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IMMERSIONS AND EMBEDDINGS UP TO COBORDISM 

RICHARD L. W. BROWN 

In 1944 Whitney proved that any differentiable ^-manifold (n ^ 2) can 
be (differentiably) immersed in R2"-1 [15] and embedded in R2n [14]. Whitney's 
results are best possible when n = 2 r. (One uses a simple argument involving 
the dual Stief el-Whitney classes of real projective space Pn. See [9, pp. 14, 15].) 
However, there is a widely known conjecture that any ^-manifold (w ^ 2) 
immerses in R2W-«W and embeds in R2w-«w+i. Here, a(n) denotes the number 
of ones in the binary expansion of n. We prove (Theorem 5.1) that every 
compact manifold is cobordant to a manifold that immerses in (2n — a(n))~ 
space and embeds in (2n — a(n) + 1)-space. (See § 1 for the definition of 
cobordant manifolds.) It is well known that if the conjecture were true it 
would be the best possible result. (See Proposition 5.2.) We show that, for 
n 9^ 3, our result is also best possible. If conditions involving the vanishing 
of certain Stiefel-Whitney numbers are placed on the manifold, then it is 
possible to improve the dimensions of Theorem 5.1. These results are given 
in § 6. An announcement of our theorems has appeared in [1]. 

The method of proof is to construct enough manifolds, each satisfying the 
required Immersion and embedding condition, to generate all of the cobordism 
ring. This is carried out in §§ 2, 3, and 4, with proofs of some technical results 
postponed to § 7. 

1. The cobordism ring. By an w-manifold we mean a compact, not neces
sarily connected, differentiable ^-manifold. We denote the boundary of V by 
d V and say that V is closed if d V = $. Two closed ^-manifolds Min and M2

n 

are said to be cobordant if there is an (n + 1)-manifold V such that d V is 
diffeomorphic to the disjoint union M\ \J M2

n. A comprehensive reference 
on cobordism is Stong's notes [12]. The relation of cobordism is an equivalence 
relation on the class of closed ^-manifolds, and Mn = d V, for some V, if and 
only if Mn is cobordant to the ^-sphere Sn. In this case, Mn U <f> = dV and 
we allow the empty manifold as a representative of the cobordism class of Sn. 
We denote the set of cobordism classes of ^-manifolds by 3tn. Disjoint union 
induces an addition in 9tn, [0] = [Sn] serves as the zero element, and, because 
MKJ M ••= d(M X [0, 1]), every element is its own inverse. Hence, 9lre is a 
vector space over the field with two elements, Z2. Cartesian product induces 
a multiplication 9ln 0 9̂ m —> 3ln+m which makes 5ft* = ©JliS^ into a graded 
Z2-algebra. Thorn [13, Théorème IV. 12, p. 79] proved that 9Î* is a polynomial 
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algebra over Z2 with one generator in each dimension, not of the form 2* — 1. 
Thus, W* = Z2[x2, X4j «v5> *^6> *^8> • • 

.] and, for example, a basis for Sfte IS | X Q , X2X41. 

To determine the cobordism class of a given manifold one uses Stiefel-
Whitney numbers. We denote the tangent bundle of Mn by rMn. This bundle 
is classified by a map r\Mn —» BO(n), where BO(n) is the classifying space for 
vector bundles of fibre dimension n. The cohomology ring H*(BO(n)) is the 
polynomial algebra Z2[wi, . . . , wn], where wt Ç H^BOin)). (All our homology 
will have Z2 coefficients.) The Stief el-Whitney classes of Mn are defined by 
w.(Mn) = T*(wt), and we let w(Mn) = 1 + wx{Mn) + . . . + wn(M

n). The 
dual Stiefel-Whitney classes are defined by w(M) • w(M) = 1 and w(M) = 
1 + Wi(M) + . . . + wn(M). Given a polynomial of dimension n in the 
Stiefel-Whitney classes of TkP, we can evaluate the polynomial on the funda
mental homology class to get an element of Z2 called a Stiefel-Whitney number. 
The Stiefel-Whitney numbers form a complete set of invariants of the cobord
ism class of Mn. We say that a manifold is indecomposable if its cobordism 
class is not in the span of the image of the multiplication map ?R* <2) 5R* —> 5ft*. 
Thorn [13, p. 79] showed that Mn is indecomposable if and only if a certain 
Stiefel-Whitney number is nonzero: consider Wi(Mn) as the ith elementary 
symmetric function on one dimensional variables h, . . . , tn+kl express the 
symmetric function S?4i* hn a s a polynomial S(n) (M

n) in the w/s, and evaluate 
S(n)(M

n) on the fundamental homology class. (See also [3, pp. 32 and 33; 
9, Coronary 4, p. 93; 12, pp. 71 and 96].) Thorn showed that real projective 
spaces of even dimension are indecomposable and Dold [3] constructed 
indecomposable manifolds of all dimensions not of the form 2* — 1. We will 
show how to construct such a complete set of generators of 31* with the 
property that each indecomposable manifold embeds and immerses nicely. 
The main theorems follow easily once this is done. 

2. Embedding and immersing products. An immersion of Mn in Rn+k 

is a differentiate function / : Mn —> Rn+k such that at each x 6 Mn the map 
df: TxM

n —» Tf^X)Kn+k is injective. An embedding is a 1 — 1 immersion. It is 
a result of Whitney [14; 15] that any Mn embeds in R2n and immerses in 
R2W_1. Also, any two immersions of Mn in R2W+1 are nomotopic through 
immersions. (See [5, Theorem 8.4, p. 275].) Given an immersion of Mm in Ks 

and an immersion of Nn in R* there is the product immersion of Mm X Nn in 
Rs+t. If s ^ 2m — a{m) and t ^ 2n — a(n), then s + t ^ 2(m + n) — 
aim + n) because aim + n) ^ aim) + a(n). We could also take the product 
embedding of two embeddings, but this will usually not suffice. Hence, we 
need the following simple result. (See [11, p. 319].) 

LEMMA 2.1. / / Mm immerses in R5, Nn embeds in R\ and s + t ^ 2m + 1, 
then Mm X Nn embeds in Rs+*. 

Proof. We can immerse Mm in Rs+t and the normal bundle will have t 
linearly independent sections. Because s + t ^ 2m + 1, this immersion is 
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nomotopic through immersions to an embedding. The embedding has the 
same normal bundle which can be realized in RS_M as a tubular neighbourhood. 
Because of the t sections, the tubular neighbourhood contains Mm X R', 
and hence Mm X Nn. This proves the lemma. (For example, the standard 
embedding of Sl in R2 gives a product embedding of the torus S1 X S1 in R4. 
But actually S1 X R embeds in R2, so S1 X R2 D S1 X S1 embeds in 
R2 X R = R 3 ) 

An immersion of Mn in R2n~k is said to have efficiency k. 

COROLLARY 2.2. The cartesian product of k manifolds {not all of dimension one) 
immerses with efficiency at least k and embeds with efficiency at least k — 1. 

Proof. For k = 1, the result is just Whitney's theorems. Assume that it is 
true for k — 1 and consider a product of manifolds of dimensions 
mi ^ m2 ^ . . . ^ mk, where m± ̂  1 and mk > 1. We can immerse the 
product of the last k — 1 factors with efficiency k — 1 and embed it with 
efficiency k — 2. li mi > 1, we can immerse the first manifold with efficiency 
one, then take the product immersion or apply Lemma 2.1 to complete the 
proof. If mi = 1, the first manifold is 51 . Let m2 + . . . + mk = m. We can 
embed S1 X R in R2 and hence we can embed S1 X R2m~(k-u in R2+2«- (*-D-I = 
j(2(m+i)-*t Because the product of the last k — 1 factors can be immersed in 
R2W~*+1, the complete product can be immersed with efficiency k. The argu
ment for the embedding of efficiency ^ — 1 is similar. 

3. Even dimensional generators. Our even dimensional generators of 
yi* will be submanifolds of products of projective spaces similar to manifolds 
constructed by Milnor. (See [12, pp. 80, 81].) Let w b e a positive even integer. 
If a(n) — 1, let Vn = Pn, where Pn denotes real projective w-space. If 
a(n) > 1, let n = r± + . . . + Tk be the expansion of n as a sum of distinct 
powers of 2. Let 

Kn+1 = JJ p ^ 
3=1 

where Sj = r jt for 1 ^ j ^ k — 1, and sk — rk + 1. The cohomology ring of 
Pn is Z2[a]/(an+1), where a G Hl(Pn). Hence, 

H*(Kn+1) = Z2[ a i , . . . , a , ] / ( a i
s l + 1 , . . . , ak

sk+1). 

There is a submanifold Vn C i^w+1 dual to the cohomology class 
o" = «i + • • • + oik. By this we mean that the inclusion i: Vn —» i^w+1 sends the 
fundamental homology class (Fw) G i7w(Fw) to the Poincaré dual of a. (See 
[13, p. 55; 12, pp. 78-81].) 

PROPOSITION 3.1. Vn immerses in R2n-«w> and em0eds in R2B_iaW+1. 

Proof. If a(w) = 1, this is a special case of the Whitney theorems. If 
a(n) > 1, it is sufficient to prove the statement for Kn+1. Sanderson [10, 
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Theorem 4.1, p. 146, and Theorem 5.3, p. 150] has proved that Pn immerses in 
R2W~3 if n is odd, n ^ 5. Applying this to PSk, and immersing the other factors 
with efficiency one, gives an immersion of Kn+1 in R2(«+D-(*-i+3) = R2w-a(»)̂  
For the embedding, first use Lemma 2.1 to embed the product of the first 
k — 1 factors with efficiency k — 2. Then apply Lemma 2.1 again using the 
efficiency three immersion of PSk to embed Kn+1 in R2*-«w+i. (The first k — 1 
factors need at least 4-space, so Lemma 2.1 does apply.) 

PROPOSITION 3.2. [Vn] is an indecomposable element of ÏÏI*. 

Proof. If a(n) = 1, Vn = Pn. Now, w(Pn) = (1 + a)n+\ so s{n){Pn) = 
(n + l)an. Hence, (s(n)(P

n), (Pn)) = n + 1. Here, n is even so this Stiefel-
Whitney number is nonzero, and [Vn] is indecomposable. 

Let a(n) > 1. (Compare [12, pp. 79, 80].) Let v be the normal line bundle of 
yn j n Kn+K T h e n w(v) = i*(i + «,.). N o w > i-iTKn+l = r P 0 ?, so 

w(7w)*'*(l + <r) = i*w(i^w+1), and w(Vn) = i*(l + <r)-1w(Xn+1). The total 
Stiefel-Whitney class of Kn+1 is the product of the total Stiefel-Whitney 
classes of its factors. Hence, 

w{V) = »*(i+CYI n a+«, )" + i . 
If 2r > n + 1, then 

(1 + a)2'-1 = (1 + 0 ( 1 + «O"1 = (1 + «0"1, 
so the above formula expresses Wj(Vn) as the j th elementary symmetric 
function of 1-dimensional elements. In forming Yil=i hn> recall that a/1 = 0 
because n > sjt Hence, 

(S(n)(V*), (Vn)) = <i*(2' - l)o» (Vn)) 
= (i*an, (Vn)) 

= ((T^1, (i£W+1)>. 

The relations satisfied by the ctj imply that 

an+i = ( t t l + . . . + ajt)«+i = {Su . . . ? 5 i k } a i . i . . . . . akn9 

where {si, . . . , sk} denotes the multinomial coefficient 

(s1 + . . . + sk)l/(s1l)'...'(skl). 

To prove Vn is indecomposable, it is sufficient to prove that {si, . . . , sk] is 
nonzero modulo 2. This is an immediate consequence of the following result. 

LEMMA 3.3. \n\, . . . , nk) = 1 (mod 2) if and only if the binary expansions 
of fiit . . . , nk inter mesh in the sense that no two of them have a 1 in the same 
place. (Equivalently, a(tii + . . . + nk) = a(ni) + . . . + a(nk).) 
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Proof, For any prime p, there is a well known formula for binomial coeffi
cients: 

(:)-ûfe) a-». 
where a = ]T*U dtp*, b = X/-o &<£'. Thus, 

= 1 (mod 2) 

if and only if bt = 1 implies that at = 1, for all i. Now, 

and the lemma follows easily for k = 2. The general case follows by induction 
from the formula 

{ni, . . . , » * } = {»i + . . . + % - i , w*} {nu . . . , ^ _ i } . 

4. Odd dimensional generators. Dold [3] constructed odd dimensional 
generators of Sft* as follows. Let P(tn,n) be the (m + 2w)-manifold formed 
from the product Sm X Pn(C) of the w-sphere with complex projective 
w-space by identifying (u, z) with ( — u,z). If n is odd and not of the form 
2k — 1, we can write uniquely n = 2r(2s + 1) — 1 (r > 0, s > 0), and Dold 
proved that P(2r — 1, 2rs) is indecomposable. We make a similar con
struction. 

For a space X and a positive integer m let P(m,X) be formed from 
5™ X X X X by identifying (u, x, 3/) with ( — u,y,x). U X is an w-manifold, 
then P(m, X) is an (ra + 2w)-manifold. In § 7, we will show that [P(m, Pn)] = 
[P(m, n)'\. However, we will need a more general choice of X, and in § 7 we 
will prove the following result. 

PROPOSITION 4.1. [P(m, Mk)] is indecomposable in 9Î* if and only if [Mn] is 
indecomposable in 9Î* and the binomial coefficient {m — 1, n) is nonzero modulo 2. 

Let n be odd and not of the form 2k - 1. Let n = 2r(2s + 1) - 1 
(r > 0,s > 0), and let a = 2r - 1, b = 2rs. 

COROLLARY 4.2. Vn = P(a, Vb) determines an indecomposable element in 9Î*. 

Proof. Because b is even, Vb has been defined and [Vb] is indecomposable by 
Proposition 3.2. Also, {2r — 1, 2rs] is nonzero modulo 2 by Lemma 3.3. 
Hence, [Vn] is indecomposable by Proposition 4.1. 

To find embeddings and immersions of the manifolds P(a, Vb)f we can 
make use of our embeddings and immersions of the manifolds Vb. An immer
sion (embedding) of Vb in R s induces an immersion (embedding) of P(a, Vb) 
i n P ( a , R s ) . 

C 
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PROPOSITION 4.3. P(m, R*) is the total space of the bundle kym © ke where 
ymj e are, respectively, the canonical line bundle and trivial line bundle over Pm. 

Proof. Define g:Sm X Rk XRk-> Sm X Rk X Rk by 

g(u, x, y) = (u, x - y, x + y). 

If, in the domain of g, we identify (u, xt y) with ( — u,y, x) and, in the range 
of g, we identify (u, xty) with ( — u, —x,y)> then g induces a homeomorphism 
between these quotient spaces. But the first is P(m, R*) and the second is the 
total space of kym © ke. 

In order to apply Proposition 4.3, we must be able to immerse and embed 
sums of line bundles over real projective spaces. We will use the following 
result of Mahowald and Milgram [8, Theorem 4.1, p. 418]. 

THEOREM 4.4 (Mahowald and Milgram). Let p and q be odd and let 
wi = p + q + 1. Then the total space of (p + l)yq immerses in Euclidean space 
of dimension 2q + P + 1 — a(m) + oc(p + 1) — k(p,m). 

Here, k(p,m) = min(&(£), k(m)) and k(t) depends on the congruence 
class of t modulo 8 as follows: k(t) = 0 if t = 1(8), k(t) = 1 if t = 3 or 5 (8), 
k(t) = 4 if t = 7(8). 

PROPOSITION 4.5. Vn = P(a, Vb) immerses in R2n-«w and embeds in 
R2n-«(«)+l> 

Proof. We will show the existence of the embedding stated above. The 
immersion is obtained by a similar but somewhat easier argument. 

By Proposition 3.1, Vb embeds in R*b-<*(V+\ Thus, by Proposition 4.3, 
P(a, Vh) embeds in the total space of the bundle (26 — a(b) + 1)(Y« © e). 
We first apply Theorem 4.4 to 26ya with 26 = p + 1, q = a, and m = a + 26 = 
2 r — 1 + 2r+1s. Hence, aim) — a(p + 1) — r, and, certainly, k(p, m) ^ 0. 
We therefore obtain an immersion of 26ya in R2a+2&-r. We can consider this 
as an immersion of Pa in ^a+2b~T with normal bundle containing 26ya as a 
sub-bundle. Because 2a + 26 — r è 2a + 1, this immersion is homotopic 
through immersions to an embedding, and a tubular neighbourhood of the 
embedding contains the total space of 26ya. Now we can take the product with 
R26-«(ô)+i t o obtain an embedding of 2bya © (26 - a(b) + l)e in 
R2a+4&-a(&)-r+i> Because 26 ^ 26 - a(6) + 1, this bundle contains 

( 2 6 - a ( 6 ) + l ) (Y«0 e). 

Also, 2a + 46 — (r + a(b)) + 1 = 2n — a(n) + 1, so we have found the 
required embedding of P(a, Vb). 

5. The main theorem. We are now ready to prove our main result. 

THEOREM h A. Any Mn is cobordant to a manifold that immerses with efficiency 
a(n) and embeds with efficiency a{n) — 1. 
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Proof. The manifolds Vn constructed in §§ 3 and 4 generate the cobordism 
ring 5ft*. Thus, any Mn is cobordant to a disjoint union of products of the Vk. 
As noted at the beginning of § 2, we can take the product of the immersions 
given by Propositions 3.1 and 4.5 to obtain an immersion of each product in 
R2w~a(7î). Similarly, we can apply Lemma 2.1 to embed each product in 
R2«-a(n)+iB ( j n Lemma 2.1, if m ^ n then s + / ^ 2m + 1. Thus, we can 
embed the factor of largest dimension and then immerse the other factors 
and apply Lemma 2.1 repeatedly.) Finally, we can take the disjoint union 
of our immersions or embeddings in an obvious way. This completes the proof 
of Theorem 5.1. 

We will now show that for n ^ 3, Theorem 1 is the best possible result. 
Let n = Y\ + • • • + ?k be the dyadic expansion of » as a sum of distinct 
powers of 2 and let 

An= fl Pr\ 
i=l 

PROPOSITION 5.2. The manifold An does not immerse in R2w-«w-i and does 
not embed in R2W-«(W). If % is even, no manifold cobordant to An immerses in 
R2n-*(n)-i or embeds {n R2»Hn(»)f 

Proof. A necessary condition for Mn to immerse in R27*-*-* or embed in 
R2n~k is that Wi(M*) = 0, for i ^ n - k. (See [9, Theorem 4, p. 13, Theorem 
14, p. 44].) Now, 

w(An) = n u+a*)-"-1 

= Il (l+aOri-\ 

because rt is a power of 2 and at
s = 0, for s > rt. Hence, 

wn.a(n)(A
n) = n «z*"1 

This proves the first assertion of the proposition. 
Note that if n is odd, the first factor in An is P1 = S1 which is a boundary. 

Hence, An is a boundary if n is odd. Assume that n is even. Then wa(n) (M
n) = 

«i • . . . • ak plus other terms, where the other terms are each of degree greater 
than one in some ctj. Hence, 

k 

wa(n)wn..a(n) (M
n) = n «iri 

^o, 
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and the corresponding Stiefel-Whitney number is nonzero. Thus, every 
manifold cobordant to An has wn-a{n) ^ 0, and the second assertion is proved. 

Now let n be odd, n > 3. Let the dyadic expansion of n be 

n = 1 + ri + . . . + rk. 

(Thus, a(n) — k + 1.) For each i (1 ^ i ^ k) such that rt 9e 2, define a 
manifold Bt* = P ( l , P s ) X 4 ', where s = ^r{ said t = n - (rt + 1). In § 7 
we study the Stiefel-Whitney classes of P(m, ikP) and prove the following 
result. 

PROPOSITION 5.3. No manifold cobordant to B-1 immerses in R2w-«(w)-i or 

embeds in R2«-«w. 

6. Vanishing Stiefel-Whitney n u m b e r s . A necessary condition for Mn 

to be cobordant to a manifold that immerses in R27*-*-1 or embeds in R2W-* 
is that all Stiefel-Whitney numbers involving wn-u for 0 S i S k, should 
vanish. We will now show that this condition is sometimes also sufficient. 

First, we will define some new generators Wn of 9̂ *. If n is odd (and 
n 7* 2* - 1), let Wn = Vn, as defined in § 4. Un is even and a(n) ^ 3, let 
n = r\ + . . . + rk be the dyadic expansion of n, and define 

Kn+1 = J ] ^ , 

where st = rt(l ^ i g k — 3), s*_2 = rft_2 + 1, and sk-i = r ^ i + rk, and 
let Wn C K^1 be a submanifold dual to «i + . . . + a^. (See § 3.) If a(n) ^ 2, 
let Wn = Pn. 

PROPOSITION 6.1. [Wn] is indecomposable in 9Î*. 

Proof. If n is odd, then Corollary 4.2 applies. If n is even and a(w) S 2, 
IF* = Pw and [Pn] is indecomposable whenever n is even. (Because w(Pn) = 
(1 + a)n + 1 , 5(n)(P

w) = (n + l)aw ^ 0.) Finally, if n is even and a{n) ^ 3, 
we use the proof of Proposition 3.2 including Lemma 3.3. 

It is clear that wThen n is odd, Wn immerses in K2n~a(-n) and embeds in 
R2rc-a(tt) + l̂  

PROPOSITION 6.2. If n is even and a(n) §: 2, then Wn immerses in R2n-«w-i 
and {for n j* 6) embeds in R2"-«(w>. 

Proof. If a(n) = 2, Wn = Pn. Suppose that n = 2r + 2 (r ^ 2). Then 
Sanderson [10, Theorem 4.1, p. 146 and Theorem 5.3, p. 150] gives the required 
immersion, and Handel [4, Theorem 4.1, p. 129] the required embedding. If 
n = 2r + 2s (r > s > 1), then n = \t, where t is not a power of 2 and 
Mahowald [7, Theorem 7.2.2, p. 346] gives an embedding of Pn in R2W-3. 

If a(n) ^ 3, Sfc-i = U, where t is not a power of 2. Thus, we can embed 
the last factor in Kn+1 with efficiency 3. Using Sanderson's result [10, Theorems 
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4.1, 5.3], we can immerse the second last factor with efficiency 3 unless 
sk-2 — 3; however, in the latter case we can immerse P3 X R in R4. If now 
we apply Lemma 2.1 repeatedly, we can embed Kn+l in R27*-«(w)-i. 

THEOREM 6.3. Let n be even. If the Stiefel-Whitney number of Mn corresponding 
to wa(n)Wn-a(n) vanishes, then Mn is cobordant to a manifold that immerses in 
R2n-a(*)-i an^ (for n ^ g) embeds in R2»-*(»). 

Proof. The classes [Wk] generate $ft* so Mn is cobordant to a disjoint union 
of products of the Wk. One product which may or may not appear is An. 
(See § 5.) We claim that every other product immerses in R^-aW-i a n c j (for 

n 9^ 6) embeds in R2n-<*w. Clearly, this is true for Wn; for, either a(n) = 1, 
in which case Wn = An, or a(n) ^ 2, in which case Proposition 6.2 applies. 
Any other product can be written in the form Us X U\ where a{s + t) < 
a(s) + a(t), and this strict inequality implies the product immersion or 
embedding using Lemma 2.1 gives the required result. 

The Stiefel-Whitney number corresponding to Wa^Wn-a^n) is zero on all 
products except An. Hence, the hypothesis of Theorem 6.3 implies that An 

does not appear. This completes the proof of Theorem 6.3. 

Note that if n is odd, the argument fails. If n is odd, n ^ 2 r + 1, we can 
immerse Wn in R*»-«(»)-i and embed Wn in K2n~^nK (Indeed we need only 
consider k(p,m) more carefully in the proof of Proposition 4.5.) However, 
the difficulty is that there may be more than one product Bt

n. (See § 5.) The 
hypothesis of Theorem 6.3 implies only that the number of products B" 
occurring in the expansion of [Mn] is even. 

THEOREM 6.4. Let n = 2r or 2r + 1, and let 0 ^ s g 3. Then Mn is cobordant 
to a manifold that immerses in R2"-*-1 and embeds in K2n~s if and only if the 
Stiefel-Whitney numbers of Mn corresponding to Wiivn-.i vanish, for 0 ^ i S s. 

Proof. We can represent the cobordism class of Mn by a disjoint union of 
products of the form 

ri wnt. 
Terms with XH=ia(»j) ^ 4 immerse and embed with efficiencies 4 and 3, 
respectively. If S L i ^ ( ^ z ) ^ 3, then k g 3. Also, a(nt) g 2 because n = 2 r 

or 2r + 1. The only terms satisfying these conditions are given by: 

(i) n = 2r + 1, ni = n, 
(ii) n = 2r + 1, m = 2*-1 + 1 , 7Z2 = 2'-1 , 

(hi) n = 2r, ^i = nf 

(iv) » = 2 r, »i = 2""1, w2 = 2r~\ 
(v) » = 2 r, »! = 27"-1, »2 = 2r~\ nz = 2r~2 (r > 2), 

(vi) n = 2r, m = 27-1 + 2r~\ n2 = 2r~2 (r > 2). 
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It is easy to check that the first five terms are all detected by the Stiefel-
Whitney numbers of Theorem 6.4. We claim that the sixth embeds with 
efficiency 3 and immerses with efficiency 4. If r > 3, we use Mahowald's 
result [7, Theorem 7.2.2, p. 346] to embed the first factor with efficiency 3, 
and if r — 3, the first factor is P6 , which immerses with efficiency 4. (See 
[10, Theorem 4.1].) Theorem 6.4 is now proved. 

7. P(m, X). We will begin by computing the modulo 2 cohomology ring 
of P(m,X). 

The projection of Sm X X2 on Sm induces a bundle map of P(m, X) on Pm 

with fibre X2. If we choose x Ç X, we can define a section of this bundle by 
setting s(u) = (u,x,x). It follows that the cohomology ring H*(Pm) is a 
direct summand of H*(P(m, X)). We denote the generator of this summand 
bye e Hl(P (m, X)). Then cm+l = 0and7r*c = 0, where TT:5W XX2-*P(m,X) 
is the identification projection. 

Let T:Sm X X2-> Sm X X2 be defined by T(u,x,y) = (~u,y,x). Then 
7r o T = 7T, so (1 + T*) o 7r* = 0, and the image of x* is contained in the 
kernel of 1 + T*. Let t:X2 —> X2 be the interchange t(x,y) = (;y, x). Let 
iV C #*(X2) = H*(X) <g> H*(X) be the image of 1 + t* and let D C H*(X2) 
be the set of diagonal elements of the form x 0 x. Then the kernel of 1 + t* 
is D + N. (Note that D is not closed under addition but that D + N is closed 
under addition because, for example, x ® x + ;y(g);y= (x + y) ® (# + ;y) + 
(1 + t*)(x ® j ) . ) Let gm generate Hm(Sm). Then the kernel of 1 + T* is 
Z> + N + gm ® (D + N). (Here, we are writing D + N instead of 
1 ® (D + iV).) 

THEOREM 7.1. The cohomology ring H*(P(m, X)) is isomorphic to 

(Z2[c]/(cm^) ® D) + N + gm ® N, 

where c° (& D = D, and multiplication is determined by the multiplication in 
D -\- N + gm ® N and the relation c ® N = 0. Also, 7r* is the identity on 
D + N + gm ® N. 

Proof. We will use the exact sequence of the pair (P(m, X), P(m — 1, X)) 
to prove the theorem by induction on m. We will use T to denote the identifica
tion maps for both spaces and for the pair of spaces. Recall that m è 1. 

Let S™'1 X I be a band around the equator of Sm with upper and lower 
boundaries 5 +

w _ 1 and 6,_m_1. Let D+m and Z>_w be the top and bottom caps of 
Sm with boundaries 5+m_1 and 5_w_1 , respectively. The inclusion 

({D+
m, S+

m-1) \J (D_m, 5_w~1)) X I 2 ~ > (S™, S™-1 XI) XX2 

is an excision. There is an induced excision after identification, and, because IT 
identifies the two pieces on the left, we obtain an isomorphism 

H*(P(m,X)tP(m - liXV^JPttiriS»-1) XX2). 
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We will denote the generator of Hm((Dm, 5W_1)) by gm again. The long exact 
sequence of the pair now becomes 

- H % P ( m , X ) ) - * # * ( P ( m - l,X))-+gm®H' *+1_ro(Y^ — 

LEMMA 7.2. Let î:Sm-1 X X2 ->SW X X2 be the inclusion and let br be the 
coboundary in the sequence of the pair (Dm

1S
m~1) X X2. Theni*c = c,j*gm = cm, 

T*i* = fv* , T*j*(gm ® x ® y) = gm ® {oc ® y + y ® x), and 8 = 8'T*. 

Proof. The first two statements follow by comparison with the exact 
sequence of the pair {Pm, Pm~l). The other statements follow from the com
mutative diagram below: 

S~l X X2 

id 

Dm X X2 

\h 

-» (Dm, 5m-!) X X2 

\f 

t ei (zv, 5+-o x x2 

Sm-i xX2—>SmXX2-> (5W, 5W~1) X P < - U 
(D_m, 5-m-1) X X2 

P(m - 1, X) —» P(m, X) —> (P(m, X) , P(m - 1, X)) ^ - (Dn, S™-1) X X2 

In this diagram, ei and e2 are excisions, wf is the identity, and j * = j*e^~l. 

Now we are ready to prove the theorem for m — 1. Because P(0, X) = X2, 
we have an exact sequence. 

. . .±>H*(P(l,X))-*H*(X*) —> gi 0 #*(X2) ^Ui7* + 1 (P( l ,X)) —• . . . 

in which §(x ® j ) = <5r7r*(x 0 y) = gi ® (x ® y + y ® x). Thus, 

# * ( P ( l , X ) ) / i m a g e ( f ) = kernel <5) = D + N. 

Because kernel (j*) = image (5) = gi ® N, it follows that 

j*(gi ® x ® y) = j*(gi ® y ® x) 

and that w*f(gi 0 x ® y) = gx 0 (x 0 y + y 0 x) in H*(S1 X X2). Thus, 
the image of 7r* is exactly D + N + gx ® N. Also, j * is injective ongi 0 D, 
and T*j*(gi 0 Z>) = 0. We can denote j*(gi 0 D) by c ® D. For, if 
w G i ï * (P ( l , X)) with ir*u = x 0 x <E A then /**7r*̂  = X 0 X and, because 
71-/ is the identity and H*(Y, A) is a module over H*(Y), gi ® (x 0 x) = 
2i 0 « in ETUDES*) X X2) . Thus, j * ( ^ 

Similar!}?", if ir*u = x®y+y®x, then 
x) = i* (g i ) 

c 0 w = .;* ( i ) i*(gi ® 0 ® y + y ® *)) = i*5(gi ® x ® y) = o. 
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Thus , c ® N = 0. 
This completes the proof for m = 1. 
Assume now tha t the theorem is proved for m — 1. By Lemma 7.2, 8(c) = 0, 

8{D + N) = 0, and ô(gw_i ® N) = gm ® N. Thus , j * maps gm ® 2? injec-
tively to c™ ® D. Also, j*{gm ® x ® y) = j*(gm ® y ® x) and 

Tr*f(gm ® x ® y) = gm ® (x ® y + y ® x). 

Hence, the image of f is cm ® D + gm ® N. T h e rest of H*(P(m, X ) ) is 
isomorphic to image(i*) = kernel(ô) = {ci ® D + N} 0 ^ i ^ m — 1}. This 
completes the inductive proof of the theorem. 

Recall t h a t a map f:X —» F induces a map P(m,f) from P(m,X) to 
P( ra , F) defined by P(m, f)(u, x, y) = (u,f(x)ff(y)). T h e next result is 
immediate from Theorem 7.1. 

COROLLARY 7.3. If f:X —» F is S^C/Ê /Aa/ 2Âe induced map in cohomology is 

infective, then the cohomology map of Pirn, f):P(m, X) —> P ( m , F) is a/so 
iw;ee/ii/£. 

Given x, y G H*(X), we denote x 0 x ^ H*(P(m, X)) by d(x) and 
x g j + ^ x f H*(P(m, X))by e(x ® y). Let e(x) = e(x ® 1) = e ( l ® # ) . 

If 7 is a vector bundle over X with fibre Rw, total space £ ( 7 ) , and projection 
p:E(y) —* X , then P ( m , p):P(m, E(y)) —» P ( m , X ) is the projection of a 
vector bundle (denoted by P ( w , 7 ) ) over P ( m , X ) with fibre R2W. I t is s traight
forward to verify t h a t P ( m , 7 © 7') = P ( m , 7) © P ( w , 7 ' ) . 

P R O P O S I T I O N 7.4. 7 / 7 is a /iwe bundle over X with total Stiefel-Whitney class 
w(y) = 1 + a, ^ew- w(P(m, 7 ) ) = 1 + c + ^(a) + d(a). 

Proof. T h e pullback of P ( m , 7) to 5W X X2 is jus t 7 X 7 . Hence, 

7r*w(P(w, 7 ) ) = l + a ( g ) l + l ( g ) a + a(g>û!. 

If s:Pm —> P ( m , X ) is a section, then the pullback of P ( m , 7) to Pm is jus t 
the sum of the canonical line bundle and the trivial line bundle. Hence, 
s*w(P(m, 7 ) ) = 1 + c. I t follows tha t w(P(m, 7 ) ) must be as s ta ted. 

COROLLARY 7.5. P ( w , P n ) is cobordant to the Bold manifold P(m, n). 

Proof. If yn is the canonical line bundle and e the trivial line bundle over Pn, 
then r(Pn) ® e = (n + l ) 7 n . (See [9, p . 11].) Hence, P ( w , r ( P ^ ) ) © P ( m , e) = 
( « + l ) P ( w , 7»). Now in general, r(P(m) Mn)) = r(Pm) © P ( m , r(il/fn)). 
Observe also t ha t P ( w , e) = ym © e. Hence, 

w(P(m,Pn))(l + c) = (1 + c ) w + 1 ( l + c + e(a) + d(a))n+\ 

According to [3, Satz 1, p . 29 and Satz 2, p . 30] the formula for the total 
Stief el-Whitney class of P(m, n) is 

w(P(m, » ) ) = (1 + c ) m ( l + c + d)w + 1 , 
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where cm+1 = 0, dn+1 = 0, c G Hl(P(m, «)) , d 6 H2(P(m, n)). Because 
ce {a) = 0, P(m, Pn) and P(m, w) will have the same Stiefel-Whitney numbers 
and hence be cobordant. 

Remark 7.6. There is another way of proving Corollary 7.5 which depends 
on fixed point sets of involutions. Define an involution 5 on Sm by 

Extend to Sm X Mn X Mn by setting s(u,x,y) = (s(u),x,y). There is an 
induced involution (again denoted by s) on P{m, Mn) and the fixed point set 
F oî s is F = P(m - 1, Mn) U A, where A is the diagonal of M* X M*. If v 
is the normal bundle of F in P(w, ikP), then P(w, il̂ fw) is cobordant to the 
real projective bundle of v © e, [P(m, ikP)] = [PP(z> © e)]. (See [2, Theorem 
24.2].) Over P(m — 1, ikP), this bundle has fibre P 1 = S1 and hence is a 
boundary. (It bounds a bundle with fibre D2.) The normal bundle to A is 
me © rCM*). Hence, [P(m, Mn)] = [RP(j(Mn) © (m + l)e)]. This result 
offers an alternative method for proving Proposition 4.1. Now, if we define 
5 on P(m,n) by s(u,z) = (s(u),z), then a similar argument shows that 
[P(m,n)] = [RP(r(Pn) © (m + l)e)]. Hence, [P(m,n)] = [P(m, P")]. 

Proof of Proposition 5.3. It is slightly more convenient to work with P ( l , s) 
rather than with P ( l , P s ) . Recall that 5 is a power of 2 and that s ^ 2. Hence, 

w(P(l, 5)) = (1 + c)- i ( l + c + ^ ) - s " 1 

= (î + ^a + c + i)-1, 
because c2 = 0. Thus, Wi(P(l, s)) = 0, for i ^ 2s, and w2s-i(P(l, s)) = 
cds~l 9e 0. Also, w2(P(l, s)) = d, so w2w2s-i(P(l, s)) = cds j* 0. This covers 
the case t = 0 of Proposition 5.3. The general case is a straightforward conse
quence of these calculations and the calculations given in Proposition 5.2. 

Proof of Proposition 4.1. hetf:X —» Mn be a splitting map for r(Mn). (See 
[6, Proposition 5.1, p. 235].) That is, the pullback/_1r(Afw) is a direct sum of 
line bundles, and the cohomology m a p / * is injective. Suppose that 

f*w(Mn) =w(f~1rMn) = f t (!+«<)• 

Then the pullback of P(m,rMn) to P(m,X) under the map P(m,f) is a 
direct sum of R2-bundles and 

P(m,f)*w(P(m, rMn)) = ft (1 + c + e(at) + d(at)). 

Because rP(m, Mn) = rPm © P(m, rMn), we obtain the relation 

P(m,f)*w(P(m, Mn)) = (1 + C ) w + 1 f [ (1 + c + e(a<) + d(a<)). 

Let 1 + c + e(ai) + dipti) = (1 + ^ ) ( 1 + *>*) s o that w* + Vi: = £ + e(a*) 
and W^Ï == ^(CKJ). Because P(m,f )* is injective, [P(m, Mn)] is indecomposable 
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if and only if the polynomial in c + e{at) and d{<Xi) corresponding to the 
symmetric function 

W n > = (m + l)cm+2n + t , (u™^ + ^m+2") 
i= l 

is nonzero. But cm+2n = 0 and 

„ «+*. + p «+* = £ [k ~ l,j] («, + Vt)\ufity. 
Jc+2j=m+2n 

If we now substitute and use the relations cm+l = 0, ce (at) = 0, and 
e(aiyd(ai)j = 0, if k + 2/ > 2#, we obtain the result 

= {m- l,»}cwd(è «« 

This is nonzero if and only if {m — 1, n) = 1 (mod 2) and X)?=i«ïw ^ 0; 
the latter condition holds if and only if [Mn] is indecomposable. 
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