
i<N ( J ′i ∩ P) ∩ FN = ∅.

Finally, since P has no isolated points, it is easy to shrink every J ′i to a closed
interval Ii such that they become disjoint but their interiors still meet P. This finishes
the proof of the lemma.

Now we return to the proof of the theorem. All that remains is to construct P ′.
We will actually prove that

(2.1) |P ′ ∩ (K ′ + r)| < N for every r ∈ R.

We construct a usual Cantor scheme, where the k-th level Lk will have the following
properties for all k ∈ ω:

(a) Lk consists of Nk many disjoint closed intervals;
(b) ∀I ∈ Lk+1∃I ′ ∈ Lk : I ⊂ I ′;
(c) ∀I ∈ Lk there are N many I ′ ∈ Lk+1 with I ′ ⊂ I;
(d) ∀I ∈ Lk : int I ∩ P 6= ∅;
(e) ∀I ∈ Lk : diam I ≤ 1

k+1 ;
(f) if I0, . . . , IN−1 ∈ Lk are distinct, then

∏
i<N (Ii ∩ P) ∩ FN = ∅.

(Note that the intervals in (f) are not necessarily subsets of the same I ′ ∈ Lk−1.)
Assume first that such a Cantor scheme exists, and define

P ′ =
⋂

k∈ω

⋃
Lk.

It is easy to see that P ′ is a Cantor set ([13]), while the closedness of P, (d), and (e)
imply P ′ ⊂ P. Let x0, . . . , xN−1 be N distinct points in P ′. Clearly, there is a k and
distinct intervals I0, . . . , IN−1 ∈ Lk such that xi ∈ Ii (i < N). Then (f) shows that
{x0, . . . , xN−1} cannot be covered by a translate of K ′, which proves (2.1).

Finally, let us prove by induction that such a Cantor scheme exists. Let L0 = {I},
where I is an arbitrary closed interval of length at most 1 whose interior meets P.
Assume that Lk have already been constructed with the required properties. Let L ′k+1
be a family of disjoint closed intervals of length at most 1

k+2 whose interiors meet P
such that each I ∈ Lk contains N members of L ′k+1. Then, recursively shrinking these
intervals by applying Lemma 2.2

(Nk+1

N

)
times to all the possible N-tuples of distinct

intervals, we obtain Lk+1 satisfying all assumptions. This concludes the proof of the
theorem.
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Theorem 2.3 Let K ⊂ R be a Cantor set with dimp K < 1/2. Then there exists
X ⊂ R with λ(X) > 0 such that |K ∩ (X + t)| ≤ 1 for every t ∈ R.

Proof As above, let us enumerate the Borel sets of Lebesgue measure zero as
{Zα : α < c}. Since K−K is a Lipschitz image of K×K, we obtain dimp(K−K) < 1.
At stage α let us pick an

xα ∈ R \
((

(K − K) + {xβ : β < α}
)
∪ Zα

)
.

This is indeed possible by applying the above theorem to K ′ = K − K. Set

X = {xα : α < c}.

Then xα /∈ Zα shows that λ(X) > 0. We still have to check that |K ∩ (X + t)| ≤ 1 for
every t ∈ R. Let xα, xβ ∈ X with α > β, and let us assume xα + t, xβ + t ∈ K. Then
t ∈ K − xβ , xα ∈ K − (K − xβ) = (K − K) + xβ , contradicting the choice of xα.

From this we easily obtain our first main theorem (Theorem 1.12) as a corollary.

Corollary 2.4 (First Main Theorem) Problem 1.8 has a negative answer; that is, there
exist X ⊂ R with λ(X) > 0 and a Borel probability measure µ such that µ(X + t) = 0
for every t ∈ R.

Proof Indeed, let K be any Cantor set with dimp K < 1/2 (e.g., the “middle-α Can-
tor set” is such a set for α > 1/2). Let µ be any atomless Borel probability measure
on K. Then by the above theorem µ does not reflect the positive measure of X.

3 The Positive Result

3.1 The Forcing Poset

The skeleton of the proof of the second main result is borrowed from Bartoszyński’s
paper [1].

Notation 3.1 Set Σ =
⋃

l∈ω
∏

m<l Zm+3; that is, for s ∈ Σ the sets

[s] =
{

x ∈
∏

m∈ω
Zm+3 : s ⊂ x

}
form the usual clopen base of

∏
m∈ω Zm+3. The symbol |s| will denote the length of the

sequence s ∈ Σ, that is, the cardinality of dom(s).

Recall that ∀∞ means “for all but finitely many”, and [ω]<ω denotes the set of
finite subsets of ω.

Definition 3.2 Let s ∈ Σ and k ∈ ω. Then S : ω \ dom(s) → [ω]<ω is a finite
k-slalom above s, if

(i) ∀i ∈ ω \ dom(s) |S(i)| ≤ k;
(ii) ∀∞i ∈ ω \ dom(s) S(i) = ∅.
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Definition 3.3 ht(S) = min{i ∈ ω \ dom(s) : ∀ j ≥ i S( j) = ∅}.

Definition 3.4 Let S be a finite k-slalom above s and t ∈ Σ. Then t escapes S if
t ⊃ s, |t| ≥ ht(S) and ∀i ∈ [dom(s), dom(t)) t(i) /∈ S(i).

Definition 3.5 Let s ∈ Σ and F ⊂ {t ∈ Σ : t ⊃ s}. Then F is k-fat above s, if for
every finite k-slalom S above s there exists t ∈ F escaping S.

Remark 3.6 It is easy to see that if k ≥ 1 and F is k-fat above s then for every finite
k-slalom S above s there exist arbitrarily long t ’s in F escaping S. (Otherwise, just
extend S so that ht(S) is bigger than the length of all t ’s escaping S.)

This immediately yields the following.

Fact 3.7 If F is k-fat above s and V is a finite set, then F \V is also k-fat above s.

Recall that (Σ,⊂) is a tree; that is, for the purposes of this paper, a partially or-
dered set such that for each σ ∈ Σ the set {σ ′ ∈ Σ : σ ′ ⊂ σ} is finite. The n-th level
of a tree is the set of those points that have exactly n smaller elements. If ∅ 6= T ⊂ Σ,
then (T,⊂) is a tree itself.

Notation 3.8 If t ∈ T, then succT(t) will denote the set of immediate successors of t
in T. We simply write succ(t) when there is no danger of confusion. We say that T has a
unique root if it has a unique⊂-minimal element. In such cases this root will be denoted
by root(T). For t ∈ T let T[t] = {s ∈ T : s ⊃ t}.

Now we define our notion of forcing.

Definition 3.9 Let p ∈ P if and only if

(i) p ⊂ Σ;
(ii) p has a unique root (in particular, p 6= ∅);
(iii) ∀t ∈ p succp(t) is 1-fat above t ;
(iv) ∀k ∈ ω ∀∞t ∈ p succp(t) is k-fat above t .

If p, p ′ ∈ P, then define

p ≤P p ′ ⇐⇒ p ⊂ p ′.

We will usually simply write≤ for≤P.

We will often use the following easy consequence of (iv).

Fact 3.10 If t ∈ p ∈ P and k ∈ ω, then there exists s ∈ p such that t ⊂ s and
succp(s) is k-fat above s.

First we prove that P is nontrivial.

Lemma 3.11 Let k ≥ 1. If H is k-fat above t, then H contains a subset consisting of
pairwise incompatible sequences that is (k− 1)-fat above t.
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Proof Let {Sn}n∈ω be an enumeration of the (k − 1)-slaloms above t . It clearly
suffices to inductively pick pairwise incomparable tn’s in H such that |tn| > 0 is
strictly increasing and tn escapes Sn. Suppose {tm}m<n has already been constructed
in such a manner. Then we can form a k-slalom by adding the “last elements of the
tms” to Sn, that is, let

S ′n(i) =

{
Sn(i) ∪ {tm(|tm| − 1)} if i = |tm| − 1,

Sn(i) otherwise.

Then S ′n is indeed a k-slalom, hence we can choose a tn escaping it. By Remark 3.6
we may assume |tn| > |tn−1|. Then the definition of S ′n shows that tn is incomparable
to tm for every m < n, and we are done.

Lemma 3.12 P 6= ∅.

Proof We inductively construct the levels ln of a tree p ⊂ Σ such that

(a) |l0| = 1;
(b) every ln consists of pairwise incomparable sequences;
(c) ∀n ∀s ∈ ln+1∃t ∈ ln t $ s;
(d) ∀n ∀t ∈ ln ln+1 ∩ Σ[t] is |t| + 1-fat above t .

By (c) we clearly have |t| ≥ n for every t ∈ ln. Moreover, since Σ is a finitely branch-
ing tree, (b) implies that ∀k ∀∞t ∈ ln |t| ≥ k. Using these two facts and (d) it is easy
to see that if such a sequence {ln}n exists, then p =

⋃
n ln ∈ P.

Let us now check that we can carry out this induction. Suppose that such an
{lm}m≤n has already been constructed. It is easy to see that Σ[t] is |t| + 2-fat above t
for every t ∈ Σ. Hence, using Lemma 3.11, for every t ∈ ln we can pick Ht ⊂ Σ[t]
consisting of pairwise incomparable elements that are |t| + 1-fat above t . (We may
assume t /∈ Ht .) Then setting ln+1 =

⋃
t∈ln

Ht completes the proof.

The following fact is immediate.

Fact 3.13 If t ∈ p ∈ P, then p[t] ∈ P, p[t] ≤ p, and root(p[t]) = t.

This easily yields the following three statements.

Corollary 3.14 P is a separative partial order, and there are incompatible conditions
below every condition.

Corollary 3.15 The set {p ∈ P : succp(root(p)) is k-fat above root(p)} is dense
in P for every k ∈ ω.

Corollary 3.16 The set {p ∈ P : | root(p)| ≥ k} is dense in P for every k ∈ ω.

Next we describe how P adds a generic real. The last corollary easily implies that
if G ⊂ P is a generic filter, then ẋG =

⋃
p∈G root(p) is a function ẋG ∈

∏
m∈ω Zm+3.

From now on we denote by ẋ a name for this generic real.
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Remark 3.17 Some textbooks require that forcing posets have largest elements,
but our P has no such element. One possible answer to this problem is that one
can actually do forcing without largest elements (since we can basically add a largest
element to P), and hence some other textbooks actually avoid largest elements in the
definition of forcing posets. But there is another possible answer in case of P; by
mimicking the proof of Lemma 3.12 it is not hard to see that P is dense in

P0 = {p ⊂ Σ : ∀k ∈ ω ∀∞t ∈ p p[t] is k-fat above t},

which already has a largest element, namely Σ.

The reason why we prefer P to the apparently simpler P0 is that it fits our fusion
arguments (inductive constructions) better.

3.2 Properness and Preservation of Non-meagreness

It will be necessary, of course, to prove that P is proper, but for the intended iteration
we will need a stronger property. Recall that p ′ ∈ P is M-generic, if for every dense
open D ⊂ P if D ∈ M, then p ′ 
 ‘ D ∩ Ġ ∩M 6= ∅ ’. (Here Ġ is a name for the
generic filter.)

Definition 3.18 A forcing notion P is said to be Cohen-preserving if for every con-
dition p ∈ P, every countable elementary submodel M such that p,P,≤P∈ M, and
every real c that is a Cohen over M, there is an M-generic condition p ′ ≤ p such that
p ′ 
 ‘ c is a Cohen real over M[Ġ] ’.

We now spell out this last clause in a bit more detail. For more information, see
e.g., [2]. Let F = { f : Σ → Σ | ∀σ ∈ Σ f (σ) ⊃ σ}. Then the dense open subsets
of
∏

m∈ω Zm+3 are precisely the sets of the form U f =
⋃
σ∈Σ[ f (σ)], where f ranges

over F. Then p ′ 
 ‘ c is a Cohen real over M[Ġ] ’ means that if ḟ is a name for an
element of F and ḟ ∈M, then p ′ 
 ‘ c ∈ U ḟ ’.

It is not hard to see that the notions of Cohen-preserving and second category
set preserving partial order does not depend on the underlying Polish space. We
will only use that

∏
m∈ω Zm+3 and R are the same in this respect, which follows e.g.,

from the fact that we can throw away countable sets from these spaces so that the
remaining sets are homeomorphic. (See the map in (1.1) in the discussion preceding
Theorem 1.17.)

The following results are well known; see e.g., [2].

Theorem 3.19 Cohen-preserving partial orders are proper, and they preserve second
category sets. The countable support iteration of Cohen-preserving partial orders is also
Cohen-preserving.

Lemma 3.20 Let p∗ ∈ P, ḟ ∗ be a name for an element of F and D∗ be a dense open
subset of P such that p∗, ḟ ∗,D∗ ∈M. Then there exists q∗ ≤ p∗ such that q∗ ∈M∩D∗

and q∗ 
 ‘ c ∈ U ḟ ∗ ’.
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Proof Define

V =
⋃
{[σ ′] : ∃q∗ ≤ p∗ ∃σ ∈ Σ q∗ 
 ‘ ḟ ∗(σ) = σ ′ ’}.

It is not hard to see that V ⊂
∏

m∈ω Zm+3 is dense open and V ∈ M. Since c is
Cohen over M, we obtain c ∈ V , so we can find q∗, σ, and σ ′ such that c ∈ [σ ′] and
q∗ 
 ‘ ḟ ∗(σ) = σ ′ ’. Let us now fix σ and σ ′, then clearly

∃q∗ ∈ D∗ q∗ ≤ p∗ q∗ 
 ‘ ḟ ∗(σ) = σ ′ ’.

Applying elementarity to this last formula we obtain such a q∗ ∈ M. Since q∗ 

‘ ḟ ∗(σ) = σ ′ ’ clearly implies q∗ 
 ‘ c ∈ U ḟ ’, the proof is complete.

Now we are ready to prove the main result of this section. The proof will essentially
be an inductive construction of a condition. Unlike in the proof of Lemma 3.12, we
will not build the tree level-by level, but we will perform a kind of back-and forth
fusion instead. The only place where this more complicated fusion is essential is
Lemma 3.34, but we decided to use this method here in a simpler situation as well to
make the reading of Lemma 3.34 easier.

Lemma 3.21 P is Cohen-preserving (and hence proper, as well).

Proof Let { ḟn}n∈ω enumerate the names for elements of F that are in M, and let
{Dn}n∈ω enumerate the dense open subsets of P that are in M.

For n ∈ ω we will inductively define

(i) sn ∈ Σ,
(ii) qn ∈ P,
(iii) tn ∈ Σ,
(iv) pn ∈ P,

such that for every m ≤ n the following hold:

(a) tm ∈ pn,
(b) succpm (tm) \ {s0, . . . , sn} ⊂ succpn (tm),
(c) succpm (tm) is (m + 1)-fat above tm,
(d) p ≥ p0 and pm ≥ pn,
(e) qm = pm[tm],
(f) qn ∈ Dm,
(g) qn 
 ‘ c ∈ U ˙fm

’.

We will make sure that every stage of the induction will be carried out in M, and
we will tacitly assume that all objects we pick at the stages are in M. (The whole
induction will of course not be in M.)

Let us start with n = 0. Put s0 = ∅. By Lemma 3.20, Corollary 3.15, and Fact
3.13 there exists q0 ≤ p such that q0 ∈ D0, q0 
 ‘ c ∈ U ḟ0

’, and if t0 = root(q0), then
succq0 (t0) is 1-fat above t0. Setting p0 = q0 finishes the 0-th step. It is not hard to
check that the inductive assumptions are satisfied.

Let us now assume that sm, qm, tm, and pm have already been defined for m ≤ n
satisfying the inductive assumptions. For every m let {Sk

m}k∈ω be an enumeration of
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the set of (m + 1)-slaloms above tm. To start the (n + 1)-st step, first we need to pick
a tm for some m ≤ n. We make sure by some simple bookkeeping that during the
course of the induction each tm will be picked infinitely many times, and when we
visit the node tm for the k-th time, then we take care of Sk

m (we construct a tn+1 above
tm escaping Sk

m).
So let us assume that we are at the (n + 1)-st step and we pick tm for the k-th

time. Inductive assumption (c) yields that succpm (tm) is (m + 1)-fat above tm, hence
so is succpm (tm) \ {s0, . . . , sn} by Fact 3.7. Thus we can fix an sn+1 ∈ succpm (tm) \
{s0, . . . , sn} escaping the (m + 1)-slalom Sk

m. By (b) we have sn+1 ∈ pn as well. Apply-
ing Lemma 3.20 n+2 times we obtain a qn+1 ≤ pn[sn+1] such that qn+1 ∈

⋂
m≤n+1 Dm

and qn+1 
 ‘ c ∈
⋂

m≤n+1 U ˙fm
’. By Corollary 3.15 and Fact 3.13 we may assume

that if tn+1 = root(qn+1) then succqn+1 (tn+1) is n + 2-fat above tn+1. Setting pn+1 =
(pn \ pn[sn+1]) ∪ qn+1 finishes the (n + 1)-st step.

Now we check that the inductive assumptions are satisfied. Items (a) and (b)
follow from the structure of the fusion. Namely, it is not hard to see that at the
(n + 1)-st step we only modify pn in the “cone” pn[sn+1], and this cone does not
contain the earlier tm’s, moreover, an element of succpm (tm) only “disappears” from
pn when it is picked as an sn+1. Items (d), (e), (f), and (g) are straightforward from
the construction, and (c) follows from (e).

Let us now define p ′ = {tm}m∈ω . It is easy to see that p ′ ∈ P, since we made sure
by the bookkeeping that succp ′(tm) is m + 1-fat above tm for every m. Combining (a)
and (d) we obtain

(3.1) p ′ ≤ pn

for every n, and also that p ′ ≤ p.
All that remains to be shown is that p ′ is M-generic and

p ′ 
 ‘ c is a Cohen real over M[Ġ] ’.

First we check that p ′ is M-generic. Let n0 ∈ ω be fixed; then we have to show
that p ′ 
 ‘ Dn0 ∩ Ġ ∩ M 6= ∅ ’. Let p ′ ′ ≤ p ′ be arbitrary; it suffices to find a
p ′ ′ ′ ≤ p ′ ′ such that p ′ ′ ′ 
 ‘ Dn0 ∩ Ġ ∩M 6= ∅ ’. Since every condition is infinite,
there exists n ≥ n0 such that tn ∈ p ′ ′. By (f) we have qn ∈ Dn0 and also qn ∈ M, so
qn 
 ‘ Dn0 ∩ Ġ∩M 6= ∅ ’. Thus, (3.1) and (e) imply p ′ ′[tn] ≤ p ′[tn] ≤ pn[tn] = qn,
so we are done by choosing p ′ ′ ′ = p ′ ′[tn].

A similar argument shows that p ′ 
 ‘ c is a Cohen real over M[Ġ] ’. Indeed, for
every n0 and p ′ ′ ≤ p ′ there exists n ≥ n0 such that tn ∈ p ′ ′. Then qn 
 ‘ c ∈ U ḟn0

’,

qn ∈ M, and p ′ ′ ′ = p ′ ′[tn] ≤ p ′[tn] ≤ pn[tn] = qn, so we are done. This finishes
the proof of the lemma.

3.3 The Main Lemma

Our main lemma will describe how a single step in the iterated forcing construction
works.
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Lemma 3.22 Let X ∈ V such that X ⊂
∏

m∈ω Zm+3 and X is non-meagre in every
non-empty open subset of

∏
m∈ω Zm+3. Then

P 
 ‘ X ∩ (ĊEK − ẋ) is non-meagre in ĊEK − ẋ ’.

Proof It is not hard to see that if a set H ⊂ CEK − x is meagre in CEK − x, then
there exists a decreasing sequence of open sets Un ⊂

∏
m∈ω Zm+3 such that Un ⊂

B(CEK − x, 1
n+1 ), Un ∩ (CEK − x) is dense in CEK − x and

⋂
n Un ∩ H = ∅. (Here

B(A, ε) denotes the ε-neighbourhood of the set A.)

Hence let us assume that there exist p ∈ P and a name {U̇n}n∈ω for a decreasing
sequence of open subsets of

∏
m∈ω Zm+3 such that p 
 ‘ U̇n ⊂ B(ĊEK − ẋ, 1

n+1 ),
U̇n ∩ (ĊEK − ẋ) is dense in ĊEK − ẋ and

⋂
n U̇n ∩ X = ∅ ’.

Define

Rp,{U̇n}n∈ω =
{

r ∈
∏

m∈ω
Zm+3 : ∃p ′ ≤ p, p ′ 
 ‘ r ∈

⋂
n

U̇n ’
}
.

For the definitions and basic facts concerning analytic sets, sets with the property
of Baire, etc., we refer the reader to [13].

In the next subsection we will prove that we can assume (by replacing p with a
stronger condition, if necessary) that Rp,{U̇n}n∈ω is analytic. Therefore it possesses
the property of Baire. Moreover, in Subsection 3.3.2 we will prove that Rp,{U̇n}n∈ω is
non-meagre. Let us now accept these statements for the moment. Then Rp,{U̇n}n∈ω

is co-meagre in a non-empty open set, thus X ∩ Rp,{U̇n}n∈ω 6= ∅, so we can fix an
r ∈ X∩Rp,{U̇n}n∈ω . But then r ∈ X and p ′ 
 ‘ r ∈

⋂
n U̇n ’ for some p ′ ≤ p, thus p ′ 


‘
⋂

n U̇n ∩X 6= ∅ ’. On the other hand, p ′ ≤ p implies that p ′ 
 ‘
⋂

n U̇n ∩ X = ∅ ’,
which is a contradiction.

Corollary 3.23 Let X ∈ V , X ⊂
∏

m∈ω Zm+3; X is non-meagre. Then P 
 ‘ ∃t ∈∏
m∈ω Zm+3 such that X ∩ (ĊEK + t) is non-meagre in ĊEK + t ’.

Proof Let Q be the analogue of the rationals; that is,

Q =
{

q ∈
∏

m∈ω
Zm+3 : ∀∞m q(m) = 0

}
.

Then X + Q is non-meagre in every non-empty open subset of
∏

m∈ω Zm+3, hence
P 
 ‘ (X + Q) ∩ (ĊEK − ẋ) is non-meagre in ĊEK − ẋ ’ by the previous lemma. But Q
is countable and X + Q =

⋃
q∈QX + q, so P 
 ‘ ∃q ∈ Q such that (X + q) ∩ (ĊEK −

ẋ) is non-meagre in ĊEK−ẋ ’. But then P 
 ‘ X∩(ĊEK−ẋ−q) is non-meagre in ĊEK−
ẋ − q ’, and we are done.

We still have to prove the two statements concerning Rp,{U̇n}n∈ω .
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3.3.1 Analyticity of Rp,{U̇n}n∈ω

As above, let p ∈ P and {U̇n}n∈ω be a name for a decreasing sequence of open sets of∏
m∈ω Zm+3 such that p 
 ‘ U̇n ⊂ B(ĊEK− ẋ, 1

n+1 ), U̇n∩ (ĊEK− ẋ) is dense in ĊEK− ẋ
and

⋂
n U̇n ∩ X = ∅ ’. Recall that

Rp,{U̇n}n∈ω =
{

r ∈
∏

m∈ω
Zm+3 : ∃p ′ ≤ p, p ′ 
 ‘ r ∈

⋂
n

U̇n ’
}
.

Lemma 3.24 There exists a q ≤ p such that Rq,{U̇n}n∈ω is analytic.

We will split the proof into several steps.

Definition 3.25 Let p ∈ P. A set B ⊂ p is called a barrier if it intersects every
infinite branch of p. It is open, if s, t ∈ p, s ⊂ t , s ∈ B imply t ∈ B.

Definition 3.26 Let p and {U̇n}n∈ω be as above. Then p is nice with respect to
{U̇n}n∈ω if for every s ∈ Σ and every n ∈ ω,

Bs,n = {t ∈ p : p[t] 
 ‘ [s] ⊂ U̇n ’ or p[t] 
 ‘ [s] 6⊂ U̇n ’}

is a barrier. (It is clearly open.)

Note that if B ⊂ p is an open barrier and q ≤ p, then q ∩ B 6= ∅.

Lemma 3.27 Assume that p is nice with respect to {U̇n}n∈ω . Let q∗ ≤ p, n∗ ∈ ω,
r ∈

∏
m∈ω Zm+3, and q∗ 
 ‘ r ∈ U̇n∗ ’. Then there are t∗ ∈ q∗ and k∗ ∈ ω such that

p[t∗] 
 ‘ [r|k∗] ⊂ U̇n∗ ’.

Proof There are q ′ ≤ q∗ and k∗ ∈ ω such that q ′ 
 ‘ [r|k∗] ⊂ U̇n∗ ’. Since Br|k∗,n∗

is an open barrier in p and q ′ ≤ p, we obtain that there is a t∗ ∈ q ′ ∩ Br|k∗,n∗ .
Then p[t∗] 
 ‘ [r|k∗] 6⊂ U̇n∗ ’ is impossible, since q ′[t∗] ≤ p[t∗], q ′ would force two
contradicting statements. Hence p[t∗] 
 ‘ [r|k∗] ⊂ U̇n∗ ’ by the definition of Br|k∗,n∗ ,
and we are done.

Lemma 3.28 Assume that p is nice with respect to {U̇n}n∈ω . Let r ∈
∏

m∈ω Zm+3 be
arbitrary. Then r ∈ Rp,{U̇n}n∈ω if and only if there exists a sequence of sets Bn ⊂ p and
a sequence of functions ϕn : Bn → ω such that for every n ∈ ω
(i) |B0| = 1;
(ii) Bn consists of pairwise incomparable sequences;
(iii) ∀t ∈ Bn+1 ∃s ∈ Bn s $ t;
(iv) ∀s ∈ Bn ϕn(s) > n;
(v) ∀k ∈ ω ∀∞s ∈ Bn ϕn(s) ≥ k;
(vi) ∀s ∈ Bn {t ∈ Bn+1 : t ⊃ s} is ϕn(s)-fat above s;
(vii) ∀t ∈ Bn ∃k ∈ ω p[t] 
 ‘ [r|k] ⊂ U̇n ’.

Proof Let us first suppose that r ∈ Rp,{U̇n}n∈ω , that is, p ′ 
 ‘ r ∈
⋂

n U̇n ’ for some
p ′ ≤ p. We construct {Bn}n∈ω and {ϕn}n∈ω by induction on n. We will make the
induction hypothesis that

∀s ∈ Bn succp ′(s) is ϕn(s)-fat above s.
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Applying the previous lemma with q∗ = p ′ and n∗ = 0 we obtain t0 ∈ p ′ and
k0 ∈ ω such that p[t0] 
 ‘ [r|k0] ⊂ U̇0 ’. Put B0 = {t0}. By Fact 3.10 we may assume
(by extending t0 in p ′ if necessary) that succp ′(t0) is 1-fat above t0. Defineϕ0(t0) = 1.
Then all requirements imposed on B0 and ϕ0 are satisfied.

Suppose that Bn and ϕn satisfying all requirements have already been constructed.
For each t ∈

⋃
s∈Bn

succp ′(s) let us apply the previous lemma with q∗ = p ′[t] and
n∗ = n + 1. Thus we obtain ut ∈ p ′, ut ⊃ t and kt ∈ ω such that p[ut ] 
 ‘ [r|kt ] ⊂
U̇n+1 ’. Let ψ :

⋃
s∈Bn

succp ′(s)→ ω be an arbitrary function satisfying

∀t ∈
⋃

s∈Bn

succp ′(s) ψ(t) > n + 1

and
∀k ∈ ω ∀∞t ∈

⋃
s∈Bn

succp ′(s) ψ(t) ≥ k.

Using Fact 3.10 we may assume that ut is ψ(t)-fat above ut for every t . (Note that
extending ut in p ′ if necessary does not harm any of the requirements.) Then putting
Bn+1 = {ut : t ∈

⋃
s∈Bn

succp ′(s)} and ϕn+1(ut ) = ψ(t) finishes the proof of this
direction.

In order to prove the other direction, let us assume that {Bn}n∈ω and {ϕn}n∈ω
satisfy all requirements. Set p ′ =

⋃
n Bn. It is easy to see that p ′ ∈ P and p ′ ≤

p. Therefore it suffices to check that for every n0 ∈ ω we have p ′ 
 ‘ r ∈ U̇n0 ’.
Otherwise, there exists a p ′ ′ ≤ p ′ such that

(3.2) p ′ ′ 
 ‘ r /∈ U̇n0 ’.

It is easy to see from the construction of p ′ that B ′n0
= {s ∈ p ′ : ∃t ∈ Bn0 t ⊂ s}

is an open barrier in p ′, hence p ′ ′ ∩ B ′n0
6= ∅. Thus there are t ∈ Bn0 and s ⊃ t

with s ∈ p ′ ′. Then p ′ ′[s] ≤ p[t], p ′ ′, and p[t] 
 ‘ r ∈ U̇n0 ’ by (vii), which is a
contradiction by (3.2).

Lemma 3.29 Let p and {U̇n}n∈ω be as above. Then there exists q ≤ p that is nice
with respect to {U̇n}n∈ω .

Proof The proof will be similar to the previous inductive construction, so we will
omit some details. Let {(si , ni)}i∈ω be an enumeration of Σ × ω. We inductively
define a sequence Bi ⊂ p and for every t ∈ Bi a condition pt ≤ p with root(pt ) = t
as follows.

The fact “q 
 ϕ or q 
 ¬ϕ” will be abbreviated as q ‖ ϕ.
There exists p ′ ≤ p such that p ′ ‖ ‘ [s0] ⊂ U̇n0 ’. We may assume that

succp ′(root(p ′)) is 1-fat above root(p ′). Let t0 = root(p ′) and put B0 = {t0},
pt0 = p ′.

Now assume that Bi and pt for every t ∈ Bi have already been constructed. For
every t ∈ Bi and every u ∈ succpt (t) find p ′ ≤ pt [u] such that p ′ ‖ ‘ [si+1] ⊂ U̇ni+1 ’
and succp ′(root(p ′)) is ‘sufficiently fat above root(p ′)’. Then let Bi+1 be the set of
these root(p ′)’s and let proot(p ′) = p ′. This finishes the general step of the induction.
Note that pt ‖ ‘ [si] ⊂ U̇ni ’ for every i ∈ ω and every t ∈ Bi .
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Then it is not hard to see that q =
⋃

i Bi ∈ P and q ≤ p. It easily follows from
the construction that every Bi is a barrier in q. Let us now check that q is nice with
respect to {U̇n}n∈ω . So let us fix i ∈ ω, and it suffices to show that q[t] ‖ ‘ [si] ⊂ U̇ni ’
for every t ∈ Bi . But this is clear, since pt ‖ ‘ [si] ⊂ U̇ni ’ and q[t] ≤ pt .

Now we are ready to prove Lemma 3.24.

Proof By the previous lemma we may assume that p is nice with respect to {U̇n}n∈ω .
Define

Bp,{U̇n}n∈ω

=
{(

r, {Bn}n∈ω, {ϕn}n∈ω
)

: r, {Bn}n∈ω and {ϕn}n∈ω are as in Lemma 3.28
}

⊂
∏

m∈ω
Zm+3 × (2p)ω × (2p×ω)ω,

where Zm+3, ω and p are all equipped with the discrete topology, hence this huge
ambient product space is compact metric and therefore Polish. It suffices to prove
that Bp,{U̇n}n∈ω is a Borel set in this product space, hence then Rp,{U̇n}n∈ω , which is
the projection of Bp,{U̇n}n∈ω on the first coordinate, is analytic. We mostly leave this
standard but very lengthy computation to the reader, and only deal with the most
interesting clause, that is, Lemma 3.28(vii).

The conditions “∀n ∈ ω”, “∀t ∈ p”, “t ∈ Bn”, “∃k ∈ ω” are clearly Borel, so it
suffices to check that for fixed n, t , and k,

Vn,t,k =
{

r ∈
∏

m∈ω
Zm+3 : p[t] 
 ‘ [r|k] ⊂ U̇n ’

}
is Borel. But clearly,

Vn,t,k =
⋃
{[s] : s ∈ Σ, |s| = k, p[t] 
 ‘ [s] ⊂ U̇n ’},

so it is actually a union of basic clopen sets, hence open.

3.3.2 Non-meagreness of Rp,{U̇n}n∈ω

Yet again, let p ∈ P and {U̇n}n∈ω be a name for a decreasing sequence of open sets of∏
m∈ω Zm+3 such that

p 
 ‘ U̇n ⊂ B
(

ĊEK − ẋ,
1

n + 1

)
, U̇n ∩ (ĊEK − ẋ) ’

is dense in ĊEK − ẋ and
⋂

n U̇n ∩ X = ∅ ’. Recall that

Rp,{U̇n}n∈ω =
{

r ∈
∏

m∈ω
Zm+3 : ∃q ≤ p, q 
 ‘ r ∈

⋂
n

U̇n ’
}
.

Lemma 3.30 Let q∗ ≤ p, s∗ ∈ Σ and l∗ ∈ ω such that q∗ 
 ‘ [s∗] ∩
(ĊEK − ẋ) 6= ∅ ’. Then there exist q∗∗ ≤ q∗ and s∗∗ ∈ Σ, s∗∗ ⊃ s∗ such that
q∗∗ 
 ‘ [s∗∗] ∩ (ĊEK − ẋ) 6= ∅ ’ and [s∗∗] ⊂ U̇l∗ ’.
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Proof Set Ċ = ĊEK − ẋ. Since p 
 ‘ U̇l∗ ∩ Ċ is dense open in Ċ ’ and q∗ 
 ‘ [s∗] ∩
Ċ is non-empty open in Ċ ’, we obtain that q∗ 
 ‘ [s∗]∩U̇l∗∩Ċ 6= ∅ ’. Since [s∗]∩U̇l∗

is a name for an open subset of
∏

m∈ω Zm+3, and if an open set meets a set, then it
contains a basic open set meeting the same set, we infer that q∗ 
 ‘∃ṡ∗∗ ∈ Σ, [ṡ∗∗]∩
Ċ 6= ∅, [ṡ∗∗] ⊂ [s∗] ∩ U̇l∗ ’. Hence there exist q∗∗ ≤ q∗ and s∗∗ ∈ Σ, s∗∗ ⊃ s∗ such
that q∗∗ 
 ‘ [s∗∗] ∩ Ċ 6= ∅ and [s∗∗] ⊂ U̇l∗ ’.

Definition 3.31 We will write s‖t to denote that s(i) + t(i) 6= i + 2 for every i <
min(|s|, |t|).

For p ∈ P and t ∈ Σ the symbol p‖t will abbreviate that s‖t for every s ∈ p.

The following fact can be easily checked by a standard argument using that p 

ϕ⇔ ∀p ′ ≤ p ∃p ′ ′ ≤ p ′ p ′ ′ 
 ϕ. The details are left to the reader.

Fact 3.32 Let p ∈ P and t ∈ Σ. Then the following are equivalent:

(i) p‖t;
(ii) p 
 ‘ [t] ∩ (ĊEK − ẋ) 6= ∅ ’.

We will also need one more lemma. The proof, which again is left to the reader,
follows easily from the definition of fatness.

Lemma 3.33 Let k > 0, s0 ∈ Σ, let F ⊂ {s ∈ Σ : s ⊃ s0} be k-fat above s0, and also
let σ ∈ Σ such that s0‖σ. Then {t ∈ F : t‖σ} is k− 1-fat above s0.

We are now ready to prove what we are aiming at.

Lemma 3.34 Rp,{U̇n}n∈ω is non-meagre.

Proof We have to show that Rp,{U̇n}n∈ω intersects every dense Gδ set, so it suffices to
prove that Rp,{U̇n}n∈ω ∩

⋂
n Vn = ∅ for every sequence {Vn}n∈ω of dense open subsets

of
∏

m∈ω Zm+3. The proof will work as follows. On the one hand, we will inductively
define a strictly increasing sequence {rn}n∈ω of elements of Σ such that [rn] ⊂ Vn,
which will of course imply that if we set r =

⋃
n rn then r ∈

⋂
n Vn. On the other

hand, we will simultaneously carry out a fusion argument similar to the one in the
proof of Lemma 3.21 and obtain a p ′ ≤ p such that p ′ 
 ‘ r ∈

⋂
n U̇n ’. This will

show that r ∈ Rp,{U̇n}n∈ω ∩
⋂

n Vn, which will complete the proof.
Let us now start the fusion. The main differences between this argument and the

one in Lemma 3.21 will be that we will use Lemma 3.30 instead of Lemma 3.20, and
we will be building the rn’s as well.

For n ∈ ω we will inductively define

(i) sn ∈ Σ,
(ii) qn ∈ P,
(iii) tn ∈ Σ,
(iv) rn ∈ Σ,
(v) pn ∈ P,
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such that for every m ≤ n the following hold:

(a) rn‖tm,
(b) |rn| ≥ |tm|,
(c) tm ∈ pn,
(d) succpm (tm) \ {s0, . . . , sn} ⊂ succpn (tm),
(e) succpm (tm) is (m + 2)-fat above tm,
(f) p ≥ p0 and pm ≥ pn,
(g) qm = pm[tm],
(h) qm 
 ‘ [rm] ⊂ U̇m ’.

Let us start with n = 0. Put s0 = ∅. Applying Lemma 3.30 to p, ∅, and 0, then
using Corollary 3.15 and Fact 3.13, we obtain that there exists q0 ≤ p and r ′0 ∈ Σ
such that q0 
 ‘ [r ′0] ∩ (ĊEK − ẋ) 6= ∅ and [r ′0] ⊂ U̇0 ’, and if t0 = root(q0), then
succq0 (t0) is 2-fat above t0. Then r ′0‖t0 by Fact 3.32. Hence we can clearly find an
r ′ ′0 ⊃ r ′0 such that |r ′ ′0 | ≥ |t0| and r ′ ′0 ‖t0. Finally, since V0 is dense open, we can
extend r ′ ′0 further to obtain an r0 ⊃ r ′ ′0 with [r0] ⊂ V0. Setting p0 = q0 finishes the
0-th step. It is not hard to check that the inductive assumptions are satisfied. (Note
that (a) and (b) follow from |r ′ ′0 | ≥ |t0|, r ′ ′0 ‖t0, and r0 ⊃ r ′ ′0 .)

Let us now assume that sm, qm, tm, rm, and pm have already been defined for m ≤ n
satisfying the inductive assumptions. For every m let {Sk

m}k∈ω be an enumeration of
the set of (m + 1)-slaloms above tm. To start the (n + 1)-st step, first we need to pick
a tm for some m ≤ n. We make sure by some simple bookkeeping that during the
course of the induction each tm will be picked infinitely many times, and when we
visit the node tm for the k-th time we then take care of Sk

m (we construct a tn+1 above
tm escaping Sk

m).
So let us assume that we are at the (n + 1)-st step and we pick tm for the k-th time.

Inductive assumption (e) yields that succpm (tm) is (m + 2)-fat above tm, hence so is
succpm (tm) \ {s0, . . . , sn} by Fact 3.7. Therefore {t ∈ succpm (tm) \ {s0, . . . , sn} : t‖rn}
is (m+1)-fat above tm by (a) and Lemma 3.33. Thus, using Remark 3.6 as well, we can
fix a sn+1 ∈ succpm (tm)\{s0, . . . , sn} escaping the (m+1)-slalom Sk

m such that sn+1‖rn,
and |sn+1| ≥ |rn|. By (d) we also have sn+1 ∈ pn. As sn+1‖rn and |sn+1| ≥ |rn|, we obtain
pn[sn+1]‖rn. Hence Lemma 3.30 applied to pn[sn+1], rn, and n + 1, then Corollary
3.15 and Fact 3.13 yield a qn+1 ≤ pn[sn+1] and a r ′n+1 ⊃ rn such that qn+1‖r ′n+1 and
qn+1 
 ‘ [r ′n+1] ⊂ U̇n+1 ’, and if tn+1 = root(qn+1), then

(3.3) succqn+1 (tn+1) is n + 3-fat above tn+1.

Then r ′n+1‖tn+1, hence we can clearly find an r ′ ′n+1 ⊃ r ′n+1 such that |r ′ ′n+1| ≥ |tn+1| and
r ′ ′n+1‖tn+1. Finally, since Vn+1 is dense open, we can extend r ′ ′n+1 further to obtain an
rn+1 ⊃ r ′ ′n+1 with [rn+1] ⊂ Vn+1. Setting pn+1 = (pn \ pn[sn+1]) ∪ qn+1 finishes the
(n + 1)-st step.

Now we check that the inductive assumptions are satisfied. For (a) and (b) it
suffices to check that rn+1‖tn+1 and |rn+1| ≥ |tn+1|, which is analogous to the case
n = 0 above. Items (c) and (d) follow from the structure of the fusion, as already
described in Lemma 3.21. Namely, at the (n + 1)-st step we only modify pn in the
“cone” pn[sn+1], and this cone does not contain the earlier tm’s, moreover, an element
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of succpm (tm) only “disappears” from pn when it is picked as an sn+1. Items (f), (g),
and (h) are straightforward from the construction, and (e) follows from (g) and (3.3).

Let us now define p ′ = {tm}m∈ω . It is easy to see that p ′ ∈ P, since succp ′(tm) is
m + 1-fat above tm for every m. Combining (c) and (f) we obtain

(3.4) p ′ ≤ pn

for every n, and also that p ′ ≤ p.
What remains to be shown is that p ′ 
 ‘ r ∈

⋂
n U̇n ’, that is, p ′ 
 ‘ r ∈ U̇n0 ’ for

every fixed n0. Let p ′ ′ ≤ p ′ be arbitrary, then it suffices to find a p ′ ′ ′ ≤ p ′ ′ such that
p ′ ′ ′ 
 ‘ r ∈ U̇n0 ’. As every condition is infinite, there exists n ≥ n0 such that tn ∈ p ′ ′.
Then (3.4), (g), and (h) imply p ′ ′[tn] ≤ p ′[tn] ≤ pn[tn] = qn 
 ‘ [rn] ⊂ U̇n ’.
Therefore, since the Un’s are decreasing and r ∈ [rn], we obtain p ′ ′[tn] 
 ‘ r ∈ U̇n0 ’.
Thus p ′ ′ ′ = p ′ ′[tn] works, and this finishes the proof of the lemma.

3.4 Putting the Proof Together

Theorem 3.35 (Second Main Theorem) It is consistent with ZFC that for every non-
meagre set X ⊂

∏
m∈ω Zm+3 there is some t ∈

∏
m∈ω Zm+3 such that X ∩ (CEK + t) is

non-meagre in CEK + t.

Proof Iterate P of length ω2 with countable support over a model V of the Contin-
uum Hypothesis to obtain Vα for α ≤ ω2. If Vω2 |= X ⊂

∏
m∈ω Zm+3 is non-meagre,

then by an easy reflection argument there is an α < ω2 such that Vα |= X ∩
Vα is non-meagre (see the analogous [1, Lemma 12.]). Applying Corollary 3.23 yields
that in Vα+1 there is some tα+1 ∈

∏
m∈ω Zm+3 such that Vα+1 |= (X ∩ Vα) ∩ (CEK +

tα+1) is non-meagre in CEK+tα+1. Then Theorem 3.19 implies that Vω2 |= (X ∩Vα)∩
(CEK + tα+1) is non-meagre in CEK + tα+1. Hence for the larger set we also obtain
Vω2 |= X ∩ (CEK + tα+1) is non-meagre in CEK + tα+1, which completes the proof.

4 Open Problems

In this final section we collect the open questions.

Problem 4.1 Let X ⊂ R.

∀t ∈ R µCantor(X + t) = 0 =⇒ λ(X) = 0?

Problem 4.2 Is it consistent that there exist an atomless singular Borel probability
measure µ such that for every X ⊂ R with λ(X) > 0 there exists t ∈ R such that
µ(X + t) > 0?

Problem 4.3 Is P of Definition 3.9 forcing equivalent to the Miller forcing?

Problem 4.4 Does Theorem 3.35 hold for R instead of
∏

m∈ω Zm+3?
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