A. Kudo Nagoya Math. J. Vol. 144 (1996), 155–170

ON p-ADIC DEDEKIND SUMS

AICHI KUDO

§1. Introduction

For positive integers h, k and m, the higher-order Dedekind sums are defined by

$$S_{m+1}^{(r)}(h, k) = \sum_{a=0}^{k-1} \bar{B}_{m+1-r}(\frac{a}{k})\bar{B}_r(\frac{ha}{k}), \quad 0 \le r \le m+1,$$

where $\bar{B}_n(x)$, $n \geq 0$, are the Bernoulli functions (§2). If m is odd and (h, k) = 1, the sum $S_{m+1}^{(m)}(h, k)$ is identical with the higher-order Dedekind sum of Apostol [1],

$$s_m(h, k) = \sum_{\alpha=1}^{k-1} \frac{a}{k} \bar{B}_m \left(\frac{ha}{k}\right).$$

Recently, Rosen and Snyder [6] constructed a p-adic continuous function $S_p(s; h, k)$ for an odd prime p, which takes the values

$$S_{p}(m; h, k) = \begin{cases} k^{m} s_{m}(h, k) - p^{m-1} k^{m} s_{m}((p^{-1}h)_{k}, k), & \text{if } (k, p) = 1, \\ k^{m} s_{m}(h, k), & \text{if } k = p, \end{cases}$$

at positive integers m such that $m+1 \equiv 0 \pmod{p-1}$; here $(p^{-1}h)_k$ denotes the integer x such that $0 \le x < k$ and $px \equiv h \pmod{k}$.

The purpose of this paper is to extend this result of them to $k^m S_{m+1}^{(r)}(h, k)$ for every h, k and $r \ge 1$. To this end, we use an expression of $k^m S_{m+1}^{(r)}(h, k)$ in terms of the Euler numbers ([2], [3]) and a p-adic continuous function which interpolates these numbers ([7], [8]).

Let p be a prime number and Z_p the ring of rational p-adic integers. Let e=p-1 or e=2 according as p>2 or p=2. In §§2-3, we shall prove the following

Received February 27, 1989.

THEOREM 1. Let h, k and r be fixed integers ≥ 1 . Then, there exists a continuous function $S_b(s; r, h, k)$ on Z_b , which satisfies

$$S_p(m; r, h, k) = k^m S_{m+1}^{(r)}(h, k) - p^{m-r} k^m S_{m+1}^{(r)}(ph, k)$$

for all integers m such that $m \ge r$ and $m + 1 \equiv 0 \pmod{e}$.

In §4, we shall discuss about a special value and a continuity property of our function $S_b(s; r, h, k)$, assuming that (h, k) = 1.

§2. Preliminaries

Let C_p be the completion of an algebraic closure of the rational p-adic number field Q_p , | the valuation on C_p normalized so that $|p| = p^{-1}$, \mathcal{O} the ring of integers in C_p and Z the ring of rational integers. Throughout, we fix p and consider algebraic numbers to be contained in C_p .

For each root of unity $\rho \neq 1$, we define the numbers $E_n(\rho)$, $n \geq 0$, by

$$\frac{\rho}{e^t - \rho} = \sum_{n=0}^{\infty} E_n(\rho) \frac{t^n}{n!}.$$

Here, $\frac{1-\rho}{\rho}E_n(\rho)=H_n(\rho)$, $n\geq 0$, are the Euler numbers with the parameter ρ .

If ρ satisfies the condition that $\rho^{p^n} \neq 1$, for all $n \geq 0$, we can define a finitely additive \mathcal{O} -valued measure μ_{ρ} on Z_p by

$$\mu_{\rho}(a+p^{N}Z_{p})=\frac{\rho^{p^{N}-a}}{1-\rho^{p^{N}}}, \quad 0 \leq a < p^{N}, \quad N \geq 0.$$

Let Z_{p}^{*} denote the group of units in Z_{p} . We know by [7], [8] that

(1)
$$\int_{Z_{\rho}} x^{n} d\mu_{\rho}(x) = \lim_{N \to \infty} \sum_{a=0}^{\rho^{N-1}} a^{n} \frac{\rho^{\rho^{N-a}}}{1 - \rho^{\rho^{N}}} = E_{n}(\rho), \quad n \ge 0$$

and

(2)
$$\int_{Z_{p}^{*}} x^{n} d\mu_{\rho}(x) = \lim_{N \to \infty} \sum_{a=0}^{p^{N-1}} a^{n} \frac{\rho^{p^{N-a}}}{1 - \rho^{p^{N}}} = E_{n}(\rho) - p^{n} E_{n}(\rho^{p}), \quad n \ge 0,$$

where Σ^* means to take sum over all integers prime to p in the given range.

Let c be an integer > 1 and $E_n(1) = \frac{B_{n+1}}{n+1}$, $n \ge 0$, where B_n , $n \ge 0$, are

the Bernoulli numbers defined by $\frac{t}{e^t-1}=\sum_{n=0}^\infty B_n\frac{t^n}{n!}$. Then, it follows at once from the identity

$$\sum_{\eta^{c}=1} \frac{\rho \eta}{e^{t} - \rho \eta} = \frac{c \rho^{c}}{e^{ct} - \rho^{c}}$$

that

(3)
$$\sum_{n^{c}=1} E_{n}(\rho \eta) = c^{n+1} E_{n}(\rho^{c}), \quad n \ge 0$$

for every root of unity ρ . If $\rho^c = 1$, the formula (3) is equivalent to that

$$\sum_{\eta^{c}=1, \eta \neq 1} E_n(\eta) = (c^{n+1} - 1) \frac{B_{n+1}}{n+1}, \quad n \ge 0.$$

Let $B_n(x)=\sum\limits_{i=0}^n\binom{n}{i}B_ix^{n-i}$, $n\geq 0$, be the Bernoulli polynomials and let $\{x\}$ denote the smallest real number $t\geq 0$ such that $x-t\in Z$, for a real number x. Then we have $\bar{B}_n(x)=B_n(\{x\})$ except for the case n=1 and $x\in Z$ ($\bar{B}_1(x)=0$ for $x\in Z$). Therefore we get without difficulty that

(4)
$$S_{m+1}^{(r)}(h, k) = \sum_{a=0}^{k-1} B_{m+1-r}(\frac{a}{k}) B_r(\{\frac{ha}{k}\}), \quad 1 \le r \le m$$

for all odd integers m (unless r=m=1). If r=m=1, the right hand side of (4) is equal to $S_2^{(1)}(h,k)+\frac{1}{4}$.

Now, by the equality

$$\frac{te^{\{\frac{a}{k}\}t}}{e^{t}-1} = \frac{1}{k} \sum_{\zeta^{k}=1} \left(\sum_{b=0}^{k-1} \frac{te^{\frac{b}{k}t}}{e^{t}-1} \zeta^{-b} \right) \zeta^{a},$$

we have

(5)
$$k^{n}B_{n}\left(\left\{\frac{a}{k}\right\}\right) = n \sum_{\zeta^{k}=1} E_{n-1}\left(\zeta\right) \zeta^{a}, \quad n \geq 1.$$

Therefore we obtain the formula of [2], [3],

(6)
$$k^m S_{m+1}^{(r)}(h, k) = (m+1-r)r \sum_{r=1}^{k} E_{m-r}(\zeta^h) E_{r-1}(\zeta^{-1}), \quad 1 \le r \le m,$$

for all odd m (unless r = m = 1). If r = m = 1, the formula (6) holds for

$$k(S_2^{(1)}(h, k) + \frac{1}{4}).$$

§3. Definition of $S_p(s; r, h, k)$

In this section, we give a proof of Theorem 1 mentioned in introduction. Let h, k and r denote positive integers and ζ a root of unity. Let q = p or q = 4 according as p > 2 or p = 2.

Suppose first that $\zeta^{p^n} \neq 1$ for all $n \geq 0$. Let

(7)
$$G(s; r, \zeta) = \int_{Z_p^*} \omega(x)^{-1} \langle x \rangle^s \frac{1}{x^r} d\mu_{\zeta}(x), \quad s \in Z_p,$$

where ω is the Teichmüller character with conductor q and $\langle x \rangle = \omega(x)^{-1}x$ for $x \in Z_b^*$.

Let \exp and \log denote the *p*-adic exponential and logarithm functions, respectively. Then, since $\langle x \rangle \equiv 1 \pmod{q}$ for $x \in Z_p^*$, $\log \langle x \rangle \equiv 0 \pmod{q}$ and $\langle x \rangle^s = \exp(s \log \langle x \rangle)$. Therefore $G(s; r, \zeta)$ is an analytic function of s in Z_p with an expansion

(8)
$$G(s; r, \zeta) = \sum_{n=0}^{\infty} c_{n,r}(\zeta) (s+1-r)^{n},$$

$$c_{n,r}(\zeta) = \int_{Z_{p}^{*}} \omega^{-r}(x) \frac{(\log \langle x \rangle)^{n}}{n!} \frac{1}{x} d\mu_{\zeta}(x),$$

$$|c_{n,r}(\zeta)| \leq |\frac{q^{n}}{n!}| \leq (q^{-1}p^{\frac{1}{p-1}})^{n}.$$

Now, as e is the order of ω , we have, by (2),

(9)
$$G(m; r, \zeta) = \int_{Z_p^*} x^{m-r} d\mu_{\zeta}(x) = E_{m-r}(\zeta) - p^{m-r} E_{m-r}(\zeta^p)$$

for all integers m such that $m \ge r$ and $m + 1 \equiv 0 \pmod{e}$.

Next, suppose that $\zeta^{p^n}=1$ for some $n\geq 0$. Choose an integer c>1 so that $|c-1|\leq |q|$ and $\zeta^c=\zeta$. Let

$$F_c(s; r, \zeta) = \sum_{\eta^c = 1, \eta \neq 1} G(s; r, \zeta \eta).$$

Then, it follows from (9) and (3) that

$$F_c(m; r, \zeta) = (c^{m+1-r} - 1)(E_{m-1}(\zeta) - p^{m-r}E_{m-r}(\zeta^p))$$

for all $m \ge r$, $m + 1 \equiv 0 \pmod{e}$.

Now, we consider the power series

$$U_{c,r}(s) = \sum_{n=0}^{\infty} B_n \frac{(\log c)^{n-1}}{n!} (s+1-r)^n.$$

Since $|B_n| \le |\frac{1}{p}|$ for all n (by the von Staudt-Clausen Theorem) and $|\frac{(\log c)^{n-1}}{n!}|$ $\le |\frac{q^{n-1}}{n!}|$, this power series defines an analytic function of $s \in Z_p$ and is equal to $\frac{s+1-r}{c^{s+1-r}-1}$ for $s \ne r-1$. Let $G(s\,;\,r,\,\zeta) = \frac{1}{s+1-r} U_{c,r}(s) F_c(s\,;\,r,\,\zeta), \quad \text{for } s \ne r-1,$ $=\frac{1}{c^{s+1-r}-1} F_c(s\,;\,r,\,\zeta).$

Then the value of this function G is independent of the choice of c, and

(10)
$$G(m; r, \zeta) = E_{m-r}(\zeta) - p^{m-r} E_{m-r}(\zeta^{\flat})$$

for all $m \ge r$, $m+1 \equiv 0 \pmod{e}$. We define the function $S_{b}(s; r, h, k)$ by

$$S_p(s; r, h, k) = (s + 1 - r)r \sum_{\zeta^k=1}^{k} G(s; r, \zeta^k) E_{r-1}(\zeta^{-1}),$$

and show that this function $S_p(s; r, h, k)$ satisfies the properties described in Theorem 1

The function S_p is analytic in Z_p and in particular is continuous. Further by (9), (10) and (6) we have

$$S_{p}(m;r,h,k) = (m+1-r)r \sum_{\zeta^{k}=1} (E_{m-r}(\zeta^{h}) - p^{m-r}E_{m-r}(\zeta^{ph}))E_{r-1}(\zeta^{-1})$$

= $k^{m}S_{m+1}^{(r)}(h,k) - p^{m-r}k^{m}S_{m+1}^{(r)}(ph,k)$

for all $m \ge r$, $m + 1 \equiv 0 \pmod{e}$. This completes the proof of Theorem 1.

Let d be a positive integer. Since $S_{m+1}^{(r)}(dh,\,dk)=d^{r-m}S_{m+1}^{(r)}(h,k)$ ([2]), we have

$$S_{p}(m; r, dh, dk) = (dk)^{m} S_{m+1}^{(r)}(dh, dk) - p^{m-r}(dk)^{m} S_{m+1}^{(r)}(pdh, dk)$$
$$= d^{r} k^{m} S_{m+1}^{(r)}(h, k) - p^{m-r} d^{r} k^{m} S_{m+1}^{(r)}(ph, k)$$
$$= d^{r} S_{*}(m; r, h, k)$$

for all $m \ge r$, $m+1 \equiv 0 \pmod{e}$. Hence by analyticity we obtain

$$S_{b}(s; r, dh, dk) = d^{r}S_{b}(s; r, h, k), \quad s \in Z_{b}.$$

Therefore, when we discuss the property of $S_p(s;r,h,k)$, it is sufficient to consider in the case where (h,k)=1. Similarly, if (k,p)>1, we can write the formula of Theorem 1 as

$$S_{p}(m; r, h, k) = k^{m} S_{m+1}^{(r)}(h, k) - k^{m} S_{m+1}^{(r)}(h, kp^{-1}),$$

for m such that $m \ge r$, $m + 1 \equiv 0 \pmod{e}$.

Remark 1. Let (h, k) = 1 and p > 2. Take an integer $h^* > 0$ such that $hh^* \equiv 1 \pmod{k}$. Then by the property $S_{m+1}^{(1)}(h^*, k) = S_{m+1}^{(m)}(h, k)$ of Dedekind sums, it follows that

$$S_{p}(m, 1, h^{*}, k) = \begin{cases} k^{m} s_{m}(h, k) - p^{m-1} k^{m} s_{m}((p^{-1}h)_{k}, k), & \text{if } (k, p) = 1, \\ k^{m} s_{m}(h, k), & \text{if } k = p, \end{cases}$$

for all $m \ge 1$, $m + 1 \equiv 0 \pmod{p-1}$. Therefore the function $S_p(s; 1, h^*, k)$ gives the Rosen-Snyder's $S_p(s; h, k)$.

Remark 2. If p = 2 or 3, then Theorem 1 holds for r = 1 and m = 1, so

$$S_{p}(1;1,h,k) = \begin{cases} k \, s(h,k) - k \, s(ph,k), & \text{if } (k,p) = 1, \\ k \, s(h,k) - k \, s(h,kp^{-1}), & \text{if } (k,p) = p, \end{cases}$$

where $s(h, k) = S_2^{(1)}(h, k)$, (h, k) = 1, denote the ordinary Dedekind sums.

For any integer $\nu \geq 0$, let $p^{\overline{\nu}}$ be the least common multiple of q and p^{ν} . Let $c=1+p^{\overline{\nu}}$. Then the function $S_p(s;r,h,p^{\nu})$ is defined by

(11)
$$S_{p}(s; r, h, p^{\nu}) = U_{c,r}(s) r \sum_{\zeta^{p\nu}=0} F_{c}(s; r, \zeta^{h}) E_{r-1}(\zeta^{-1}).$$

Let (h, k) = 1, k > 1 and let

(12)
$$\bar{S}_{p}(s;r,h,k) = (s+1-r)r \sum_{\zeta^{k}=1,\zeta^{p^{\nu}}\neq 1} G(s;r,\zeta^{h}) E_{r-1}(\zeta^{-1}),$$

where $k = k_0 p^{\nu}$, $(k_0, p) = 1$, and G on the right is the analytic one defined by (7). Then the function $S_p(s; r, h, k)$ is separated as

$$S_{p}(s; r, h, k) = \bar{S}_{p}(s; r, h, k) + S_{p}(s; r, h, p^{\nu}).$$

Finally, if r is odd, then we see from the definition of Dedekind sums that $S_{m+1}^{(r)}(h,1)=S_{m+1}^{(r)}(h,2)=0$ for odd $m\geq r$. Hence it follows from Theorem 1

and the analyticity of S_p that

$$S_h(s;r,h,1) = S_h(s;r,h,2) = 0, \quad s \in Z_h$$

if r is odd.

§4. Properties of $S_p(s; r, h, k)$

It is the purpose of this section to estimate the p-adic absolute values $|a_n|$, $n \ge 0$, of the coefficients of

$$S_{p}(s; r, h, k) = \sum_{n=0}^{\infty} a_{n}(s+1-r)^{n}, \quad a_{n} \in Q_{p},$$

in the case where (h, k) = 1. We write $k = k_0 p^{\nu}$, $(k_0, p) = 1$, $\nu \ge 0$, and consider separately about $S_p(s; r, h, p^{\nu})$ and $\bar{S}_p(s; r, h, k)$. Let $p^{\bar{\nu}}$ denote the least common multiple of q and p^{ν} as before.

LEMMA. Suppose $\zeta^{p^n} \neq 1$ for all $n \geq 0$. Then,

$$\int_{Z_p^*} \omega^{-r}(x) \frac{1}{x} d\mu_{\zeta}(x) = \begin{cases} \log(1-\zeta) - \frac{1}{p} \log(1-\zeta^p), & \text{if } r \equiv 0 \pmod{e}, \\ \frac{\tau(\omega^{-r})}{q} \sum_{a=0}^{q-1} \omega^r(a) \log(1-\zeta\zeta_q^a), & \text{if } r \not\equiv 0 \pmod{e}, \end{cases}$$

where ζ_q is a primitive q-th root of unity, and $\tau(\omega^{-r}) = \sum_{i=0}^{q-1} \omega^{-r}(i) \zeta_q^i$.

Proof. Let f(X) be the unique power series in $\mathcal{O}[[X]]$ such that

$$f(X) \equiv \sum_{a=0}^{p^n-1} \mu_{\zeta}(a+p^n Z_p) (1+X)^a \pmod{P_n(X)}$$

for all $n \geq 0$, where $P_n(X) = (1+X)^{p^n} - 1$. Then it follows immediately from the above congruences that $f(X) = \frac{\zeta}{1+X-\zeta}$. Therefore, we can calculate the value of this integral following the theory of Γ -transform, namely, e.g. along the argument of [5] (pp. 45-48). This completes the proof. The assertion for the case where $r \equiv 0 \pmod{e}$ is obtained also in [9].

Let $c=1+p^{\overline{\nu}}$, and let $F_c(s\,;\,r,\,\zeta)$ and $U_{c,r}(s)$ be the functions defined in §3. In the sequel we write $F^{(\nu)}(s\,;\,r,\,\zeta)$ and $U_r^{(\nu)}(s)$ for the functions F_c and U_c , respectively.

Proposition 1. For each root of unity ζ such that $\zeta^{p^{\nu}} = 1$, let

$$F^{(\nu)}(s;r,\zeta) = \sum_{n=0}^{\infty} b_{n,r}^{(\nu)}(\zeta)(s+1-r)^n, \quad b_{n,r}^{(\nu)}(\zeta) \in C_p.$$

(a) When $r \equiv 0 \pmod{e}$,

$$b_{0,r}^{(\nu)}(\zeta) = \begin{cases} \left(1 - \frac{1}{p}\right) \log c, & \text{if } \zeta = 1, \\ -\frac{1}{p} \log c, & \text{if } \zeta^p = 1, \zeta \neq 1, \\ 0, & \text{otherwise}; \end{cases}$$

(b) when $r \not\equiv 0 \pmod{e}$.

$$b_{0,r}^{(\nu)}(\zeta) = \begin{cases} \frac{\tau(w^{-r})}{q} \, \omega^{r}(i) \log c, & \text{if } \zeta = \zeta_{q}^{-1}, \ (i, p) = 1, \\ 0, & \text{otherwise}; \end{cases}$$

and

(c)
$$b_{n,r}^{(\nu)}(\zeta) = \sum_{a=0}^{p^{\overline{\nu}}-1} \omega^{-r}(a) \zeta^{-a} \left(\frac{(\log a)^n}{n!} + \frac{q^n}{n!} q^{-1} p^{\overline{\nu}} \xi_a^{(n)} \right), \quad n \ge 1,$$

where $\xi_a^{(n)}$ are rational p-adic integers independent of ζ .

Proof. Since

(13)
$$b_{n,r}^{(\nu)}(\zeta) = \sum_{p^c = 1, n \neq 1} \int_{Z_p^*} \omega^{-r}(x) \frac{(\log \langle x \rangle)^n}{n!} \frac{1}{x} d\mu_{\zeta_n}(x), \quad n \geq 0,$$

the assertions (a), (b) for n=0 immediately follow from Lemma and the fact that

$$\sum_{\eta \neq 1} \log (1 - \zeta \eta) = \begin{cases} \log c, & \text{if } \zeta = 1, \\ 0, & \text{if } \zeta \neq 1 \end{cases}$$

for any p^{ν} -th root of unity ζ . Let $n\geq 1$. In order to prove the assertion (c), we write

$$b_{n,r}^{(\nu)}(\zeta) = \sum_{\eta \neq 1} \lim_{N \to \infty} \sum_{a=0}^{p^{\overline{\nu}+N}-1} \omega^{-r}(a) \frac{(\log a)^n}{n!} \frac{1}{a} \frac{(\zeta\eta)^{p^{\overline{\nu}+N}-a}}{1 - (\zeta\eta)^{p^{\overline{\nu}+N}}}$$

$$= \sum_{\eta \neq 1} \lim_{N \to \infty} \sum_{a=0}^{p^{\overline{\nu}-1}} \sum_{b=0}^{p^{N}-1} \omega^{-r}(a) \frac{(\log (a + p^{\overline{\nu}}b))^n}{n!(a + p^{\overline{\nu}}b)} \frac{\zeta^{-a}\eta^{-a}(\eta^{-1})^{p^{N}-b}}{1 - (\eta^{-1})^{p^{N}}}$$

so that

$$b_{n,r}^{(\nu)}(\zeta) = \sum_{a=0}^{p^{\overline{\nu}}-1} \omega^{-r}(a) \zeta^{-a} \sum_{\eta \neq 1} \eta^{a} \int_{Z_{p}} \frac{(\log (a + p^{\overline{\nu}}x))^{n}}{n! (a + p^{\overline{\nu}}x)} d\mu_{\eta}(x), \quad n \geq 1.$$

Since the sum on the right over $\eta \neq 1$ ($\eta^c = 1$) is a rational p-adic integer independent of ζ , it is sufficient to show that this sum is congruent to $\frac{(\log a)^n}{n!}$ modulo $\frac{q^{n-1}}{n!} p^{\overline{\nu}}$, for each a. Now since $\log (a + p^{\overline{\nu}}x) \equiv \log a \pmod{p^{\overline{\nu}}}$, $\frac{1}{a + p^{\overline{\nu}}x} \equiv \frac{1}{a} \pmod{p^{\overline{\nu}}}$ and $\log a \equiv 0 \pmod{q}$, we have

$$\frac{(\log (a+p^{\overline{\nu}}x))^n}{a+p^{\overline{\nu}}x} \equiv \frac{(\log a)^n}{a} \pmod{q^{n-1}p^{\overline{\nu}}}, \quad n \ge 1.$$

On the other hand by making use of (1) and (5), we obtain

$$\sum_{\eta \neq 1} \eta^a \int_{Z_{\bar{p}}} d\mu_{\eta}(x) = \sum_{\eta \neq 1} \eta^a E_0(\eta) = c B_1 \left(\frac{a}{c}\right) - B_1$$
 (because $0 \le a \le p^{\overline{\nu}} - 1 < c$)
$$= a - \frac{p^{\overline{\nu}}}{2} \equiv a \pmod{p^{\overline{\nu}-1}}.$$

Hence

$$\sum_{\eta \neq 1} \eta^a \int_{Z_p} \frac{(\log (a + p^{\overline{\nu}}x))^n}{n! (a + p^{\overline{\nu}}x)} d\mu_{\eta}(x) \equiv \frac{(\log a)^n}{n!} \left(\operatorname{mod} \frac{q^{n-1}}{n!} p^{\overline{\nu}} \right), \quad n \geq 1,$$

as desired. This completes the proof of Proposition 1.

Now, for $\nu \geq 1$, let

$$T_r^{(\nu)}(s) = r \sum_{\zeta^{p\nu}=1} F^{(\nu)}(s; r, \zeta^h) E_{r-1}(\zeta^{-1}),$$

where (h, p) = 1. Then, by (11), we have $S_p(s; r, h, p^{\nu}) = U_r^{(\nu)}(s) T_r^{(\nu)}(s)$.

Let $B_{n,\omega^{-r}}$, $n\geq 0$, denote the generalized Bernoulli numbers for the character ω^{-r} , defined by

$$\sum_{a=0}^{q-1} \frac{\omega^{-r}(a) t e^{at}}{e^{qt} - 1} = \sum_{n=0}^{\infty} B_{n,\omega^{-r}} \frac{t^n}{n!}.$$

Proposition 2. Let $\nu \geq 1$ ($\nu \geq 2$ if p = 2, $r \not\equiv 0 \pmod{e}$) and

$$T_r^{(\nu)}(s) = \sum_{n=0}^{\infty} t_{n,r}^{(\nu)}(s+1-r)^n, \quad t_{n,r}^{(\nu)} \in Q_p.$$

Then,

(a)
$$t_{0,r}^{(\nu)} = \begin{cases} (1 - p^{r-1}) B_r \log c, & \text{if } r \equiv 0 \pmod{e}, \\ \omega^r(h) B_{r,\omega^{-r}} \log c, & \text{if } r \not\equiv 0 \pmod{e} \end{cases}$$

and

(b)
$$t_{n,r}^{(\nu)} \equiv \frac{(\log (1+q))^n}{n!} h^r \sum_{a=0}^{p^{\overline{\nu}}-1} v(a)^n (1+q)^{rv(a)} \left(\mod \frac{q^n}{n!} q^{-1} p^{\overline{\nu}} \right), \quad n \geq 1,$$

where v(a) belongs to Z_p and determined uniquely by $\langle a \rangle = (1+q)^{v(a)}$, for each integer a prime to p.

Proof. By the definition of $T_r^{(\nu)}$, we have

$$t_{n,r}^{(\nu)} = r \sum_{\zeta^{p^{\nu}}=1} b_{n,r}^{(\nu)}(\zeta^h) E_{r-1}(\zeta^{-1}), \quad n \ge 0.$$

(a) Let $r \equiv 0 \pmod{e}$. Then, by Proposition 1(a),

$$t_{0,r}^{(\nu)} = r \sum_{\zeta^{p}=1, \zeta \neq 1} \left(-\frac{1}{p} \log c\right) E_{r-1}(\zeta^{-1}) + r \left(1 - \frac{1}{p}\right) \log c E_{r-1}(1).$$

The right hand side reduces to $(1 - p^{r-1})B_r \log c$ by making use of the formula (3). Next, let $r \neq 0 \pmod{e}$. Then by Proposition 1(b),

$$t_{0,r}^{(\nu)} = r \sum_{i=0}^{q-1} b_{0,r}^{(\nu)}(\zeta_q^{-ih}) E_{r-1}(\zeta_q^i)$$

$$= r \frac{\tau(\omega^{-r})}{q} \omega^r(h) \log c \sum_{i=0}^{q-1} \omega^r(i) E_{r-1}(\zeta_q^i).$$

Now, from the equality

$$\frac{\tau(\omega^{-r})}{q} \sum_{i=0}^{q-1} \omega^{r}(i) \frac{\zeta_{q}^{i}}{e^{t} - \zeta_{r}^{i}} = \sum_{a=0}^{q-1} \frac{\omega^{-r}(a) e^{at}}{e^{qt} - 1}$$

we have

$$\frac{\tau(\omega^{-r})}{q} \sum_{i=0}^{q-1} \omega^{r}(i) \ E_{r-1}(\zeta_q^i) = \frac{1}{r} B_{r,\omega^{-r}}.$$

Hence $t_{0,r}^{(\nu)} = \omega^r(h) B_{r,\omega^{-r}} \log c$, as claimed.

(b) Let $n \ge 1$, then it follows from Proposition 1(c) that

$$t_{n,r}^{(\nu)} = \sum_{a=0}^{p^{\overline{\nu}}-1} \omega^{-r}(a) \left(\frac{(\log a)^n}{n!} + \frac{q^n}{n!} q^{-1} p^{\overline{\nu}} \xi_a^{(n)} \right) r \sum_{r^{p^{\nu}}=1} \zeta^{ha} E_{r-1}(\zeta).$$

By (5) and the von Staudt-Clausen Theorem, we have

$$r\sum_{\zeta}\zeta^{ha}E_{r-1}(\zeta)=p^{\nu r}B_r\Big(\Big\{\frac{ha}{p^{\nu}}\Big\}\Big)\equiv h^ra^r\pmod{p^{\nu-1}},$$

and hence

$$t_{n,r}^{(\nu)} \equiv h^r \sum_{a=0}^{p^{\overline{\nu}-1}} \langle a \rangle^r \frac{(\log a)^n}{n!} \left(\mod \frac{q^n}{n!} q^{-1} p^{\overline{\nu}} \right)$$

=
$$\frac{(\log (1+q))^n}{n!} h^r \sum_{a=0}^{p^{\overline{\nu}-1}} v(a)^n (1+q)^{rv(a)}.$$

This completes the proof of Proposition 2.

Now, let $p^{\nu}>q$, so we write ν for $\bar{\nu}$. Let $A_{\mu}^{(n)}=\sum_{i=0}^{p^{\mu}-1}i^n(1+q)^{ri},\,\mu\geq 1,$ $n\geq 1$. Then,

$$\sum_{a=0}^{p^{\nu}-1} v(a)^{n} (1+q)^{rv(a)} \equiv e A_{\mu}^{(n)} \pmod{p^{\mu}},$$

where $q^{-1}p^{\nu}=p^{\mu}$, $\mu\geq 1$. By induction on μ it follows that

$$A_{\mu}^{(n)} \equiv \begin{cases} p^{\mu} B_n \pmod{p^{\mu}}, & \text{if } p > 2, \\ 0 \pmod{p^{\mu-1}}, & \text{if } p = 2, \end{cases}$$

for all $\mu \geq 1$ and $n \geq 1$. Hence we have

$$\sum_{a=0}^{p^{\nu}-1} v(a)^{n} (1+q)^{rv(a)} \equiv \begin{cases} -q^{-1} p^{\nu} B_{n} \pmod{q^{-1}} p^{\nu}, & \text{if } p > 2, \\ 0 \pmod{q^{-1}} p^{\nu}, & \text{if } p = 2. \end{cases}$$

By Proposition 2(b) and the von Staudt-Clausen Theorem, we therefore obtain

$$(14) \quad t_{1,r}^{(\nu)} \equiv 0 \; (\text{mod } p^{\nu}), \quad t_{n,r}^{(\nu)} \equiv 0 \; (\text{mod } \frac{p^{n-2+\nu}}{n!}), \quad n \ge 2, \qquad \text{if } p > 2, \; \nu \ge 2,$$

(15)
$$t_{n,r}^{(\nu)} \equiv 0 \pmod{\frac{p^n}{n!}}, \quad n \ge 1,$$
 if $p > 2, \nu = 1,$

(16)
$$t_{n,r}^{(\nu)} \equiv 0 \left(\text{mod} \frac{q^{n-1}}{n!} p^{\nu} \right), \quad n \ge 1,$$
 if $p = 2, \nu > 2.$

For p = 2, $0 \le \nu \le 2$, we see, more exactly,

(17)
$$b_{n,r}^{(\nu)}(\zeta) = \sum_{a=0}^{q-1} \omega^{-r}(a) \zeta^{-a} \frac{q^n}{n!} \xi^{(n)}, \quad (\zeta^{2^{\nu}} = 1, \nu \leq 2),$$

where $\xi^{(n)}$ is a 2-adic integer independent of both ζ and a. Indeed, we can see, by a little calculation, that

$$\eta^{3} \int_{Z_{2}} \frac{\left(\log \left(3+4x\right)\right)^{n}}{3+4x} d\mu_{\eta}(x) = \eta^{-1} \int_{Z_{2}} \frac{\left(\log \left(1+4x\right)\right)^{n}}{1+4x} d\mu_{\eta^{-1}}(x),$$

for all $\eta \neq 1$, $\eta^5 = 1$, and hence

$$\xi^{(n)} = \sum_{\eta^{5}=1, \eta \neq 1} \eta \int_{Z_{2}} \frac{(\log (1+qx))^{n}}{q^{n}(1+qx)} d\mu_{\eta}(x).$$

From this expression of $b_{n,r}^{(\nu)}(\zeta)$ we obtain, in the same manner as in the proof of Proposition 2(b),

(18)
$$t_{n,r}^{(\nu)} \equiv 0 \left(\text{mod } \frac{2q^n}{n!} \right), \quad n \ge 1, \quad \text{if } p = 2, \ \nu = 1, 2.$$

By these results obtained above, we can now prove the following

Proposition 3. Let

$$S_{p}(s; r, h, p^{\nu}) = \sum_{n=0}^{\infty} a_{n}(s+1-r)^{n}, \quad a_{n} \in Q_{p},$$

where $\nu \geq 1$ ($\nu \geq 2$ if p = 2, $r \not\equiv 0 \pmod{e}$) and (h, p) = 1. Then,

(a)
$$a_0 = \begin{cases} (1 - p^{r-1})B_r, & \text{if } r \equiv 0 \pmod{e}, \\ \omega^r(h)B_{r,\omega^{-r}}, & \text{if } r \not\equiv 0 \pmod{e}, \end{cases}$$

(b)
$$|a_1| \le 1, |a_n| \le |\frac{p^{n-2}}{n!}|, n \ge 2, \text{ if } p > 2,$$
 $|a_n| \le |\frac{q^{n-1}}{n!}|, n \ge 1,$ if $p = 2.$

In particular,

(c)
$$|S_p(s; r, h, p^{\nu}) - S_p(s'; r, h, p^{\nu})| \le |s - s'|, \quad s, s' \in Z_p.$$

Proof. Let
$$U_r^{(\nu)}(s) = \sum_{n=0}^{\infty} u_n (s+1-r)^n$$
. Then,

(19)
$$u_0 = \frac{1}{\log c} (c = 1 + p^{\overline{\nu}}) \text{ and } |u_n| = |B_n \frac{p^{\overline{\nu}(n-1)}}{n!}|, \quad n \ge 0,$$

so the assertion (a) is obvious from Proposition 2(a). We further know by Proposition 2(a) and the von Staudt-Clausen Theorem for the Bernoulli (resp. generalized Bernoulli) numbers, that $|t_{0,r}^{(\nu)}| = |p^{\overline{\nu}-1}|$. Thus, the assertion (b) follows from (14)-(16), (18) and (19), by taking the power series product of $U_r^{(\nu)}$ and $T_r^{(\nu)}$. The last assertion (c) is an immediate consequence of the fact that $|a_n| \le 1$ for all $n \ge 1$. This completes the proof of Proposition 3.

PROPOSITION 4. Let (h, k) = 1 and k > 1. Then, for $\bar{S}_p(s; r, h, k)$, we have

$$\bar{S}_p(s;r,h,k) = \sum_{n=1}^{\infty} \bar{a}_n(s+1-r)^n, |\bar{a}_n| \le |r \frac{q^{n-1}}{(n-1)!}|, n \ge 1,$$

and hence

$$|\bar{S}_{b}(s; r, h, k) - \bar{S}_{b}(s'; r, h, k)| \le |r| |s - s'|, \quad s, s' \in Z_{b}.$$

Moreover, if p=2 and r>1, we see $|\bar{a}_n|\leq |2r\frac{q^{n-1}}{(n-1)!}|$, $n\geq 1$, and

$$|\bar{S}_2(s;r,h,k) - \bar{S}_2(s';r,h,k)| \le |2r||s-s'|, s, s' \in Z_2.$$

Proof. Recalling that $(1-\zeta)^{n+1}E_n(\zeta)\in Z[\zeta]$, $n\geq 0$, we have $|E_n(\zeta)|\leq 1$, if $|\zeta-1|=1$. Let $k=k_0p^{\nu}$, $(k_0,p)=1$. Then by the definition (12) of \bar{S}_p ,

$$\bar{a}_n = r \sum_{\zeta^k = 1, \zeta^{p^{\nu}} \neq 1} c_{n-1,r}(\zeta^h) E_{r-1}(\zeta^{-1}), \quad n \ge 1.$$

Hence, by (8), the first half of this proposition is obvious.

Now, in general, it follows from the definition of $E_n(\zeta)$ that

(20)
$$E_0(\zeta^{-1}) = -E_0(\zeta) - 1; \quad E_{r-1}(\zeta^{-1}) = (-1)^r E_{r-1}(\zeta), \ r > 1,$$

for every root of unity ζ . On the other hand, we can see by a little calculation that

(21)
$$c_{n,r}(\zeta^{-1}) = (-1)^r c_{n,r}(\zeta), \quad n \ge 0, \quad r \ge 1,$$

for all ζ , $|\zeta - 1| = 1$. Let p = 2 and r > 1. Then, by cupling the terms for ζ and ζ^{-1} in the above expression of \bar{a}_n (note that $\zeta \neq \zeta^{-1}$), we get the second half. This completes the proof of Proposition 4.

Since $S_p(s;r,h,1)=0$ for r odd (§3), $\bar{S}_p(s;r,h,k)=S_p(s;r,h,k)$ if (h,k)=(k,p)=1 and $r\not\equiv 0 \pmod 2$. In this case, Proposition 4 describes the property of $S_p(s;r,h,k)$. For r even, we obtain the following

PROPOSITION 5. For even positive integer r, let

$$S_p(s; r, h, 1) = \sum_{n=0}^{\infty} a'_n(s+1-r)^n, \quad a'_n \in Q_p.$$

Then,

$$a'_{0} = \left\{ \left(1 - \frac{1}{p} \right) B_{r}, & \text{if } r \equiv 0 \pmod{e}, \\ 0, & \text{if } r \equiv 0 \pmod{e}, \\ |a'_{1}| \leq |\frac{1}{p}|, & |a'_{n}| \leq |\frac{p^{n-3}}{n!}|, & n \geq 2, & \text{if } p > 2, r \equiv 0 \pmod{e}, \\ |a'_{1}| \leq |r|, & |a'_{n}| \leq |\frac{rp^{n-2}}{n!}|, & n \geq 2, & \text{if } p > 2, r \equiv 0 \pmod{e}, \\ |a'_{1}| \leq |\frac{1}{p}|, & |a'_{n}| \leq |\frac{2q^{n-2}}{n!}|, & n \geq 2, & \text{if } p = 2. \end{cases}$$

Proof. By (11), we obtain

$$S_p(s; r, h, 1) = U_r^{(0)}(s) F^{(0)}(s; r, 1) B_r$$

If we let $F^{(0)}(s; r, 1) = \sum_{n=0}^{\infty} b_{n,r}^{(0)}(s+1-r)^n$, then Proposition 1(a)(b), (13) and (17) lead, respectively, to

$$b_{0,r}^{(0)} = \left\{ \begin{pmatrix} 1 - \frac{1}{p} \end{pmatrix} \log (1 + q) & \text{if } r \equiv 0 \pmod{e}, \\ 0, & \text{if } r \not\equiv 0 \pmod{e}, \\ b_{n,r}^{(0)} \equiv 0 \pmod{\frac{p^n}{n!}}, \ n \ge 1, & \text{if } p > 2, \\ b_{n,r}^{(0)} = \frac{2q^n}{n!} \xi^{(n)} \equiv 0 \pmod{\frac{2q^n}{n!}}, \ n \ge 1, & \text{if } p = 2. \end{cases}$$

On the other hand if we let $U_r^{(0)}$ (s) $=\sum_{n=0}^\infty u_n (s+1-r)^n$, then

$$u_0 = \frac{1}{\log (1+q)}, \quad |u_n| = |B_n \frac{q^{n-1}}{n!}|, \quad n \ge 1.$$

Since, moreover, $|\frac{B_n}{n}| \le 1$ if $1 < n \ne 0 \pmod{e}$ and $|B_n| = |\frac{1}{p}|$ if $0 < n \equiv 0 \pmod{e}$, in the same manner as in the proof of Proposition 3, the result follows.

THEOREM 2. Suppose that
$$(h, k) = 1$$
 and $(k, p) > 1$.
(a) If $p = 2$, $k = 2k_0$, $(k_0, 2) = 1$ and $r \not\equiv 0 \pmod{e}$, then

$$S_2(r-1; r, h, k) = 0,$$

 $|S_2(s; r, h, k) - S_2(s'; r, h, k)| \le |q| |s-s'|, s, s' \in Z_2.$

(b) Otherwise,

$$S_{p}(r-1; r, h, k) = \begin{cases} (1-p^{r-1})B_{r}, & \text{if } r \equiv 0 \pmod{e}, \\ \omega^{r}(h)B_{r,\omega^{-r}}, & \text{if } r \not\equiv 0 \pmod{e}, \end{cases}$$
$$|S_{p}(s; r, h, k) - S_{p}(s'; r, h, k)| \leq |s-s'|, \quad s, s' \in Z_{p}.$$

Proof. Let p=2 and $r\not\equiv 0 \pmod 2$. Since $S_2(s;r,h,2)=0$, the function $S_2(s;r,h,2k_0)=\bar{S}_2(s;r,h,2k_0)$ has the expansion

$$S_2(s; r, h, 2k_0) = \sum_{n=1}^{\infty} a_n (s+1-r)^n, \quad a_n = r \sum_{\zeta^k=1, \zeta^2 \neq 1} c_{n-1,r}(\zeta^k) E_{r-1}(\zeta^{-1}).$$

Now, since

$$\mu_{-\zeta}(a+2^{N}Z_{2})=rac{(-\zeta)^{2^{N}-a}}{1-(-\zeta)^{2^{N}}}=-\mu_{\zeta}(a+2^{N}Z_{2}),\ 0\leq a<2^{N},\ (a,\ 2)=1,$$

we have $d\mu_{-\zeta}(x) = -d\mu_{\zeta}(x)$, $x \in \mathbb{Z}_2^*$, so that

$$c_{n,r}(-\zeta) = -c_{n,r}(\zeta), \quad n \ge 0, \quad r \ge 1.$$

Hence

$$a_n = r \sum_{\zeta^k_{0=1,\zeta \neq 1}} c_{n-1,r}(\zeta^h) (E_{r-1}(\zeta^{-1}) - E_{r-1}(-\zeta^{-1})), \quad n \geq 1.$$

Write $d_n(\zeta)$, $\zeta \neq 1$, for the summand on the right. Then, since

$$E_{r-1}(\zeta^{-1}) - E_{r-1}(-\zeta^{-1}) = 2^r E_{r-1}(\zeta^{-2}) - 2 E_{r-1}(-\zeta^{-1}) \equiv 0 \pmod{2},$$

we have $|d_n(\zeta)| \leq |\frac{2q^{n-1}}{(n-1)!}|$. On the other hand, it follows from (20) and (21) that $d_n(\zeta) = d_n(\zeta^{-1})$. Now the order of ζ is odd (\neq 1), so clearly $\zeta \neq \zeta^{-1}$. Hence we have

$$|a_n| \le |\frac{q^n}{(n-1)!}| \le |q|, \quad n \ge 1.$$

Therefore the assertion (a) is proved. The assertion (b) is obvious from Propositions 3 and 4. This completes the proof of Theorem 2.

Since $S_p(s;r,h,k) = \bar{S}_p(s;r,h,k) + S_p(s;r,h,1)$ if (k,p) = 1, we similarly obtain from Propositions 4 and 5 the following

THEOREM 3. Suppose that (h, k) = 1 and (k, p) = 1.

(a) If $r \equiv 0 \pmod{e}$, then

$$S_{p}(r-1; r, h, k) = \left(1 - \frac{1}{p}\right) B_{r},$$

$$|S_{p}(s; r, h, k) - S_{p}(s'; r, h, k)| \le |\frac{1}{p}| |s - s'|, \quad s, s' \in Z_{p}.$$

(b) If $r \not\equiv 0 \pmod{e}$, then

$$\begin{split} S_{p}(r-1\,;\,r,\,h,\,k) &= 0, \\ \mid S_{p}(s\,;\,r,\,h,\,k) - S_{p}(s'\,;\,r,\,h,\,k) \mid \, \leq \, \mid \, r \, \mid \, \mid \, s-s' \, \mid, \quad s,\,s' \in Z_{p}. \\ & (\leq \, \mid \, 2r \, \mid \, \mid \, s-s' \, \mid \, if\,\, p=2,\,\,r>1). \end{split}$$

REFERENCES

- [1] T. M. Apostol, Generalized Dedekind sums and transformation formulae of certain Lambert series, Duke Math. J., 17 (1950), 147-157.
- [2] L. Carlitz, Some theorems on generalized Dedekind sums, Pacific J. Math., 3 (1953), 513-522.
- [3] H. Lang, Über Anwendungen höherer Dedekindscher Summen auf die Struktur elementar-arithmetischer Klassenivarianten reell-quadratischer Zahlkörper, J. reine angew. Math., **254** (1972), 17-32.
- [4] S. Lang, Cyclotomic fields, Springer-Verlag, New York, 1978.
- [5] S. Lang, Cyclotomic fields II, Springer-Verlag, New York, 1980.
- [6] K. H. Rosen and W. M. Snyder, p-adic Dedekind sums, J. reine angew. Math., 361 (1985), 23-26.
- [7] K. Shiratani, On Euler numbers, Mem. Fac. Sci., Kyushu Univ., 27 (1973), 1–5.
- [8] K. Shiratani and S. Yamamoto, On a p-adic interpolation function for the Euler numbers and its derivatives, Mem. Fac. Sci., Kyushu Univ., 39 (1985), 113-125.
- [9] T. Uehara, On p-adic continuous functions determined by the Euler numbers, Rep. Fac. Sci. Engrg., Saga Univ., 8 (1980), 1-8.

Department of Mathematics Faculty of Liberal Arts Nagasaki University Bunkyo-machi, Nagasaki 852 Japan