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Abstract

The Neotoma Paleoecology Database is a community-curated data resource that supports interdisciplinary global change research
by enabling broad-scale studies of taxon and community diversity, distributions, and dynamics during the large environmental
changes of the past. By consolidating many kinds of data into a common repository, Neotoma lowers costs of paleodata manage-
ment, makes paleoecological data openly available, and offers a high-quality, curated resource. Neotoma’s distributed scientific
governance model is flexible and scalable, with many open pathways for participation by new members, data contributors, stew-
ards, and research communities. The Neotoma data model supports, or can be extended to support, any kind of paleoecological or
paleoenvironmental data from sedimentary archives. Data additions to Neotoma are growing and now include >3.8 million obser-
vations, >17,000 datasets, and >9200 sites. Dataset types currently include fossil pollen, vertebrates, diatoms, ostracodes, macro-
invertebrates, plant macrofossils, insects, testate amoebae, geochronological data, and the recently added organic biomarkers, stable
isotopes, and specimen-level data. Multiple avenues exist to obtain Neotoma data, including the Explorer map-based interface, an
application programming interface, the neotoma R package, and digital object identifiers. As the volume and variety of scientific
data grow, community-curated data resources such as Neotoma have become foundational infrastructure for big data science.
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INTRODUCTION

The Neotoma Paleoecology Database (hereafter called
Neotoma; http://www.neotomadb.org) was launched in 2009
with a mission to provide an open, community-curated,
sustainable, and high-quality repository for multiple kinds of
paleoecological and paleoenvironmental data. Neotoma’s name
refers to the behavior of woodrats or packrats (genusNeotoma),
which (inadvertently) serve paleoecology by gathering diverse
biological materials into their nests, there to be preserved for
future generations. Although Neotoma itself is relatively
young, it builds on decades of effort by paleoecologists,
paleoclimatologists, and paleontologists to gather individual
records into larger spatial networks for the purpose of studying
ecological, evolutionary, biogeographic, climatic, and cultural
processes at spatial scales beyond the scope of any single
site-level paleoecological record. The gathering of these
records is expensive, with substantial investments in money
and time, and their scientific value is multiplied when aggre-
gated into larger networks. By bringing these resources into a
single open data resource with an accompanying distributed
governance framework, Neotoma seeks to accelerate our
capacity to do global-scale paleoscience, serve as an open-
source platform for new kinds of analytics and visualizations,
enhance reproducibility, and increase the longevity and
sustainability of our communities’ hard-won data.
Neotoma’s creation and design is motivated by the goal of

enabling global-scale science from long-term, site-level data.
Ecological processes operate across a wide range of inter-
acting spatial and temporal scales (Heffernan et al., 2014).
Dynamics at one location are often interpretable only in the
context of larger-scale biogeographic and climatic processes
(Webb, 1997; Williams et al., 2004), and ecosystems can be
affected by slow processes that were triggered by events
centuries or even millennia ago (Svenning and Sandel, 2013;
Goring and Williams, 2017). Networks of paleoecological
records, therefore, provide fundamental scientific infra-
structure for understanding the responses of species to large
and abrupt environmental changes, the mechanisms that
promote resilience, and the interplay between climatic and
biotic interactions (Dawson et al., 2011; Blois et al., 2013;
Moritz and Agudo, 2013; Jackson and Blois, 2015). Exam-
ples include the processes controlling contemporary and past
patterns of community, species, and genetic diversity (Fritz
et al., 2013; Blarquez et al., 2014; De La Torre et al., 2014;
Gutiérrez-García et al., 2014; Sandom et al., 2014; Cinget
et al., 2015; Jezkova et al., 2015); identification of species
refugia (Bennett and Provan, 2008; Gavin et al., 2014;
Vickers and Buckland, 2015); rates of species expansion
(Ordonez and Williams, 2013; Giesecke et al., 2017); the
reshuffling of species into no-analog communities during
climate change (Graham et al., 1996; Radeloff et al., 2015;
Finsinger et al., 2017); the timing and patterns of abrupt
ecological and climate change (Shuman et al., 2009; Seddon
et al., 2015); quantification of the time lags between abrupt
climate change and local ecological response (Ammann et al.,
2013; Birks, 2015); and the timing, causes, and consequences

of late Quaternary megafaunal extinctions (Lorenzen et al.,
2011; Doughty et al., 2013; Emery-Wetherell et al., 2017).
The scientific communities interested in paleoecological

data extend well beyond paleoecology and biogeography.
Paleoecological data such as fossil pollen, diatoms, and
marine foraminifera are the backbone of continental- to
global-scale paleoclimatic reconstructions developed to
benchmark climate models and assess feedbacks within the
earth system (CLIMAP Project Members, 1976; Wright et al.,
1993; MARGO Project Members, 2009; Bartlein et al., 2011;
Shakun et al., 2012; Viau et al., 2012; Marcott et al., 2013;
Trouet et al., 2013) and constrain estimates of climate
sensitivity (Schmittner et al., 2011). Paleoecological data help
establish ecosystem baselines and trajectories for managers
seeking to conserve species and ecosystems of concern
(Whitehouse et al., 2008; Dietl et al., 2015; Panagiotakopulu
and Buchan, 2015; Clarke and Lynch, 2016; Barnosky et al.,
2017). Similarly, paleoecological data are necessary for
understanding the interactions between past environmental
change and early human evolution, land use, cultural
and technological innovation, and dispersal at local to
global scales (deMenocal, 2001; Kaplan et al., 2009, 2011;
Gaillard et al., 2010; Muñoz et al., 2010; Ellis et al., 2013;
Grant et al., 2014).
In response to these scientific drivers, multiple databases

have been developed by multiple teams over the past 30 yr for
different kinds of Pliocene-Quaternary fossil data. These prior
efforts, beginning in North America and Europe in the 1970s
(Davis, 1976; Bernabo and Webb, 1977; Huntley and Birks,
1983; Sadler et al., 1992; Grimm et al., 2013), resulted in
multiple paleoecological databases, each usually restricted to a
particular data set type or region—for example, the North
American, European, African, and Latin American Pollen
Databases (Vincens et al., 2007; Fyfe et al., 2009; Grimm
et al., 2013; Flantua et al., 2015); the FAUNMAP and
MIOMAP terrestrial vertebrate databases (Graham et al.,
1996; Carrasco et al., 2007); theMexican QuaternaryMammal
Database (Arroyo-Cabrales et al., 2007, 2009); NANODe
(Forester et al., 2005); the Diatom Paleolimnology Data
Cooperative (https://diatom.ansp.org/dpdc/) (Sullivan and
Charles, 1994); North American and Latin American packrat
midden databases (Betancourt et al., 1990; Latorre et al., 2014)
and plant macrofossil databases (Jackson et al., 1997, 2000);
the Base de Données Polliniques et Macrofossiles du Quebec
(Richard, 1995); the BUGS insect database (Sadler et al.,
1992); and others. Other, newer proxies, such as testate
amoebae and organic biomarkers, are just beginning to be
gathered for use in broadscale studies and need a common
platform for data archiving, sharing, and reuse.
The importance of these databases cannot be overstated.

Hundreds of scientific papers have utilized them (Fig. 1), and
entire dissertations and subsequent papers have been based
on them (e.g., Lyons, 2001; Li, 2004; Buckland, 2007).
Nevertheless, the various paleoecology databases were
typically established with either one-time or sporadically
funded projects. Long-term maintenance, sustainability, and
development have plagued virtually all paleoecological and
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paleoclimatic database efforts mainly because continuous
funding is needed for both information technology (IT) and
data preparation and cleaning. Some databases have had
curatorial support from museums and government entities
(e.g., Canada Museum of Nature’s curation of the Delorme
ostracode database), whereas others have not. Funding
hiatuses rarely cause these databases to disappear entirely but
have caused data backlogs and delays, with long delays
between data contributions by individual scientists and their
release to the public. Additionally, early databases were
maintained in flat files or stand-alone, desktop-database
management systems such as Paradox or Microsoft Access
(Grimm et al., 2013), versus the new standard of client/server
systems that serve data over the Internet. Copies of databases
sometimes proliferated, and individual copies rapidly
became obsolete (e.g., the initial release of FAUNMAP was
distributed by hard copy and floppy disks, as well as online;
FAUNMAP Working Group, 1994). Because paleoecologi-
cal data were dispersed across different resources, with
differing data architectures and degrees of accessibility, it has
been difficult to synthesize data across resources.
Neotoma builds on these prior efforts by providing (1) a

consolidated and hence more cost-efficient and sustainable IT
structure, (2) an open and flexible data model based on
decades of experience with paleoecological data, and (3) a
distributed and extensible governance structure that promotes
high-quality, curated data and establishes pathways for new
scientists and research groups to join and contribute. The
Neotoma data model supports, or can be extended to support,
any kind of paleoecological or paleoenvironmental data from
sedimentary archives. Neotoma has focused on the
Quaternary to Miocene section of the geologic record and
primarily supports research about ecological processes
operating at time scales of 102 to 106 yr, but there is no hard
limit to Neotoma’s temporal extent. Neotoma employs a
distributed governance structure based on constituent
databases (see “Governance and Data Use”), because the
scientific expertise necessary for curating paleoecological
data is widely distributed across the scientific community.
Each constituent database corresponds to a particular dataset

type (e.g., ostracodes, insects, vertebrates, diatoms, pollen,
organic biomarkers) or region, and each is led by expert data
stewards (list of stewards available at http://bit.ly/2tzjEsZ),
with opportunities available for scientists who would like to
contribute their data and become stewards, either for existing
constituent databases or to launch new ones. Neotoma also
acts as a boundary organization and translator (Fig. 2;
Guston, 2001) among multiple interacting groups, bridging
across the field- and lab-oriented communities that contribute
data to Neotoma, the diverse multiple research and educa-
tional communities that use paleoecological data, and the
informatics communities that build systems for translating
big data to knowledge.
Neotoma is part of the emerging field of paleoecoinformatics

(Brewer et al., 2012), which itself contributes to larger efforts in
bioinformatics and geoinformatics to overcome bottlenecks
associated with data access, mobilize dark data, and maximize
the power of scientific data collected by networks of researchers
(Heidorn, 2008; Howe et al., 2008; Lynch, 2008; Hampton
et al., 2013; Ferguson et al., 2014). Related efforts include
the Paleobiology Database (https://paleobiodb.org/#/), the
International Tree Ring Databank (https://www.ncdc.noaa.
gov/data-access/paleoclimatology-data/datasets/tree-ring), the
Paleoclimatology data holdings at the National Oceanic and
Atmospheric Administration’s (NOAA) National Centers for
Environmental Information (https://www.ncdc.noaa.gov/data-
access/paleoclimatology-data), Pangaea (https://www.pangaea.
de/), iDigBio and iDigPaleo (https://www.idigpaleo.org/),
MorphoBank (https://morphobank.org/), the Limnological
Research Center and Continental Scientific Drilling Office
(https://csdco.umn.edu/), the Interdisciplinary Earth Data
Alliance (http://www.iedadata.org/), and the Strategic Envir-
onmental Archaeology Database (http://www.sead.se). Inter-
linking efforts are also underway through, for example, the
National Science Foundation’s (NSF) EarthCube program.
Neotoma also seeks to support and leverage ongoing

advances in paleosciences and data sciences. In paleoecology
and paleobiology, the rate of publications is increasing
exponentially (Uhen et al., 2013), which requires scalable
informatic solutions; new paleoecological proxies continue
to emerge (e.g., organic biomarkers and compound-specific
stable isotopes; Zhang et al., 2006; Sachse et al., 2012; Bush
andMcInerney, 2013); radiometric dating techniques and age
modeling software continue to improve, enabling more pre-
cise ecological inferences (e.g., Zazula et al., 2014); and the
growth of data assimilation and ecological forecasting
approaches is requiring a closer and interactive coupling
between ecological data and mechanistic models (Dietze
et al., 2012; Dietze, 2017). Relevant advances in the data
sciences include the development of efficient protocols
(e.g., JSON, SPARQL) that enable the establishment of net-
works of reliable and linked distributed resources across the
Internet (https://www.w3.org/blog/SW/2008/01/15/sparql_i
s_a_recommendation/) (ECMA International, 2013), the
development of international standards for unique data
identifiers (e.g., digital object identifier [DOI]; http://www.
datacite.org), and the rapid advances in open-source and

0

10

20

30

40

50

60

70

1985 1990 1995 2000 2005 2010 2015

Publication Year

N
u

m
b

er
 o

f 
N

ew
 P

ap
er

s 
C

it
in

g
N

eo
to

m
a 

an
d

 C
o

n
st

it
u

en
t 

D
B

s

1987
1st citation

2015
63 new citations

Figure 1. Papers citing Neotoma and its constituent databases.
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collaborative programming environments such as R, GitHub,
or Jupyter that place state-of-the-art analytical tools at the
fingertips of scientists (Ohri, 2014; Goring et al., 2015).
Neotoma also supports the now-common requirement by
funding agencies and journals for scientific data to be made
publicly available (Nature, 2017).
Here we provide an overview of the Neotoma Paleoecology

Database, its design principles, key concepts, software ecosys-
tem, governance structure, and a snapshot of current data
holdings and uploads. We summarize the structure of the
Neotoma data model and the available capabilities for upload-
ing, finding, exploring, analyzing, and validating data. The
Supplementary Materials point readers to additional informa-
tion about the technical details of implementation, available in
open-source code repositories (www.github.com/NeotomaDB),
several online help manuals, and other publications (Grimm
et al., 2014; Goring et al., 2015). We begin by describing key
design principles and core semantic concepts that underlie the
Neotoma data model, software design, and governance struc-
ture. Finally, we highlight ways that interested scientists can
contribute to building this community resource, and we look
ahead to current opportunities, challenges, and their solutions.

NEOTOMA DATABASE: DESIGN PRINCIPLES

Seven core principles and philosophies govern
Neotoma’s design.

(1) Neotoma is a spatiotemporal paleoecological data-
base: The core mission of Neotoma is to store and openly

share well-organized and curated information about the past
occurrences and abundances of organisms, their geobiologi-
cal signatures, and associated paleoenvironmental variables,
in space and time (see “Data Holdings and Data Types” for a
fuller listing). Informed interpretation of these data also
requires Neotoma to store and curate information about the
geographic and sedimentary characteristics of the field site
and stratigraphic horizons from which fossils were collected
or variables measured, age controls and age-depth models
used to estimate time, and the identity and contact informa-
tion of investigators. Other kinds of information are also
relevant to informed paleoecological interpretation but fall
outside Neotoma’s core mission and may be best curated by
other communities and data resources (e.g., ecological traits,
digital images of fossils, contemporary genetic data, archae-
ological excavation data, reconstructions of past sea level and
paleogeography, and paleoclimatic simulations from earth
system models). Neotoma’s data and governance models are
designed to be flexible and extensible to other paleoecologi-
cal or paleoenvironmental proxies.
(2) Neotoma consolidates IT, distributes scientific govern-

ance: Neotoma combines a centralized database structure
with a system of distributed scientific governance. All Neo-
toma data are housed in a single relational database (see
“Technical Specifications and Software Ecosystem”) and
organized according to a common set of core semantic con-
cepts (see “Neotoma Data Model: Fundamental Concepts”).
The use of one data structure for multiple paleoecological
proxies reduces developer support costs, facilitates data dis-
coverability and reuse, and increases data interoperability.

Figure 2. (color online) Neotoma serves many communities and acts as a boundary organization (Guston, 2001) among these
communities. Neotoma serves paleoecologists by providing a high-quality repository for their paleoecological data, with value added via
digital object identifiers to facilitate data citation, data curation, and a flexible data model. Neotoma serves data users by providing a well-
structured, open-access, and easy-to-use source of paleoecological data, specializing in time scales that bridge the boundary between
global change ecology and geology (Jackson and Hobbs, 2009; Dietl and Flessa, 2011; Betancourt, 2012; Jackson and Blois, 2015;
Kidwell, 2015; Jackson, in press). In return, these communities generate new questions and analytical approaches for paleoecological data.
Neotoma serves educators, students, and the general public seeking to learn about the past distributions of charismatic species such as the
Pleistocene megafauna and the effects of climate change on species distribution and diversity. Neotoma also serves as a boundary
organization between geoscientists and computer scientists, passing data, new research questions, best practices and protocols, and
geoscientific use cases and priorities.
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Neotoma comprises virtual constituent databases, each
encompassing a particular data set type or region (e.g., North
American Pollen Database, European Pollen Database, North
American Non-marine Ostracode Database, FAUNMAP,
Bugs) and each with its own data stewards (Fig. 3).
Constituent databases and allied cyberinfrastructure resources
can also create their own front-end portals into Neotoma
through the use of the Neotoma application programming
interface (API; see “Technical Specifications and Software
Ecosystem”). New constituent databases can be created to
bring in new data types and regions (see “Governance and
Data Use”), and new data stewards can be readily trained (see
“Governance and Data Use” and “Next Steps”). This
distributed governance structure addresses the challenge of
distributed scientific expertise and allows Neotoma to scale as
new records and proxy types are added to it.
(3) Neotoma is a community-curated data resource: Neoto-

ma’s data stewards are functionally similar to a journal’s board
of editors, charged with ensuring that data stored in Neotoma
conform to community-established data standards. Data input
into Neotoma is led by trained data stewards and data
processors (see “Governance andData Use”) appointed by their
communities, with taxonomic names approved by taxonomic
experts. Distributed scientific governance is essential for
Neotoma because no single individual or institution can be
expert in all the dataset types, regions, and time periods repre-
sented within Neotoma. Software systems provide stewards
with automated tools to check for data inconsistencies,
metadata completeness, and taxonomic conformity with
Neotoma standards prior to uploading (see “Technical
Specifications and Software Ecosystem”). This process of data

validation, standardization, and cleaning adds significant value
(Lehnert and Hsu, 2015) and distinguishes Neotoma from
general-purpose and comprehensive data depositories such as
DataDryad or FigShare.
(4) Neotoma data are open: Neotoma data are available to

anyone with an Internet connection and are accessible
through several interfaces (Fig. 4), each serving distinct user
communities. Neotoma uses a CC-BY license, allowing free
reuse of data with proper attribution to Neotoma and the
original data contributors (see “Governance and Data Use”;
http://www.neotomadb.org/data/category/use). By support-
ing open data, Neotoma prevents the underuse and eventual
loss of valuable paleodata that languish on individual
computers (Heidorn, 2008; Hampton et al., 2013) while
promoting scientific transparency and reproducibility across
the community. Neotoma has an embargo policy for data
contributed to Neotoma prior to publication (“Governance
and Data Use”) and is working on an embargo management
system, to promote good data management practice of orga-
nizing data early in a project cycle, rather than at the moment
of publication, when details may be difficult to recollect. This
embargo will also allow contributors to analyze their data in
the context of the whole database without releasing it for
public access until publication. Neotoma supports data
archival and management plans required by many funding
agencies and journals.
(5) Neotoma is a living database: The life cycle of a

paleoecological data set does not end with its first publica-
tion. Data are reused, as the original investigators and new
teams synthesize existing data to answer new questions.
Errors may be caught and corrected during subsequent

Figure 3. (color online) Diagram of Neotoma’s governance structure. Neotoma is governed by a leadership council, which is populated by
elected members serving four-year terms. The executive working group coordinates day-to-day operations and reports to the leadership
council. Other working groups coordinate education and outreach activities, build informatics and development activities, cultivate
international partnerships, and handle membership requests and leadership elections. Constituent databases and the data stewards within
these databases are charged with uploading data to Neotoma, setting data standards and vocabularies, adopting and harmonizing
taxonomies, and deciding default age models. These constituent databases are organized by taxonomic group or paleoecological proxy
type and often are further subdivided by region or time period. The Neotoma governance system is extensible, such that new members can
readily join and new constituent databases can form.
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syntheses (e.g., inaccurate transcriptions of geographic
coordinates, inaccurate or incomplete capture of all fossil
data from a site, missing metadata). Derived inferences may
be updated with newer analytical methods (e.g., newer
Bayesian age models; Parnell et al., 2008; Blaauw and
Christen, 2011). Neotoma stores relatively stable raw data
(e.g., number of fossil specimens of a species in an assem-
blage, radiocarbon dates), as well as derived data (e.g., age
models), subject to change as scientific understanding
advances. Of these, the most changeable data tend to be age
estimates and taxonomic names. Age estimates will change
as dating techniques and age-depth models improve. Taxo-
nomic names may change if taxonomic identifications of
individual specimens are revised or if taxonomic nomen-
clature is revised or updated.
(6) Community engagement and empowerment are essen-

tial: Neotoma serves diverse communities (Figs. 2, 3). The
constituent groups are essential to Neotoma’s ability to grow
and scale upward. Hence, Neotoma continually seeks to
enlarge and support its community of data stewards, con-
tributors, and third-party developers (see “Governance and
Data Use” and “Next Steps”). The sustainability of Neotoma
is ultimately determined by the degree to which it supports
key research priorities of its community.
(7) Neotoma is part of a larger ecosystem: Many com-

munities are gathering and assembling their data, while others
establish standards, vocabularies, and systems for sharing data
across systems. Data types are many, and Neotoma’s resour-
ces are few. Hence, whenever possible, Neotoma will partner
with allied resources. For example, other organizations have
set standards for storing and representing information about
individual investigators (ORCID; https://orcid.org/), physical
samples (International Geo Sample Numbers; http://www.
geosamples.org/igsnabout), geospatial data (Open Geospatial
Consortium; http://www.opengeospatial.org/), or funding
agencies (FundRef registry built by CrossRef; https://www.
crossref.org/services/funder-registry/); Neotoma is adopting

or moving toward adopting these common standards. Simi-
larly, Neotoma seeks to develop partnerships to intersect
paleoecological and paleoenvironmental data with other kinds
of climatic, archaeological, and ecological data (see “Next
Steps”).

NEOTOMA DATA MODEL: FUNDAMENTAL
CONCEPTS

This section describes high-level semantic concepts embed-
ded within Neotoma’s data model. We first describe
Neotoma’s system for representing and storing the many
kinds of sedimentary sampling designs used by paleoeco-
logists, then the kinds of information linked to variables, and
finally Neotoma’s system for representing time. We do not
attempt to describe in detail Neotoma’s relational database
structure because most scientific users do not come into direct
contact with the actual relational database. However, many of
the concepts described here correspond to one or more data
tables in Neotoma’s relational database. For interested
scientists and developers, further information is available
in the Neotoma Database Manual (http://www.neotomadb.
org/uploads/NeotomaManual.pdf).

Sites, collection units, analysis units, samples, and
data sets

Paleoecological data from sedimentary archives have many
commonalities: They typically involve measurements of
fossil organisms or proxies found in various geologic
archives along some spatial direction, usually vertical depth,
for which we estimate time with uncertainty (see also Evans
et al., 2013). These commonalities enable a common data
model. Within this general framework, many sampling
systems exist that vary within and among subdisciplines and
depositional environments. For example, paleolimnologists
may collect one or more sediment cores from a lake, with

Preparation, Validation,
Submission, Revision

Archiving, Provisioning Exploration, Discovery,
Visualization, Retrieval

Figure 4. (color online) Diagram of the Neotoma software ecosystem. Data preparation and cleaning for upload to Neotoma are handled
by the Tilia software (https://www.tiliait.com/), which has password-protected access for data stewards to upload data sets, update age
models, and correct errors. Data are stored in the Neotoma relational database, which is deployed in SQL Server and currently hosted at
Pennsylvania State University’s Center for Environmental Informatics. Neotoma data can be discovered, explored, viewed, and obtained
through multiple platforms. Neotoma Explorer and its graphical map-based interface is designed for first-pass data explorations, new users,
and educational and student groups. The application programming interfaces (APIs) and neotoma R package are intended for
programmatic access and for users who wish to do large-volume searches of Neotoma data holdings. Tilia can also download data sets
from Neotoma, which is useful for data visualizations and for data stewards needing to update data sets or looking for examples of
prepared Tilia files.
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multiple kinds of measurements made on the cores and
subsamples from it; archaeologists may collect botanical or
faunal specimens from surface scatter or excavations; or
vertebrate paleontologists may measure stable isotopes on
bones collected from a sediment section or cave deposit. In
order to flexibly store data from these different sampling
methods, Neotoma uses a hierarchical arrangement of
sites, collection units, analysis units, samples, and specimens,
with samples further grouped by type into Datasets
(Fig. 5; Grimm et al., 2013).
A site is a geographic place from which paleoecological data

have been collected. Examples of sites include lakes, caves,
archaeological excavations, and stratigraphic sections. The
spatial extent of sites is flexible and tends to be defined based on
field practice, ranging from a single point to a lake or archae-
ological site with an extent measured in hectares. Key properties
include name, geographic coordinates, altitude, and areal extent.
In Neotoma, the spatial extent of sites is represented by
bounding boxes with north and south latitudes and east and west
longitudes. The bounding box can circumscribe the site (e.g., a
lake) or may circumscribe a larger area containing the site, either
because site location is imprecisely known (e.g., described as
“on a gravel bar 5 miles east of town”) or because location is
purposely kept vague (e.g., to prevent looting and vandalism).
Many legacy sites in Neotoma have point coordinates. A site
will have one to many collection units.
A collection unit is a place within a site from which a set of

fossil specimens or samples has been collected. Typical
collection units include individual or composite cores from
lakes and peatlands, profiles from stratigraphic sections
(e.g., river cutbanks, quarry walls), archaeological or
paleontological excavation features or contexts, isolated
specimens (e.g., a bone collected from a gravel bar), and
surface samples. Collection units typically have spatial
Cartesian or geographic coordinates within a site. Collection

unit properties include name, latitude-longitude coordinates
(represented as point coordinates with error), altitude, date of
collection, and metadata about collection methods and the
depositional environment. The definition of collection units
and their spatial extent is flexible. For example, in a pit cave
with three fossil-rich sediment cones, each with several
excavation squares, the collection units could be defined as
the individual squares, or as three composite collection units,
one from each sediment cone. In another example, consider a
lake with two closely adjacent cores from the lake center, plus
a single core near the lake margin. In this case, the two central
cores might be merged into one composite collection unit,
with a second collection unit representing the lake-margin
core. A collection unit will have one to many analysis units.
An analysis unit is a unique sampling location within a

collection unit. Analysis units are typically arrayed along a
depth transect, usually oriented vertically. Analysis units may
be identified by depth and optionally thickness or by name and
optionally ordinal position. Analysis units may be arbitrary
intervals or natural strata. Examples of analysis units include
individual depth intervals along a sediment core or within an
excavation, individual strata or features within an excavation,
individual measurements taken along a transect from outer
surface to inner core of a speleothem, and so forth. Natural
strata may be vertically superimposed but may vary in depth
and thickness within a section or excavation, particularly in
colluvial sections and sediment cones below pit-cave openings.
In this case, the “depths” may be ordinal positions or pseudo-
depths. However, in some cases, analysis units may be single-
context features (e.g., archaeological hearths and storage pits),
which may be identified by name only, with no explicit depth.
An analysis unit will have one to many samples.
A sample is a single set of measurements of a single dataset

type from an analysis unit. Dataset types usually correspond
to taxonomic groups that are the loci of scientific expertise

SiteID
SiteName
LongitudeEast
LatitudeNorth
LongitudeWest
LatitudeSouth
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Area
Altitude
Area

CollectionUnitID
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CollTypeID
DepEnvtlD
Handle
CollUnitName
CollDate
CollDevice
GPSLatitude
GPSLongitude
GPSError
Location
Notes

AnalysisUnitID
CollectionUnitID
AnalysisUnitName
Depth
Thickness
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Mixed
IGSN
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SampleID
AnalysisUnitID
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SampleName
AnalysisDate
LabNumber
PreparationMetod
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DatasetID
CollectionUnitID
DatasetTypeID
DatasetName
AnalysisDate
Notes

Sites CollectionUnits AnalysisUnits Samples

Datasets

Figure 5. The Neotoma data model handles different kinds of sampling designs by paleoecologists through a flexible hierarchical system
consisting of sites, collection units, analysis units, samples, and datasets. Sites are the field locations from which paleoecological data are
obtained and can contain multiple collection units. Collection Units are the specific point-level locations within sites from which data are
obtained and can contain multiple analysis units. Analysis Units are the specific depth horizons from which data are obtained and can
contain multiple samples. A Sample is a single piece of material extracted from an analysis unit, for which a single kind of measurement is
made (e.g., analyzed for fossil pollen, stable isotopic analyses, etc.). A Dataset comprises all samples of a single data set type in a single
collection unit (e.g., all pollen samples from a single core).
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and Neotoma’s constituent databases (e.g., diatoms, ostra-
codes, pollen, plant macrofossils, and terrestrial vertebrates).
Samples and dataset types can also comprise geochemical
measurements (e.g., stable isotopes, organic biomarkers),
physical measurements (e.g., loss on ignition), or geochro-
nological measurements (e.g., 14C or 210Pb dates). For
example, the same analysis unit from a stratigraphic section
may have a vertebrate sample and a macrobotanical sample,
or an analysis unit from a sediment core may have pollen,
diatom, ostracode, and stable isotope samples. The analysis
unit links together samples located in the same stratigraphic
interval, whereas datasets links samples from the same
collection unit.
Datasets comprise all samples of the same data type from a

collection unit. Datasets are typically the subjects of publica-
tion and are a primary mode in which data within Neotoma are
packaged for delivery to users. For example, clicking on a site
in Neotoma Explorer (http://apps.neotomadb.org/explorer/)
will return a list of all datasets at that site. Similarly, in the
neotoma package in R, Neotoma data are primarily passed to
R in the form of datasets, using the get_datasets and get_
download functions (which respectively return dataset
metadata and data; Goring et al., 2015). Similarly, DOIs are
assigned to datasets, but not to samples or analysis units
(http://data.neotomadb.org/datasets/5000/index.html).
A specimen is the physical form of a biological object (e.g.,

a vertebrate bone or other fossil) retrieved from a sample.
Specimens are often curated and housed at museums, geologic
surveys, or other repositories. Specimens often have catalog
numbers, accession numbers, or other unique identifier
assigned by their institution. In 2016–2017, the Neotoma data
model was extended to store specimen-level measurements
(e.g., radiocarbon dates and stable isotopic measurements
from individual teeth or bones). Neotoma does not currently
store information about specimen morphometric traits, but the
data model could be extended in this direction, or Neotoma
could link out to other databases that store specimen- or
species-level trait data (e.g., iDigBio, MorphoBank).

Variables

In Neotoma, variables store information about measured
organisms or proxies of any type. Variables have the property
taxon name (equivalent to variable name) and the optional
properties element, units, and context.
In Neotoma, taxon name is used in the broad sense to

include both organismal taxa and physical “taxa” such as
stable isotopes, organic biomarker compounds, and inorganic
minerals. Neotoma uses defined vocabularies of taxon
names, and, during the validation process of uploading data
to Neotoma, taxon names in uploaded files are automatically
checked and flagged if there is no match. New names may be
proposed by stewards and approved by taxonomic experts
(see “Governance and Data Use”). Taxon names for
organisms can include non-Latin modifiers to indicate the
level of uncertainty in the taxon identification. For example,
Ambrosia, Ambrosia-type, and cf. Ambrosia are three

different taxa. The uncertainty modifiers are included in the
taxon name, rather than in a separate field, so as to indicate the
exact level of uncertainty and to faithfully record the original
identification, in which the uncertainty is usually included as
part of the name. Thus,Odocoileus cf.O. virginianus indicates
that the genus identification is secure, but the species is
uncertain; whereas, cf. Odocoileus virginianus indicates that
the genus identification is uncertain. This example might be
the case for regions in which Odocoileus virginianus (white-
tailed deer) is the only Odocoileus species biogeographically
reasonable; thus if it is an Odocoileus, it must be Odocoileus
virginianus. The “cf.” designation may occur at any number of
taxonomic ranks or cladistic nodes. With the exception of the
uncertainty modifiers (cf., aff., sp., spp., undiff., -type, ?),
non-Latin modifiers are included in parentheses—for exam-
ple, Poaceae (<50 µm), Leporidae (large), Eudicotyledoneae
(tricolpate, Hooghiemstra 1984 type 152). The forward slash
symbol is used to indicate identifications limited to a small
number of taxa (usually two) with elements that cannot be
differentiated (e.g., Ostrya/Carpinus). This packaging of
taxon name and uncertainty into a single field carries the
advantage of staying true to paleontological tradition and
nomenclature but hinders integration with contemporary
biodiversity databases.
If taxonomic names used by data contributors or publica-

tions are changed, the original name can be stored. Database-
wide changes to a taxon are always stored—for example, a
name change because of taxonomic revision. Different con-
stituent databases have somewhat differing practices for
nomenclatural synonymizations made at the time of initial
data validation and upload: some retain the original name,
others replace with the currently accepted synonym. For
homotypic synonymizations that do not involve a change in
circumscription (e.g., Gramineae ≡ Poaceae), original names
do not have to be stored; but for heterotypic synonymizations
or any name change that involves a potential change in cir-
cumscription, original names should be stored. In addition,
name changes because of reidentification should be stored—
for example, a specimen initially identified as Mammuthus
but later reidentified as Mammut.
For organismal taxa, the element is the organ or part of the

organism that was identified. Thus, for pollen datasets,
element names include “pollen,” “spore,” and “stomate.” For
plant macrofossil datasets, elements include “leaf,” “seed,”
“bud scale,” “microstrobilus,” and “wood.” For fossil insects,
elements include “heads,” “pronota” (thoraces), “elytra”
(left and right), and “aedeagii” (reproductive organs). For
vertebrates, the element is generally the bone or tooth
identified, such as “femur” or “tooth, third molar.” Elements,
particularly vertebrate elements, may have components,
including symmetry, portion, and maturity, entered in that
order and separated by semicolons (e.g., “femur;left;distal;
fused” or “tooth, third molar;lower left”). Elements are
also used for modifying physical variables. For example, for
the variable loss on ignition, the element is the temperature
(e.g., 500°C). Neotoma also uses defined vocabularies for
elements.
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Units are the measurement units in which the variable is
measured. For organismal taxa, the most common units are
NISP (number of identified specimens, often called a “count”
for microfossils), MNI (minimum number of individuals),
and presence. For example, five left femurs would indicate at
least five organisms (MNI = 5), but five pollen grains could
have one to five source plants (NISP = 5). For presence data,
a value of 1 is entered for presence, or the cell is left blank.
Zeroes or absences are not stored in Neotoma for organismal
taxon variables, because the true absence of a taxon is
difficult to definitively establish, given that probability of
detection is a function of sampling effort, ecological rarity,
and taphonomic processes (Birks and Line, 1992; Weng
et al., 2006; Olszewski and Kidwell, 2007). However, partial
evidence for taxonomic absence exists for some samples if
that taxon was identified in other samples in the same data set,
under the assumption that the analyst looked for that taxon in
all samples in a data set. Neotoma also allows semi-
quantitative systems for measuring abundance—for example,
the 1–5 relative abundance scale often used in the rodent
midden literature (Spaulding et al., 1990) or other relative
scales used in archaeobotany. Geochemical and physical
variables can have many kinds of measurement units (e.g.,
“percent,” “per mil,” “meq/L,” “mg/L,” and so on). For
physical and geochemical measurements, such as δ13N, for
which zero can be a measured value, zeroes are stored.
Neotoma uses defined vocabularies for units.
Context refers to a depositional context that may influence

the interpretation of the taxon. Examples include anachronic,
redeposited, or intrusive, which imply that the taxon was
deposited at a different time than its sediment matrix. A
Cretaceous pollen grain may be reworked and redeposited
into more recent sediments; a modern Sus (pig) bone may be
intrusive in Pleistocene sediment. Anachronic simply implies
the taxon is of a different age. Contexts sometimes used with
pollen are clump and anther, where clumps of pollen or
anther fragments may indicate an overrepresentation of the
taxon (e.g., a bee carrying usually infrequent entomophilous
pollen may have fallen into the sediment). It is possible for
fossils in a data set or sample to be from the same taxon but
have different contexts—for example, both clumped and
nonclumped pollen of one taxon, or Holocene and older
reworked Betulaceae pollen (distinguishable by preserva-
tional differences) in the same assemblage.

Time, age controls, relative ages, age-depth models,
chronologies

In Neotoma, the age estimates attached to samples and
specimens are treated and stored as a derived variable that
must be estimated through a combination of absolute age
controls, relative age controls, event stratigraphic ages, and
age-depth models fitted to those controls (e.g., Parnell et al.,
2008). Some types of geochronological information are more
stable than others. For example, individual geochronological
measurements will remain stable, but the set of age controls
available at a site or collection unit can change as new dates

are obtained. The fitted age-depth models and derived age
inferences are also changeable, as estimates of radiometric
decay constants are updated, radiocarbon calibration curves
are adjusted, the quality of individual age controls is
reassessed, new statistical age-depth models are developed,
and so forth. Hence, the Neotoma data model separately
represents and stores these layers of information about time
as age controls, relative ages, age-depth models, and
chronologies. Most of the definitions described here are
originally from Grimm et al. (2014).
An age control is an estimate of absolute age, often with a

specified uncertainty, for a sample within a core or strati-
graphic profile that is used to constrain an age model for that
core or profile. Examples of age controls include radiocarbon
and other radiometric dates, optically stimulated lumines-
cence, biostratigraphic events, tephras, core top, coins or
other dated cultural artifacts, and so forth (Blois et al., 2011;
Giesecke et al., 2014). Age controls are primary data in
Neotoma and generally assumed to be fixed and unchanging;
barring data entry error, new age controls can be added, but
existing age controls are not modified. Age control data are
stored in tables that are separate from but linked to tables that
store information about age-depth models and chronologies.
In Neotoma, age control data are stored in the Geochronology
table.
Radiometric ages are the most common kind of age control

stored in Neotoma, and radiocarbon dates are the most
common kind of radiometric date (17,054 of 18,483 age
controls in Neotoma are radiocarbon dates, as of November
7, 2017). Radiocarbon dates are stored in original radio-
carbon years, with counting uncertainties stored as one
standard deviation. Calibrated ages are stored in Neotoma as
components of chronologies, or simply regenerated by users
as needed. Other radiometric metadata include depth and
thickness of sample, material dated, lab identifier, δ13C (for
radiocarbon dates), instrumental measurement system, and
publication information.
Relative ages store information about the association of

analysis units with formally recognized relative age scales
based on the stratigraphic record or a series of geologic
events. These formations and events have their own age
estimates, which can change over time. A relative age
encompasses a range of time (i.e., it has an upper and lower
age bound), and samples assigned to a relative age event are
assigned those ages. Examples include Marine Oxygen
Isotope Stages, Heinrich stadials, geomagnetic chrons,
archaeological periods, and North American land mammal
ages. Thus, a sample assigned to Marine Isotope Stage 5e
would be assigned a sample age of 130–116 ka based on the
current authoritative estimate (currently, Lisiecki and
Raymo, 2005). Optionally, this sample age could be further
constrained by other criteria. A full list of relative age scales
is available via the Neotoma API (http://api.neotomadb.org/
v1/dbtables/RelativeAgeScales; in JSON format). Currently,
these relative age scales and associated age estimates are
stored in Neotoma in the RelativeAges table and must be
updated by stewards; ideally, these ages would be
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dynamically updated by linking to other authoritative data
resources on stratigraphic age.
Event stratigraphic ages are globally synchronous, single-

event stratigraphic markers, ideally with an age and error,
which can be used in age models similar to geochronological
ages. Volcanic deposit tephras often serve this purpose. For
example, the Mazama tephra, which occurs over a large area
of western North America, has been dated to 7627± 150 cal yr
BP (Zdanowicz et al., 1999). The Hekla 1104 tephra
originating from Iceland, but distributed as far east as Ireland,
is historically documented to AD 1104 or 846 cal yr BP
(Boygle, 1999). Some event stratigraphic ages are the
boundaries of relative age units (e.g., geomagnetic polarity
reversals are event stratigraphic ages and are also the boundary
ages for geomagnetic chrons, which are relative ages). Hence,
a fossil vertebrate assemblage might occur within a unit stra-
tigraphically assigned to the reversed polarity Matuyama
chron, with a relative age of 2.581–0.781 Ma, while the
Brunhes/Matuyama geomagnetic polarity reversal, which
might be an age control for an age model in a core or section, is
dated to 0.781 Ma (Ogg and Smith, 2005). Event stratigraphic
ages are treated in the Neotoma data model as instantaneous;
although, of course, the actual events occurred over periods of
time, from weeks to a few years for a volcanic eruption to
perhaps several hundred or even a few thousand years for a
geomagnetic reversal (e.g., Clement, 2004). However, for
most practical applications, this error should be relatively
small and ideally incorporated within the age error estimate.
An age-depth model is an algorithm used to estimate the

age-depth relationship for a given stratigraphic profile based
on the age controls available for that profile and prior
knowledge. Age-depth models are used to estimate ages for
depths not directly associated with an age control or to
resolve discrepancies among age controls. Examples of
age-depth modeling programs include classical age modeling
approaches (linear interpolation, linear regression, poly-
nomials, and splines; Blaauw, 2010) and Bayesian approa-
ches such as Bacon (Blaauw and Christen, 2011) or BChron
(Parnell et al., 2008). In Neotoma, information about
age-depth models is stored in the Chronologies table.
A chronology is a series of estimated ages for a set of

samples in a collection unit, ideally with associated uncer-
tainty estimates. Chronologies usually derive from an
age-depth model and a set of age controls (radiometric,
relative, events, or other) used to constrain that model. In
Neotoma, information associated with chronologies is parsed
into three tables, including (1) the ChronControls table,
which stores information about the age controls used to
constrain an age-depth model. These age controls can, but do
not have to, correspond to the age controls stored in the
Geochronology and other primary data tables; this flexibility
allows scientists to remove age controls deemed to be inac-
curate or add other age constraints to the age-depth model
(e.g., assigning a modern depositional age to the top of the
stratigraphic profile). (2) The Chronologies table stores
information about the age-depth model, its parameters, the
analyst, and other metadata. (3) The SampleAges table stores

the resultant inferred ages for individual samples. All
Neotoma chronologies have a unique identifier and are also
linked to a specific collection unit.
Chronologies can be stored as calendar years before

present, radiocarbon years before present, or calibrated
radiocarbon years before present. The chronology and
associated age-depth model originally published for a
collection unit are stored provided that the age controls,
sample ages, and metadata sufficient to replicate the age
model are published or provided by the contributor. A col-
lection unit may have multiple chronologies or none, if no
age information is available for the collection unit. Hence,
each sample in the collection unit may have multiple age
estimates, each linked to a unique chronology. New chron-
ologies may be added to Neotoma, and we envision this
component of the Neotoma database to be dynamic over
time, as users download data and build new chronologies.
To handle the multiplicity of chronologies, Neotoma

allows one chronology per collection unit to be designated as
a default chronology. Choice of default chronologies is made
by data stewards, and this choice can be revised as new
chronologies are added. Default chronologies may be stored
in calendar, radiocarbon, or calibrated radiocarbon years
before present. Chronologies in radiocarbon years are not
recommended but exist as legacies in Neotoma. We antici-
pate that over time, these default radiocarbon chronologies
will be replaced by updated chronologies in calibrated
radiocarbon years. Researchers using Neotoma data are
cautioned to critically examine its chronologies and encour-
aged to contribute new and revised chronologies.

DATA HOLDINGS AND DATA TYPES:
CURRENT STATUS AND TRENDS

As of November 8, 2017, Neotoma holds more than 3.8 mil-
lion data records from 17,275 data sets and 9269 sites (Fig. 6).
Each data record is the measured value of a single taxon or
other variable from a single sample. The Neotoma taxa table is
a dictionary with more than 29,000 taxa, fossil morphotypes,
geochemical variables, and other variable names.
Data volumes in Neotoma have been rapidly growing as

data are uploaded, with a 30% increase since 2014, when a
new wave of data uploads began, following the extension of
the Tilia software package (see “Technical Specifications and
Software Ecosystem”) was extended to enable data validation
and upload to Neotoma (Fig. 6). As of July 13, 2017, Neo-
toma holds 2954 pollen data sets (3,274,501 data records),
2600 pollen surface sample data sets (56,205 data records)
3669 vertebrate fauna data sets (59,278 data records), 388
diatom data sets (238,344 data records), 637 diatom surface
sample data sets (29,968 data records), 554 ostracode surface
sample data sets (2410 data records), 384 macroinvertebrate
data sets (805 data records), 283 plant macrofossil data sets
(10,654 data records), 177 insect data sets (19,766 data
records), and a number of other data set types (Table 1). Of
these, 5226 data sets are from sediment cores, 562 from
rodent middens, 285 from excavations, and 1051 from

The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource 165

https://doi.org/10.1017/qua.2017.105 Published online by Cambridge University Press

https://doi.org/10.1017/qua.2017.105


stratigraphic sections. Neotoma holds 3842 geochronological
data sets, with 18,543 individual geochronological measure-
ments. These data volumes have made Neotoma one of the
largest structured repositories of geochronological data.
Although Neotoma has focused primarily on paleoeco-

logical and geochronological data, it also stores associated
physical and geochemical proxies. It includes modern water
chemistry data (1317 data sets, 18,487 data records), loss-
on-ignition data (190 data sets, 24,903 data records), charcoal
(100 data sets, 14,428 data records), and physical sediment
measurements (55 data sets, 1292 data records). Trial data
sets have been uploaded for X-ray fluorescence and X-ray
diffraction, as well as sedimentary geochemistry data.
Surface samples can be flagged in Neotoma during upload, to
facilitate their use in the building of modern calibration data
sets for transfer functions (Birks, 1995). Some associated
measurements of environmental variables (relating to water
chemistry) are enabled for the ostracode and diatom surface
samples stored in Neotoma, and we plan to extend the
Neotoma data model to store other environmental variables
(e.g., climate variables) associated with surface samples.
The Neotoma data model was recently extended to include

stable isotopic data and metadata for δ18O, δ13C, δ15N, δD,
δ34S, and 87Sr/86Sr. Isotopic measurements can be stored for
samples from sedimentary profiles or from individual fossil
specimens. We are expanding the Neotoma data model to
store organic biomarker data and taphonomic measurements
on vertebrate fossils. Because the formation of constituent
databases in Neotoma is a voluntary, bottom-up process
(“Governance and Data Use”), whether to extend Neotoma to
other proxies largely depends on (1) interest by paleodata
communities in using Neotoma to house their data and
(2) developer and steward time to extend data tables and
metadata variables as needed.
Note that Neotoma currently focuses on storing primary

paleoecological measurements and generally does not
emphasize the storing of derived inferences. For example,
Neotoma currently does not store indices of community
diversity (richness, evenness, etc.), paleoclimatic recon-
structions, biomes or other paleovegetation reconstructions,
and so forth. Our general philosophy is that, given finite
resources and the rapid pace of generating these inferences by
the scientific community, these reconstructions are best
generated and managed outside of Neotoma, ideally using

Figure 6. (color online) History of data uploads to Neotoma, expressed as number of observations (left) and data sets (right). Neotoma
launched in 2009 with a number of data sets already in it, mostly pollen and vertebrates, representing prior database building efforts from
the Global Pollen Database and FAUNMAP efforts. Rate of data uploads accelerated after 2013, when the new Neotoma data model was
established and Tilia’s data upload and validation routines were written. The number of data sets is relatively even among several major
data set types (vertebrates, pollen, geochronological data) with recent rapid growth of ostracode and diatom data sets. The number of
pollen observations (left) is large relative to the number of data sets (right) because pollen data sets often have many samples (e.g., many
samples per core) and many variables per sample (i.e., dozens of taxa per sample). As other taxa- and sample-rich data sets are added to
Neotoma (e.g., diatoms, ostracodes), their relative proportions will quickly increase.
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workflow methods that clearly link all derived inferences
back to the primary data resources inside Neotoma. However,
this boundary between primary data and secondary infer-
ences is not set in stone and could be revised depending on
research and development priorities within and among con-
stituent databases and their research communities.

TECHNICAL SPECIFICATIONS AND
SOFTWARE ECOSYSTEM

The Neotoma software ecosystem (Fig. 4) has Neotoma’s
relational database at its heart and includes multiple systems
for finding, exploring, visualizing, downloading, processing,
and uploading data. We describe each in turn.

Database

Neotoma is currently hosted on servers at Pennsylvania State
University, maintained by the Center for Environmental
Informatics (CEI). Neotoma uses a relational database
structure that was originally deployed in Microsoft SQL
Server and now is being migrated to PostgreSQL, so that it
will rely primarily on open source technology. Neotoma’s
relational database structure continues to evolve over time, as
new data types and metadata fields are added. A description

of the relational database structure and tables is available
in an online manual (http://neotoma-manual.readthedocs.
org/en/latest/).
Data uploaded to the Neotoma relational database are

protected by multiple backup measures at CEI, including
redundant disk storage, off-site mirroring, file system
snapshotting, regular tape backup, and duplication of the
backup set. Complete snapshots of the Neotoma database are
posted to the Neotoma website (https://www.neotomadb.org/
snapshots) and to figShare (e.g., https://dx.doi.org/10.6084/
m9.figshare.3376393.v1). figShare in turn ensures long-term
data sustainability through its partnership with the Digital
Preservation Network, which obtains periodic snapshots of
the entire figShare collection (including the Neotoma
snapshots) and replicates it across at least two replicating
nodes, including the Academic Preservation, DuraCloud
Vault, Stanford Digital Repository, Texas Preservation
Node, and HathiTrust. Neotoma also will send these snap-
shots to the paleoclimatology branch of NOAA’s National
Center for Environmental Informatics. Database snapshots
are intermittent at present, but we plan to establish a
regular automated schedule on a quarterly frequency.
Neotoma is a certified member of the International
Council for Science’s World Data Service, which sets stan-
dards for open, quality-assured, and sustained stewardship of
scientific data.

Data retrieval: finding, exploring, and downloading

Multiple avenues exist to find, explore, and obtain data from
Neotoma, each serving different needs and users. Neotoma
data can be accessed via the Neotoma Explorer interactive
map-based interface (https://apps.neotomadb.org/Explorer/),
through a RESTful API (https://api.neotomadb.org/), and
through DOIs that provide persistent and unique identifiers
for every dataset in Neotoma (e.g., https://data.neotomadb.
org/datasets/1001/). Further, Neotoma data can be searched,
viewed, and analyzed through Neotoma Explorer and the
Neotoma API, and also the neotoma R package and strati-
graphic and map-based visualizations in Tilia. Through
partnership with the Earth Life Consortium (http://
earthlifeconsortium.org/), we are developing wrapper APIs
that can simultaneously search for paleobiological
data in Neotoma, the Paleobiology Database, and other
partner databases (http://www.earthlifeconsortium.org/
api_v1/ui/). A full set of links, manuals, code repositories,
and other resources are provided in the Supplementary
Materials.
Neotoma Explorer (https://apps.neotomadb.org/explorer/),

a map-based web application for searching, visualizing, and
downloading data, is Neotoma’s primary data discovery
portal. Users can generate flexible queries for properties such
as taxon name, variable type, time window, location, con-
stituent database, site name, and researcher name. Results are
displayed in an interactive map, and users can quickly
retrieve site and dataset metadata by clicking on sites of
interest. Users interested in deeper exploration of datasets can

Table 1. Constituent Databases in Neotoma and the number of
datasets in each.

Constituent Database
Number of
Datasets

North American Pollen Database 5462
FAUNMAP 4492
Academy of Natural Sciences of Drexel University 1537
European Pollen Database* 1388
North American Non-Marine Ostracode Database
Project (NANODe)

1081

Neotoma Midden Database 460
Pollen Database of Siberia and the Russian Far East 345
Latin American Pollen Database 334
NDSU Insect Database 263
Alaskan Archaeofaunas 101
North American Plant Macrofossil Database 74
Indo-Pacific Pollen Database 60
Neotoma 35
Japanese Pollen Database 33
African Pollen Database 13
Chinese Pollen Database 8
Neotoma Testate Amoebae Database 4
French Institute of Pondicherry Palynology and
Paleoecology Database

2

Holocene Perspective on Peatland
Biogeochemistry

2

ANTIGUA 2

*The European Pollen Database is currently being migrated into Neotoma
and contains additional datasets not tallied here. These datasets are archived
at Pangaea (www.pangaea.de).
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then view them in Explorer’s Stratigraphic Diagrammer to
inspect age models, stratigraphic plots, and associated pub-
lications. Datasets can be downloaded as delimited text files
or shared via links that make use of Neotoma’s API
(e.g., http://apps.neotomadb.org/Explorer/?datasetid=1768).
Searches can be saved as JSON files, which can be archived
or shared with other users, who can reopen them in Neotoma
Explorer (by dragging the JSON file to the Explorer window)
to redisplay the results and map configuration produced from
the query. Following our design principle of promoting
openness, Explorer is built on the Open Web Platform using
HTML5, CSS3, and JavaScript, enabling cross-browser and
cross-platform support, and makes use of the open-source
Dojo and OpenLayers libraries (Roth et al., 2014).
APIs enable programmatic access to the database by third-

party developers and software applications. Likely API users
include the following: scientists who need to incorporate the
most current data into analytical workflows such as scripts
written in R; organizations that want to distribute Neotoma
data (with attribution) via their own data portal or web
interface (e.g., customized and branded web portals for
individual constituent databases); and developers creating
stand-alone applications for data analysis and display.
Known third-party users of Neotoma APIs include NOAA
Paleoclimatology (https://www.ncdc.noaa.gov/data-access/
paleoclimatology-data), which has a data search portal that
will search and retrieve data housed in either NOAA or
Neotoma; Flyover Country (http://fc.umn.edu/), a mobile
app-based program for travelers to discover geologic data and
knowledge during their journeys (Loeffler et al., 2015); and
the Global Pollen Project (https://globalpollenproject.org/)
(Martin and Harvey, 2017), a community platform for pollen
identification. The APIs are implemented as platform- and
language-independent RESTful web services; response
formats include JSON and XML.
The R package neotoma uses the Neotoma API to pass data

into R for further analysis (Goring et al., 2015). R is an open-
source fourth-generation programming language for statis-
tical analysis and graphics. Many paleoecological statistical
and visualization packages have been developed for R, such
as analogue (Simpson, 2007; Simpson and Oksanen, 2015),
rioja (Juggins, 2015), bchron (Parnell et al., 2008), bclim
(Parnell et al., 2016), clam (Blaauw, 2010), and bacon
(Blaauw and Christen, 2011). Development of neotoma is
ongoing (v. 1.7.0 is available via the Comprehensive R
Archive Network; https://cran.r-project.org/web/packages/
neotoma/index.html), and the living neotoma code, feature
requests, bug reports, and development are open and avail-
able through GitHub (https://github.com/ropensci/neotoma).
DOIs are now being assigned as persistent and unique

identifiers to all Neotoma data sets, which will facilitate
citation of Neotoma data and linked-data systems for sharing
and connecting earth science data (Duerr et al., 2011). DOIs
are created using the EZID system (https://ezid.lib.purdue.
edu/), affiliated with DataCite (https://www.datacite.org/),
through a license with the University of Wisconsin–Madison
Library and University of Illinois. DOIs are assigned at the

level of datasets, and each DOI has a landing page (e.g.,
https://data.neotomadb.org/datasets/1001/) that is designed
to provide information to both human and machine users. The
DOI pages point to living versions of the Neotoma data; if the
Neotoma data are updated, these changes will be auto-
matically detected and incorporated in the DOI landing
pages. This approach differs from, for example, Pangaea
(http://www.pangaea.de), in which DOIs point to static ver-
sions of datasets.

Data validation, upload, and management

All data added to Neotoma are reviewed by a data steward
(see “Governance and Data Use”) before upload; this expert
curation is central to Neotoma’s mission of providing high-
quality scientific data. Data entry, curation, and upload into
Neotoma are handled through the Tilia software (https://
www.tiliait.com/). Tilia was originally developed as a DOS
program to visualize and analyze pollen stratigraphic data
(Grimm, 1988) and is still often used for this purpose. Tilia,
now a Windows program, still maintains its end-user func-
tions for managing, analyzing, and visualizing stratigraphic
data, but its capabilities have been extended to support vali-
dation and upload of data to Neotoma, as well as direct
download of data from Neotoma. Only Neotoma stewards
who have password access to Neotoma have access to the
upload capability; any user can download data. Tilia now
generates .tlx files in extensible markup language (XML)
format, which is a simple, extensible text-based markup
language format. Tilia contains multiple validation proce-
dures for quality control during upload, including checks
against controlled vocabularies, for missing or duplicate data,
data inconsistencies, common errors, and commonly omitted
metadata.
Neotoma uses controlled vocabularies for taxa, elements,

units, contexts, geopolitical units, depositional environments,
geochronological measurements, chronological controls, and
other variables that store text-based names. These names are
stored in Neotoma tables, and the Tilia validation process
checks names in .tlx files against these names. Central to the
database is the Taxa table, which contains the names of all
taxa in the database. Names not found in the Taxa table
during Tilia validation are listed, and stewards can check for
spelling errors or formatting differences for non-Latin
modifiers by searching with wildcards. If the name is valid
but not yet in Neotoma, the steward can upload it to the
database. Taxonomic names are separately validated by
designated taxonomic experts. If the steward is a taxonomic
expert, then the date of entry is recorded as the date of vali-
dation. Otherwise the field for validation date is left empty
until the taxon is validated. Tilia has a tool that shows the
Neotoma taxa in a taxonomic hierarchy, easily allowing the
steward to place the new taxon in its correct taxonomic
position (Fig. 7).
Other Tilia validation steps include checking for valid data

set types, for valid combinations of taxon and element (e.g.,
disallowing the combination of “Picea” and “femur”), that

168 J. W. Williams et al.

https://doi.org/10.1017/qua.2017.105 Published online by Cambridge University Press

http://apps.neotomadb.org/Explorer/?datasetid=1768
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data
http://fc.umn.edu/
https://globalpollenproject.org/
https://cran.r-project.org/web/packages/neotoma/index.html
https://cran.r-project.org/web/packages/neotoma/index.html
https://github.com/ropensci/neotoma
https://ezid.lib.purdue.edu/
https://ezid.lib.purdue.edu/
https://www.datacite.org/
https://data.neotomadb.org/datasets/1001/
http://www.pangaea.de
https://www.tiliait.com/
https://www.tiliait.com/
https://doi.org/10.1017/qua.2017.105


latitude-longitude coordinates for collection units fall within
site bounding boxes, that elevations fall within possible
limits, and that the younger/older reliable age bounds for
chronologies are not reversed (a common error). To validate
longitudes and latitudes, the steward is shown a world map
with the hemisphere indicated, which must be approved.
Positive δ13C values associated with radiocarbon dates
(a common entry error) are flagged. Tilia will ask the steward
whether the top sample of a stratigraphic sequence should be
flagged as a modern surface sample. During the validation
process, error messages, warnings, or notes may be issued.
Notes indicate omissions of optional metadata items
that are not required and often nonexistent or unavailable.
Warnings indicate omissions of optional metadata items that
nevertheless are highly desirable. Warnings are also
issued for likely or possible inconsistencies, which never-
theless may be correct. Errors must be addressed
before upload is possible. Once data are validated with no
errors, authorized data stewards can upload data from
Tilia directly to Neotoma through password-protected web
services.
Tilia has a customized API for data upload and download.

Controlled vocabularies that appear in Tilia drop-down pick
lists, such as taxa and geopolitical names, are held in local

XML lookup files, which should be synchronized periodi-
cally from their counterparts in the central Neotoma database.
Datasets downloaded from Neotoma to Tilia include all
relevant metadata, including various notes and comments
that may have been entered. This functionality enables
enhanced review, visualization, and analysis of Neotoma data
beyond that possible in Neotoma Explorer. The downloaded
data also facilitate training for end users and data stewards, by
providing model datasets in Tilia format. The data steward
version of Tilia also allows data stewards to amend data
already in Tilia. For example, metadata items such as
latitude-longitude coordinates may be corrected, or missing
metadata items for sites and collection units may be added.
Publications can be corrected or added. Contact information
can be updated. Data sets can be added to sites already in
Neotoma. New chronologies and sample ages can be added.
The ultimate goal is to enable data stewards to correct or add
to any data or metadata item within their constituent database
through the Tilia interface. Changes made through Tilia are
logged, Neotoma preserves snapshots of prior database
versions, and we are collaborating with others on building an
annotation system, with support from NSF’s EarthCube
program. The ability to upload and amend data is a significant
power available to data stewards, hence the need for experts

Figure 7. (color online) Tilia’s interface for stewards to add new taxonomic names to Neotoma’s Taxa table. Names are placed within a
taxonomic tree, and each taxon name is assigned a unique identifier. Stewards can also upload a citation for the source of that
taxonomic name.
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to serve as data stewards and for data stewards to act
judiciously when modifying data and metadata.
Tilia software is available from https://www.tiliait.com/.

The free version has all the spreadsheet and metadata form
options, including the ability to download data from
Neotoma, which can be copied to other spreadsheet
programs. A licensed version for stewards is available at no
cost and exposes additional options for data visualization,
validation, upload, and management, with a password needed
for any action that may alter the database. Other licensed
versions of Tilia with graphics capabilities are available and
are priced to cover software licensing costs associated with
Tilia development.
The Tilia workflow for uploading data follows a model in

which site-level datasets and associated metadata are uploa-
ded individually. For larger data ports, where many site-level
datasets must be exported from one database into Neotoma
(e.g., from the Access tables storing data in FAUNMAP and
the European Pollen Database), we have taken two approa-
ches. One is to place the database on the Neotoma server and
write customized SQL procedures and web services to
download datasets directly to individual Tilia files for vali-
dation and upload to Neotoma. The second is to write cus-
tomized scripts in R or Python that export data sets from the
other database to individual Tilia .tlx files, which can then be
opened for validation and uploaded by data stewards.
Examples of these batch export scripts, developed for
FAUNMAP are available on GitHub (https://github.com/
NeotomaDB/FAUNMAP_Import).

GOVERNANCE AND DATA USE

Governance and data use policies are designed to support
Neotoma’s core goals of data openness and distributed sci-
entific governance. In particular, these policies are intended
to (1) make Neotoma data open and available to all interested
scientific and public communities; (2) build a governance
structure that accommodates both a centralized cyberinfras-
tructure and a highly distributed scientific community of
expertise; and (3) empower and facilitate individual data
stewards and constituent databases to set data acquisition
priorities, curate data, and establish data quality standards
and nomenclatures.
All Neotoma data are free to use through a CC BY 4.0

license. Complete attribution of Neotoma data includes a
reference to the Neotoma Paleoecology Database, constituent
databases where relevant, and references to all original
investigators and publications. An embargo policy has been
developed and included in the Neotoma website, and tech-
nical implementation is underway. See the Neotoma website
(https://www.neotomadb.org/data/category/use) for a full
description of the Neotoma data use policy and for the data
use statements and citation formats for specific constituent
databases.
With respect to governance, key needs include (1) an

extendible, scalable governance structure that is easily open
to new members; (2) effective executive decision making and

responsibility that is bounded by community oversight; and
(3) mechanisms to ensure that Neotoma is curated by a
community of professionals and scientific experts. Here we
briefly summarize the main elements of Neotoma’s govern-
ance (Fig. 3) and data use policies. A full description of
Neotoma governance is described in its bylaws, available at
http://www.neotomadb.org/about/category/governance.
Neotoma is governed by a leadership council (Neotoma

Leadership Council [NLC]) that sets policy and represents
the scientific perspectives of constituent databases and their
data stewards (Fig. 3). Councilors serve for four-year
renewable terms, with one-fourth of the NLC up for
election each year. The council is elected by Neotoma’s
members, who are professional researchers and educators
who contribute to and use Neotoma data and are interested in
helping govern the database. Membership can be requested
by any individual through a simple web form (https://tinyurl.
com/NeotomaMember), and requests are approved by
Neotoma’s Nominations and Membership Working Group,
chaired by Neotoma’s associate chair. Data stewards are
automatically granted Neotoma membership.
The NLC delegates responsibility for day-to-day opera-

tions to an executive team (Fig. 3), consisting of an executive
chair, associate chair, and two other members. All positions
on the executive team serve staggered four-year terms and are
selected from and by the NLC. Other teams within the NLC
include the Education and Outreach Working Group, the
Informatics and Technology Working Group, and the Inter-
national Partnerships Working Group.
Constituent databases are a core concept in Neotoma, and

a mechanism by which scientific data governance is dis-
tributed among the multiple fields of scientific expertise that
Neotoma data embody. (A list of Neotoma’s constituent
databases can be obtained through the Tilia API, https://tilia.
neotomadb.org/retrieve/?method=GetConstituentDatabases,
which returns a JSON object.) All data in Neotoma are
associated with a constituent database, each curated by a
community of data stewards, taxonomic experts, and data
uploaders. Constituent databases are responsible for vetting
and uploading their community’s data to Neotoma, setting
priorities and quality standards for data uploads, managing
taxonomic names, and appointing and training their data
stewards and taxonomic experts. Constituent databases may
develop variants on the standard Neotoma data use policy.
Some constituent databases may be active for a few years
(e.g., during a data mobilization campaign linked to a specific
large-scale synthesis project and research grant). Other con-
stituent databases may be active indefinitely, when indivi-
duals and communities use Neotoma as their platform for
archiving, managing, and sharing data.
Data stewards serve a role analogous to that of editors in a

peer-reviewed scientific journal. Much of the day-to-day
power and responsibility devolves to stewards for ensuring
high-quality data uploads to Neotoma. Data stewards are
authorized to upload data directly to Neotoma within their
constituent database and to modify data within their con-
stituent database. Data stewards often work with one or more
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data processors, often students or other assistants who assist
in the preparation and entry of data into Tilia for eventual
upload to Neotoma. Taxonomic experts are a type of data
steward that can also authorize the addition of names to
Neotoma’s list of accepted taxa names and variables.

NEXT STEPS

New users, contributors, and communities

Neotoma welcomes new members, data contributors, users,
data stewards, and constituent databases. There are many
avenues for participation by interested scientists. One simple
step is to become a Neotoma member (https://tinyurl.com/
NeotomaMember). Scientists interested in contributing their
data to Neotoma should contact a data steward (https://www.
neotomadb.org/data/category/contribution). Research labs
with a lot of data may want to consider steward training for
someone in their lab. Training webinars can be scheduled by
request and are led by current stewards. For scientists inter-
ested in learning how to access and use Neotoma data, we have
posted learning materials online and periodically hold user-
oriented training workshops (see Supplementary Materials).
Research teams interested in building regional- to global-

scale data syntheses, both paleoecological and paleoclimatic,
may find Neotoma useful as a data synthesis platform.
In some cases, these efforts could lead to targeted data
mobilization campaigns, uploads of data to Neotoma, and the
chartering of new constituent databases.
For example, the ANTIGUA project (e.g., Barnosky et al.,

2016) is using Neotoma to store fossil occurrences and age
constraints for South American megafaunal species, with
data sets currently being processed for upload to Neotoma.
The SKOPE project, studying human-environment interac-
tions in the southwestern United States (e.g., Bocinsky and
Kohler, 2014), is using Neotoma as a platform for accessing
paleoecological data and, in the process, discovering data
corrections and additional records for addition to Neotoma.
PalEON, interested in understanding climate-driven vegeta-
tion dynamics over the last 2000 yr, has been discovering
new records for addition to Neotoma and updating age
models as part of its development of the STEPPS pollen-
vegetation model (Dawson et al., 2016; Goring et al., 2016;
Kujawa et al., 2016).

Building partnerships with allied resources

In the paleosciences, a distributed network of data resources
has emerged, each serving a particular suite of data and
research communities: evolutionary biologists, paleoclima-
tologists, archaeologists, sample and core curators, and so
forth. From this perspective, Neotoma is one node among
several in what is emerging as a federated ecosystem of
complementary and allied data resources. The key need is to
interlink these resources through adoption of common

standards and data identifiers, so that scientific users can
easily gather data from multiple sources.
Initial efforts to interlink resources have been supported by

the NSF’s EarthCube program and include the Cyberinfras-
tructure for Paleogeoscience research coordination network
(RCN) and the EarthRates RCN, which have brought together
leaders and users of cyberinfrastructure resources in the
paleogeosciences to identify priorities for developing common
standards and integrative analytical tools. Neotoma belongs to
the EarthCube Council of Data Facilities (https://earthcube.
org/group/council-data-facilities). One outcome of these
collaborations is the Earth Life Consortium (http://earth-
lifeconsortium.org/), which is building easy-to-adopt APIs
that can simultaneously search for data from multiple paleo-
biological data repositories. We are also working with VertNet
(http://vertnet.org/) to send Neotoma data to the Global
Biodiversity Information Facility (GBIF, http://www.gbif.org/).

Adding data to Neotoma

Entering, preparing, and validating data for entry into Neo-
toma requires effort. This effort of data cleaning, validation,
and preparation is not unique to Neotoma, of course, and it
remains the single largest bottleneck to comprehensive
global-scale syntheses of paleoenvironmental data. A great
advantage of putting data into Neotoma is that this effort is
done just once, and then the data are readily available to
multiple groups for multiple data synthesis projects. This
unified effort contrasts with the common ad hoc and ineffi-
cient system in which multiple groups search for, obtain, and
clean the same individual datasets.
Multiple solutions exist to this data ingest barrier, and

Neotoma is exploring them all. One ready-to-go solution is to
crowdsource it, by encouraging and incentivizing individual
scientists to contribute data (e.g., through training work-
shops, recognition of data stewards, and by supporting sci-
entists’ research objectives). Another solution is to further
streamline data input systems that prepare data and metadata
in import-ready formats for Neotoma, at the earliest stages of
scientific workflows (e.g., building customized import soft-
ware for data generated from mass spectrometers or for
microfossil analysts working at microscopes). A third is to
make use of text-mining programs such as GeoDeepDive
(Peters et al., 2014, 2017) for help to discover and bring
online dark data (Heidorn, 2008) and automating the dis-
covery of new papers and the particularly routine parts of data
entry, such as bibliographic citations. We welcome innova-
tion by others in all of these areas.

Scalability and sustainability

Scalability refers to the ability of Neotoma to grow, both with
respect to the size of its data holdings and community of
scientific data contributors and users, whereas sustainability
refers to the ability of Neotoma to persist over time. The two are
closely linked, because in both cases the central solution rests in
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Neotoma as a resource that both supports community research
priorities and is supported by its constituent communities.
With respect to scalability, the key barriers are primarily

social, rather than technological. In particular, potential limits
to scalability include Neotoma’s emphasis on (1) expert
curation to ensure high data quality and utility and
(2) Neotoma’s model of community governance and volun-
tary participation. The former requires both community
crowdsourcing and streamlined support tools for data entry,
validation, and correction, and the latter means that Neotoma
adoption is a voluntary social process, which can be fast or
slow. Neotoma is working on the scalability challenge through
the mechanisms described in the “Governance and Data Use”
and “New Users, Contributors, and Communities” sections.
Sustainability covers multiple dimensions, including

guarantees of the long-term preservation of the data housed
by Neotoma and sustainability of the development efforts
linked to Neotoma. Data sustainability is the easier challenge:
Neotoma ensures long-term data sustainability through
multiple and redundant mechanisms, including partnerships
with multiple organizations and by ensuring that Neotoma
and its constituent databases exist in multiple repositories
(see “Technical Specifications and Software Ecosystem”).
Data sustainability solutions are well developed.
Sustainability of development is the larger challenge.

Neotoma development efforts so far have been primarily
supported by the U.S. NSF. This reliance on a single funding
source is risky, but no clear alternatives yet exist. Ongoing
hosting of Neotoma data and data services is cheap, requiring
just a few servers, and could be maintained indefinitely, in
case of a lapse in funding. The real risk involves sustaining
the community of developers who build and update these
services. Neotoma’s data are complex, and its infrastructure
development relies on individuals with good practical
training in both data sciences and paleosciences. This talent
pool is very small but growing, and recruitment and retention
of this talent remains a persistent challenge.
Community engagement is critical to sustainability

because if Neotoma is closely engaged with its data
contributors and users, and is seen by the scientific commu-
nity as vital cyberinfrastructure that facilitates large-scale
earth system science, then its prospects improve for
continued support, growth, and development. If Neotoma is
not serving this mission, then it will (and should) ultimately
lapse. Our personal view is that funding agencies need to
commit resources to long-term support of mesoscale com-
munity cyberinfrastructure efforts such as Neotoma, as they
do to other forms of physical scientific infrastructure, con-
tingent on satisfactory demonstration that these efforts are
advancing community scientific needs.
One charge for the NLC is to explore multiple funding

sources and business models. Because of Neotoma’s
commitment to open data, there are no plans to charge users
for data access, but other options exist. One is for other
national science agencies to support Neotoma’s data ingest
and development activities, perhaps through the leadership of
individual investigators associated with constituent databases

or new data synthesis efforts. A second is to establish a
voluntary dues model, perhaps through partnership with
professional societies, which traditionally have supported
other forms of scientific knowledge dissemination such as
peer-reviewed journals. A third is to partner with journals by
providing them with a high-quality data archival service that
meets community data standards. A fourth is to partner with
investigators on data mobilization campaigns that as part of
the process include resources for preparing and vetting data
sets for upload to Neotoma. A fifth is to work with home
universities to establish long-term base support for scientific
databases, in line with universities’mission of discovering and
disseminating knowledge, in a role similar to that served by
university presses. All these options are viable, and all are
being explored.
Although recognizing that uncertainties exist, we are

fundamentally optimistic about the long-term persistence,
growth, and evolution of Neotoma. Neotoma, through its
constituent databases, has supported macroscale research for
decades, and it has coalesced and grown organically from the
lab-scale data synthesis efforts of individual investigators, to
the development of relational database systems, and now to
the development of online client-server architectures and the
rise of distributed and networked networks of developers and
scientists. Neotoma originated in direct response to the
scientific objectives of paleoecologists and allied disciplines,
and the general challenge of pursuing broadscale science
with local-scale data. As data volumes grow, both inside
Neotoma (Fig. 6) and outside, community-curated data
resources such as Neotoma are, increasingly, foundational
infrastructure for big data science.

CONCLUSIONS

The Neotoma Paleoecology Database seeks to advance large-
scale paleoecological, biogeographic, and global change
research by providing an open, high-quality, and community-
curated resource for paleoecological and associated
paleoenvironmental data. Sedimentary paleoecological proxy
data are expensive to collect, in time and money; Neotoma
provides a low-cost solution to data sharing and access via a
common platform for many different kinds of paleoecologi-
cal and associated data. High data quality is achieved through
open and distributed scientific governance, based on a dis-
tributed network of expert data stewards and associated
constituent databases. Neotoma is in a growth stage, with
open doors for membership, new data stewards being trained,
development of new functional capabilities, extension of the
data model to additional data types (e.g., organic biomarkers,
stable isotopes), and more data uploaded. At the same time,
much more work remains to be done, given the large volumes
of paleoecological data worldwide that remain dark, trapped
in unstructured publication supplements, spreadsheets on
personal computers, or other inaccessible venues, and at
high risk of permanent loss. We respectfully encourage
other paleoecologists, paleontologists, paleoclimatologists,
archaeologists, and allied disciplines to use Neotoma data
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and software resources as part of their research workflows,
to contribute their paleoecological and associated data
to Neotoma (or other community-curated resources), and to
serve as members, data stewards, taxonomic experts, and on
the leadership council. Such service can advance both
personal research goals for one’s own region, time,
taxonomic group, and questions of interest and broader
community goals of open data and enabling large-scale
science. Gathering, structuring, and sharing our hard-won
data into larger open resources is our community’s big data
challenge; community-curated resources such as Neotoma
are an essential part of our community’s solution.
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