Diagnosing Zygosity in Giant Panda Twins Using Short Tandem Repeats

Maiju Qiao，${ }^{1,2, *}$ Yingmin Zhou，${ }^{2}$ Thomas Connor，${ }^{3}$ Rengui Li，${ }^{2}$ Dan Tang，${ }^{2}$ Hemin Zhang，${ }^{2, *}$ and Jianghong Ran ${ }^{1}$
${ }^{1}$ Key Laboratory of Bio－Resource and Eco－Environment of Ministry of Education，College of Life Sciences，Sichuan University，Chengdu，Sichuan，China
${ }^{2}$ China Conservation and Research Center for the Giant Panda，Dujiangyan，Sichuan，China
${ }^{3}$ Department of Fisheries and Wildlife，Michigan State University，East Lansing，MI，USA

Abstract

The giant panda，native to mountains of south－west China，is one of the world＇s rarest bear species and is subject to considerable conservation effort．In captivity，the proportion of twins accounts for 54% of the total number of births．To date，little is known about zygosity in panda populations－specifically，the proportion of monozygotic and dizygotic twins．In this study，we used 10 microsatellite markers for reliable zygosity testing，and the probability of monozygotic twins was 99.963% when all 10 markers were concordant． Out of 43 studied twin pairs，no MZ twins were found，indicating that there may be no identical panda twins（or the incidence is very low）．We speculate that the fertilized eggs of giant pandas do not have the capability to split into two identical embryos，or that this ability is very poor，which is likely due to delayed implantation that is common in bear species．The results of this study deepen our understanding of giant panda breeding，yield insight into panda twins＇likely mechanism of formation，and reduce the uncertainty of individual identity in wild population surveys．

Keywords：giant panda，monozygotic twins，dizygotic twins，zygosity

The giant panda（Ailuropoda melanoleuca），crowned as a national treasure，is an iconic conservation species in China．According to the Fourth National Giant Panda Sur－ vey，it is estimated that the wild population consists of about 1，864 animals confined to six fragmented mountain ranges along the eastern edge of Tibet Plateau（State Council In－ formation Office，2015）．Sixty－five giant panda reserves and three large breeding centers have been established for in situ and ex situ conservation，respectively（Wei et al．，2012）．In captivity，the proportion of twins has accounted for 54% of the total number of births（Wang et al．，2015）．Natural dis－ card of a twin by the panda mother resulted in a historic neonatal mortality rate of about 60%（Shan et al．，2014）． After nearly half a century of efforts，giant panda artificial breeding technology has been successfully applied to rear－ ing the twin generally discarded by panda mothers，and panda twins＇survival rate currently approaches 95%（Wang et al．，2015）．By 1997，the number of captive－born giant pan－ das outnumbered wild－born pandas in the ex situ popula－ tion（Zhang et al．，2006）．

Twins are divided into monozygotic（MZ，＇identical＇） and dizygotic（DZ，＇fraternal＇）twins．DZ twin pairs arise from two fertilization events，while MZ twin pairs most likely arise from splitting of a single early embryo（Cutler
et al．，2015）．Accurate zygosity information of giant panda twin pairs would help managers to improve management of twins＇artificial brood，understand their developmental events，and evaluate their medical life histories．However， research about giant panda zygosity diagnosis has not been carried out，and the proportion of DZ and MZ twins in panda populations remains to be answered．

Comparing the unique genetic fingerprints that can discriminate between individuals offers the most robust method for estimating the zygosity of a twin pair（Forget－ Dubois et al．，2003；Jackson et al．，2001）．In this study，we aimed to accurately assess the zygosity of panda twins us－ ing short tandem repeat（STR）data．We also aimed to deter－ mine the proportion of DZ and MZ twins at the China Con－ servation and Research Center for the Giant Panda，Wolong
received 10 September 2018；accepted 11 October 2018．First published online 30 October 2018.
address for correspondence：Jianghong Ran，Key Labora－ tory of Bio－Resource and Eco－Environment of Ministry of Ed－ ucation，College of Life Sciences，Sichuan University，Chengdu 610064，China．E－mail：ranjianghong＠scu．edu．cn
＊These authors contributed equally to this study．
(hereafter Wolong), the largest captive breeding center in China. We expect our results to deepen understanding of giant panda breeding and yield insight into the mechanism behind the formation of panda twins.

Materials and Methods

Samples

By the end of 2016, the total captive giant panda population was 469 , including 103 pairs of twins. The number of twins thus accounts for 44% of the population. Among panda twins, 45% are pigeon pairs (different-sex), while 55% are same-sex twins.

According to the studbook, there are 45 pairs of panda twins living in the captive population of Wolong (243 pandas in total by the end of 2016): 25 pigeon pairs and 20 same-sex twins. Considering all pigeon pairs are DZ, blood or fecal samples were only collected from 18 pairs of same-sex twins (the missing two pairs were exhibited in other zoos during the study period). All blood samples were obtained from routine health examinations. Total genomic DNA of blood and feces were obtained using Qiagen Dneasy Blood \& Tissue Kit and Qiagen QIAamp DNA Stool Mini Kit, respectively, according to the manufacturer's instructions.

PCR Protocol and STR Genotyping

We used 10 tetra-microsatellite loci to distinguish genotype between twin pairs. These were as follows: gpz-47, gpz-6, GPL-47, GPL-60, GPL-29, gpz-20, GPL-53, GPL-44, gpz51, and GPL-8 (Huang et al., 2015). PCR amplifications were carried out in $25 \mu \mathrm{~L}$ reaction mixtures, comprising approximately 50 ng of template DNA, $2 \mathrm{mmol} \mathrm{MgCl}_{2}, 200$ $\mu \mathrm{mol}$ of dNTP each, 15 pmol of each primer, $1.0 \mu \mathrm{~g}$ of bovine serum albumin (BSA), $2.5 \mu \mathrm{~L} 10 \times$ PCR buffer, and 0.3 units of Hotstart DNA polymerase (Takara). Amplifications were performed using the following PCR procedure: an initial denaturation step for 5 min at $95^{\circ} \mathrm{C}$, followed by 35 cycles of $95{ }^{\circ} \mathrm{C}$ for $45 \mathrm{~s}, 30 \mathrm{~s}$ at locus-specific annealing temperature specified in Huang et al. (2015) and 50 s at $72{ }^{\circ} \mathrm{C}$, and a final elongation for 10 min at $72^{\circ} \mathrm{C}$. For all 10 markers, the 5^{-}end of the forward primers was fluorescently labeled. For genotyping, the PCR amplification products were separated by capillary electrophoresis using a denaturing acrylamide gel matrix on an ABI PRISM 377 Genetic Analyzer; $1 \mu \mathrm{~L}$ amplification product and $1 \mu \mathrm{~L}$ formamide loading buffer were mixed with $1 \mu \mathrm{l}$ GeneScan TAMRA 350 internal size standard (ABI), heated at $95^{\circ} \mathrm{C}$ for 3 min and flash cooled on ice. Samples were electrophoresed at 15 KV for $2,000 \mathrm{sec}$. Alleles were detected using the GeneScan/Genotyper software package of Applied Biosystems. The peak amplitude thresholds (PATs) value employed in this study was 200.

All samples were amplified at least three times for each marker. A single-locus genotype was not accepted until our replicates resulted in at least three identical homozygote
profiles or two identical heterozygote profiles. These criteria were based on a pilot study, where genotypes obtained from feces versus blood samples were compared (Huang et al., 2015).

Zygosity Testing

We used MStools for Microsoft Excel to identify matching genotypes in panda twin pairs: (1) If alleles were different at two or more locations, the twin pairs were accepted as DZ. (2) If only one mismatch of one allele was found, DNA was re-extracted and three more PCR replications were performed. If it was still different, we judged the twin pairs as DZ. (3) If all alleles in all loci were identical, the twin pairs were believed to be MZ. We then calculated the average non-exclusion probability of identity among siblings across these 10 microsatellite loci in the captive population of Wolong ($n=113$) using CERVUS 3.0 (Marshall et al., 1998). We conducted tests for Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD) on a subset of the Wolong captive population with available genetics data ($n=113$). CERVUS 3.0 was used to test HWE. The LD test was done in GENEPOP V4.2 (Raymond \& Rousset, 1995; Rousset, 2008).

Results

The tests for HWE showed significant deviations from HWE at loci GPL-8 and gpz-47 ($p<.05$) in the Wolong captive population. The other 8 loci did not deviate significantly from HWE and all 10 grouped loci did not significantly deviate from HWE after Bonferroni correction (adjusted $p=.05 / 10$; see Table S1). Of the 10 microsatellite loci out of the 45 possible microsatellite locus pairs, 5 pairs - GPL-60/gpz-20, GPL-60/GPL-53, GPL-53/gpz-47, GPL-47/gpz-20, and GPL-29/GPL-8 - were in significant LD after applying Bonferroni corrections (adjusted $p=.05 / 10$; see Table S2).

The probability of two individuals sharing an identical multi-locus genotype was 0.00037 , based on 10 loci, indicating that this subset of 10 loci was enough for accurate individual identification (PIDsib <0.01) in our target population (Waits et al., 2001). The probability of monozygotic twins was 99.963% when all 10 markers were concordant.

Zygosity diagnosis was performed through comparing the concordance of the twin-pair genotypes at 10 mi crosatellite markers (Figure 1 about here). Of the 18 studied same-sex twin pairs in Wolong, discordant loci were found in every pair, which indicates that all 18 twin pairs are DZ twins (Table 1 about here). When considering the 25 pairs of pigeon twins in addition to the 18 pairs of samesex twins, no MZ twins were found in the 43 total pairs in this study.

Discussion

Previous twin zygosity studies of humans have calculated the probability of any twin pair to be MZ at five concordant

FIGURE 1

(Colour online) Microsatellite loci genotypes: A and B indicate the genotype of male twin pairs 'Qin Qin' (stud number 1054) and 'Ai Ai^{\prime} (stud number 1055) at locus gpz-6 and GPL-29, respectively. Because both alleles were different, the twin pairs were accepted as DZ.
microsatellite markers to be 99\% (Becker et al., 1997), and up to 99.9% with nine concordant markers (He et al., 2001). Our twin zygosity analysis of giant pandas was performed with 10 tetra-microsatellite markers, and the probability of being MZ was 99.963% if all 10 markers were concordant. Our method is thus a rapid and accurate approach to twin zygosity determination in giant pandas.

Our giant panda twin zygosity diagnosis revealed that all 43 twin pairs were DZ, while no MZ twins were diagnosed. The proportion of MZ and DZ twins in humans varies within different populations, with close to $1: 1$ in Japan, about 1:5 in some parts of India, and 1:7 in central African countries (Bortolus et al., 1999; Derom et al., 1995; Oleszczuk et al., 1999; Smits \& Monden, 2011), while our

TABLE 1 The Genotype and Zygosity of 18 Same－Sex Giant Panda Twin Pairs

Stud	Sex	Name	Zygosity	GPL－29		gpz－51		gpz－20		GPL－60		gpz－6		GPL－53		GPL－44		GPL－8		gpz－47		GPL－47	
524	M	Long Teng	DZ	175	175	167	171	270	294	218	226	206	214	158	170	180	180	236	240	190	190	140	164
525	M	Long Fei		175	175	167	167	274	310	226	234	206	214	158	158	176	176	236	240	190	190	144	164
547	F	Mei Qing	DZ	171	175	171	171	270	274	218	226	194	206	166	166	176	176	240	240	190	210	144	164
548	F	Lan Xiang		171	175	167	171	266	310	218	218	194	206	158	170	176	176	240	240	190	190	140	164
571	F	Ge Ge	DZ	171	175	167	167	270	270	222	226	206	206	158	170	176	176	236	236	190	210	140	140
572	F	Jun Zhu		167	175	167	167	270	278	218	226	206	206	158	166	180	180	224	236	190	190	140	144
631	F	Mei Xi	DZ	171	175	167	171	274	274	218	226	206	206	158	166	176	176	236	240	190	190	140	148
632	F	Mei Xin		171	171	171	171	274	302	0	0	206	206	0	0	180	180	240	240	190	198	148	164
650	F	Qian Qian	DZ	167	171	163	171	274	298	226	234	206	210	158	174	176	176	224	236	190	198	140	164
651	F	Duo Duo		171	175	167	175	266	270	222	226	194	206	166	170	176	176	240	240	190	202	140	148
668	M	Hua Long	DZ	163	171	167	167	266	274	218	222	206	210	166	166	176	176	228	240	190	198	144	148
669	M	Hua Ao		163	171	167	167	270	302	218	222	206	210	166	166	176	176	228	240	190	198	144	148
689	M	Wu Jun	DZ	163	175	167	171	270	278	222	226	206	210	166	170	180	180	228	240	210	210	164	164
690	M	Wu Jie		167	175	163	171	270	278	222	226	206	206	166	166	176	180	0	0	190	190	140	164
734	F	Hu Bao	DZ	163	171	167	171	266	274	226	230	206	218	166	166	176	176	232	236	190	198	140	164
735	F	Min Min		171	171	167	171	270	274	222	226	206	218	166	170	176	180	228	240	190	210	140	164
745	M	Xing Hui	DZ	163	171	171	171	274	310	218	226	206	206	166	166	0	0	236	240	190	190	140	148
746	M	Xing Rui		163	175	171	171	274	274	218	226	206	210	166	166	0	0	236	236	190	190	140	148
759	F	Yao Man	DZ	175	175	167	171	266	302	218	226	206	210	158	166	180	180	236	240	190	190	140	148
760	F	Yao Xin		171	175	171	171	266	302	218	226	206	206	166	166	180	180	236	240	190	190	144	148
834	F	Zheng Zheng	DZ	163	175	167	171	270	302	222	226	206	210	166	166	0	0	228	236	190	190	144	148
835	F	Hui Hui		163	175	171	171	274	274	218	222	206	206	166	170	176	176	0	0	190	190	148	148
837	F	Yi Ran	DZ	163	175	171	171	274	296	226	230	206	206	166	170	180	180	236	240	190	190	144	148
838	F	Yi Chang		163	175	167	171	266	282	218	226	206	214	166	166	176	180	236	240	190	190	144	148
949	M	Xin Bao	DZ	163	175	167	175	270	278	222	226	194	206	162	166	176	180	236	240	198	202	164	164
950	M	Hua Bao		171	175	167	171	266	266	222	226	206	218	166	170	176	180	232	240	190	198	164	164
951	F	Ya Xing	DZ	167	175	163	167	270	270	218	222	194	206	170	170	176	180	228	240	190	190	164	164
952	F	Ping Ping		167	175	171	175	270	282	218	222	206	206	170	170	176	180	228	240	190	210	164	164
967	F	Tuan Zi	DZ	163	175	171	171	270	302	222	226	206	210	166	166	176	176	228	236	190	190	148	164
968	F	Chun Qiao		171	175	167	171	270	302	222	226	206	206	166	174	176	176	228	240	190	198	148	164
970	F	He He	DZ	163	175	167	167	266	270	222	226	206	206	158	166	176	180	236	240	190	198	140	148
971	F	Jiu Jiu		163	175	167	167	270	270	226	226	206	218	162	170	180	180	236	240	202	210	140	164
1019	F	Xiao Hetao	DZ	163	175	167	171	278	302	222	226	198	218	166	170	180	180	236	236	190	190	140	144
1020	F	Chu Xin		163	171	167	167	270	302	218	222	206	206	162	170	0	0	232	236	190	190	148	160
1054	M	Qin Qin	DZ	171	175	167	171	262	270	218	222	194	206	166	166	176	176	240	240	210	210	140	144
1055	M	$\mathrm{Ai} A \mathrm{i}$		167	171	167	171	266	270	218	230	206	206	166	166	176	176	228	240	210	210	144	164

Note： 0 represents null alleles．
result for panda twins in this study was 0:43. We speculate that the fertilized eggs of giant panda do not have the capability to split into two identical embryos, or that this capability is very poor. This is likely due to the delayed implantation of giant panda embryos (Sutherland-Smith et al., 2004; Zhang et al., 2009), in which the embryo floats in the womb and development is arrested for about 3 months. The best time for fertilized eggs to split and form two identical embryos is thus probably missed. Once the fetus is implanted in the uterus wall, it takes just 15-20 days before the underdeveloped panda cubs are born.

STR cannot distinguish MZ twins, because they are genetically nearly identical. Considering twins account for 54% of the total number of births, researchers have historically worried that identical twins could be misjudged as one individual, resulting in underestimated population sizes in wild giant panda surveys. Based on our results, there are either no identical panda twins or the incidence is very low, and coupled with the tendency of panda mothers to abandon one twin, we conclude that there is no impact of MZ twins on the accuracy of wild giant panda population size estimation. Because there was some evidence that the captive panda population at Wolong likely has skewed allele frequencies due to deviation from HWE at and LD between some loci and locus pairs, respectively, our calculated probability of monozygosity at 10 concordant loci is likely an overestimate. That said, although the allele frequencies between captive pandas and wild populations are likely very different, the somewhat inbred captive population in fact strengthens our conclusion that MZ twins are absent or extremely low in giant pandas. This is because we would expect more DZ twins to potentially appear as MZ due to the loss of alleles in the captive population and higher incidence of repeated genotypes by chance. Because we still found no MZ twins, we can conclude with more certainty that MZ twins have little to no effect on surveys of wild giant panda populations. Twin studies, such as that conducted here, can have important applications to both in situ and ex situ wildlife conservation and thus should be emphasized more in the future.

Acknowledgment

We thank all the panda breeders for their help with the collection of fecal samples. This work was supported by the central finance forestry national nature reserve subsidy fund - Sichuan Wolong National Nature Reserve (grant number: Sichuan Forestry 2016-923) and a special grant from the Giant Panda International Cooperation Research Project (grant number: State Forestry Administration of the People's Republic of China 2017-115).

Disclosure of Interests

None.

Details of Ethical Approval

The authors assert that all procedures contributing to this work comply with ethical standards of the relevant national and institutional guides on the care and use of laboratory animals.

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1017/thg.2018.59

References

Becker, A., Busjahn, A., Faulhaber, H. D., Bähring, S., Robertson, J., Schuster, H., \& Luft, F. C. (1997). Twin zygosity. Automated determination with microsatellites. Journal of Reproductive Medicine, 42, 260-266.
Bortolus, R., Parazzini, F., Chatenoud, L., Benzi, G., Bianchi, M. M., \& Marini, A. (1999). The epidemiology of multiple births. Human Reproduction Update, 5, 179-187.
Cutler, T. L., Murphy, K., Hopper, J. L., Keogh, L. A., Dai, Y., \& Craig, J. M. (2015). Why accurate knowledge of zygosity is important to twins. Twin Research \& Human Genetics, 18, 298-305.
Derom, R., Orlebeke, J., Eriksson, A., \& Thiery, M. (1995). The epidemiology of multiple births in Europe. In L. G. Keith, E. Papiernik, D. M. Keith \& B. Luke (Eds.), Multiple pregnancy (pp. 145-162). London: The Parthenon Publishing Group.
Forget-Dubois, N., Pérusse, D., Turecki, G., Girard, A., Billette, J. M., Rouleau, G., ... Tremblay, R. E. (2003). Diagnosing zygosity in infant twins: Physical similarity, genotyping, and chorionicity. Twin Research, 6, 479-485.
He, X., Zhu, D., Han, Z., Liu, X., Wang, G., Chu, S., ... Huang, W. (2001). Use of microsatellite in zygosity diagnosis of twins. Chinese Journal of Medical Genetics, 18, 421-425. (In Chinese)
Huang, J., Li, Y. Z., Du, L. M., Yang, B., Shen, F. J., Zhang, H. M., ... Yue, B. S. (2015). Genome-wide survey and analysis of microsatellites in giant panda (Ailuropoda melanoleuca), with a focus on the applications of a novel microsatellite marker system. BMC Genomics, 16, 61-72.
Jackson, R. W., Snieder, H., Davis, H., \& Treiber, F. A. (2001). Determination of twin zygosity: A comparison of DNA with various questionnaire indices. Twin Research, 4, 1218.

Marshall, T. C., Slate, J., Kruuk, L. E., \& Pemberton, J. M. (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7, 639655.

Oleszczuk, J. J., Keith, D. M., Keith, L. G., \& Rayburn, W. F. (1999). Projections of population-based twinning rates through the year 2100. Journal of Reproductive Medicine, 44, 913-921.
Raymond, M., \& Rousset, F. (1995). GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248-249.

Rousset, F. (2008). Genepop'007: A complete reimplementation of the Genepop software for windows and Linux. Molecular Ecology Resources, 8, 103-106.
Shan, L., Hu, Y., Zhu, L., Yan, L., Wang, C., Li, D., ... Wei, F. (2014). Large-scale genetic survey provides insights into the captive management and reintroduction of giant pandas. Molecular Biology Evolution, 31, 2663-2671.
Smits, J., \& Monden, C. (2011). Twinning across the developing world. PLoS One, 6, e25239.
State Council Information Office. (2015). The State Forestry Administration held a press conference for the fourth national giant panda survey results (in Chinese). Retrieved from http://www.scio.gov.cn/xwfbh/gbwxwfbh/ fbh/Document/1395514/1395514.htm
Sutherland-Smith, M., Morris, P. J., \& Silverman, S. (2004). Pregnancy detection and fetal monitoring via ultrasound in a giant panda (Ailuropoda melanoleuca). Zoo Biology, 23, 449-461.
Waits, L. P., Luikart, G., \& Taberlet, P. (2001). Estimating the probability of identity among genotypes in natural popula-
tions: Cautions and guidelines. Molecular Ecology, 10, 249256.

Wang, H., Hou, R., Liu, Y., Cai, Z., Luo, L., Huang, H., \& Zhang, Z. (2015). An observational analysis of relevant factors on twin rate of giant panda. Sichuan Journal of Zoology, 34, 650-655. (In Chinese)
Wei, F., Hu, Y., Zhu, L., Bruford, M. W., Zhan, X., \& Zhang, L. (2012). Black and white and read all over: The past, present and future of giant panda genetics. Molecular Ecology, 21, 5660-5674.
Zhang, H., Li, D., Wang, C., \& Hull, V. (2009). Delayed implantation in giant pandas: The first comprehensive empirical evidence. Reproduction, 138, 979-986.
Zhang, Z., Zhang, A., Hou, R., Wang, J., Li, G., Fei, L., ... Maple, T. L. (2006). Historical perspective of breeding giant pandas ex situ in China and high priorities for the future. Cambridge, UK: Cambridge University Press.

