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ABSTRACT. Inverse problems are used to estimate model parameters from observations. Many inverse
problems are ill-posed because they lack stability, meaning it is not possible to find solutions that are
stable with respect to small changes in input data. Regularization techniques are necessary to stabilize
the problem. For nonlinear inverse problems, iterative inverse methods can be used as a regularization
method. These methods start with an initial estimate of the model parameters, update the parameters to
match observation in an iterative process that adjusts large-scale spatial features first, and use a stopping
criterion to prevent the overfitting of data. This criterion determines the smoothness of the solution and
thus the degree of regularization. Here, iterative inverse methods are implemented for the specific
problem of reconstructing basal stickiness of an ice sheet by using the shallow-shelf approximation as a
forward model and synthetically derived surface velocities as input data. The incomplete Gauss–Newton
(IGN) method is introduced and compared to the commonly used steepest descent and nonlinear
conjugate gradient methods. Two different stopping criteria, the discrepancy principle and a recent-
improvement threshold, are compared. The IGN method is favored because it is rapidly converging, and
it incorporates the discrepancy principle, which leads to optimally resolved solutions.

INTRODUCTION
Obtaining large-scale direct observations at the base of an
ice sheet is inherently difficult. Conversely, surface velocity
observations are widely available from satellite and in situ
measurements. This situation, where direct observations of
one physical property are abundant while another physical
property is inaccessible for direct observations, occurs in
many geophysical settings and is commonly solved through
inverse methods. Examples in the glaciological literature
include solutions for perturbations in basal topography and
basal lubrication (Gudmundsson, 2003; Thorsteinsson and
others, 2003), ice viscosity (Rommelaere and MacAyeal,
1997; Arthern and Gudmundsson, 2010) and accumulation
rates and patterns (Waddington and others, 2007; Eisen,
2008; Steen-Larsen and others, 2010). Here we concentrate
on the reconstruction of basal stickiness through surface
velocity observations, but the conclusions are widely
applicable, and we begin with a general introduction of
inverse methods.
An inverse problem is defined by the search for physical

properties that cannot be directly observed, in a system
where observations and an understanding of the physical
system are given. In a forward sense these three parts are
related by d = G(m) where d is a set of observations (data),m
is a set of model parameters and G is the well-posed forward
model describing the physics of the system (e.g. Aster and
others, 2005). In order to reconstruct model parameters, m,
for given data, d, the forward model, G, has to be inverted.
The process of solving an inverse problem is often unstable,
in that a small change in observations can lead to a large
change in the reconstructed parameters. Such problems are
referred to as ill-posed. A key point is that it is commonly
possible to stabilize the inversion by imposing additional
constraints that bias the solution, a process that is generally
referred to as regularization (Aster and others, 2005).

One way to approach the inverse problem is by assessing
the agreement between the observations, d, and the modeled
data, G(m), through a misfit functional: J(m) = ‖d−G(m)‖2
(e.g. Eqn (7)). Then J needs to be rendered sufficiently small
to find suitable model parameters, m. Here ‖ · ‖ denotes a
chosen norm in the data space (e.g. the familiar L2 norm).
Observations inherently contain some amount of error, and
hence the exact minimizer of J will not correspond to the
true model parameters. Moreover, for an unstable inverse
problem it is not desirable to find an exact minimizer of
the misfit functional, J, because fitting the observations
below the level of error in the measurements will lead to
disproportionately large unrealistic features in the model
parameters, a phenomenon known as overfitting. Rather,
an approximate minimizer should be sought subject to
stabilizing criteria, via regularization.

Regularization
There are a number of forms of regularization; we describe
several here to place our specific method in context. One
method of imposing stabilizing constraints is to introduce a
cost functional that contains a regularizing term. In Tikhonov
regularization this is done by defining the cost functional

I(m,α) = αJ(m) + |||m|||2, (1)

where α is a regularization parameter that determines how
much weight should be given to J (e.g. Aster and others,
2005, ch. 5). The second term involves a norm, ||| · |||, in
parameter space and it regularizes the problem by giving
preference to a particular solution with desirable properties.
The L2 norm, for example, would select a small solution.
It might be more desirable to introduce other norms that
measure the level of roughness, in order to select for
smooth solutions (e.g. Truffer, 2004). Non-trivial choices
are necessary when choosing a value for α. Note that
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minimization of I with a free regularization parameter, α,
would lead to ∂I/∂α = 0 = J (if that solution exists), which
is not desirable. The only control on the size of J in Tikhonov
regularization is through the choice of α.
A more natural approach is to incorporate the tolerance,

T , in the cost function

I(m,α) = α|J(m)− T 2|+ |||m|||2. (2)

This can be thought of as a minimization of |||m||| under
the condition J = T 2, and α is then a Lagrange multiplier,
familiar from many optimization problems. The tolerance in
the cost function prevents overfitting, and the value for α is
part of the solution (Parker, 1994, ch. 3.02). The value of T
is chosen based on a priori estimates of measurement and
model error.
For linear or linearized inverse problems the latter method

is the method of choice and I(m,α) can be minimized
through a direct solve (Truffer, 2004) or through singular
value decomposition (De Paoli and Flowers, 2009). For
nonlinear inverse problems direct methods are impractical.
Instead, the problem can be approached by iteratively
minimizing J without an added smoothness term:

I(m) = J(m). (3)

Calculating J(m) requires that the forward model be solved,
and this definition of the misfit functional is equivalent to the
one introduced by MacAyeal (1993) (his eqn (7)) (or Joughin
and others, 2004, eqn (18)) where the misfit is calculated
by enforcing the model physics as a constraint (with
Lagrange multipliers). If the forward problem, such as the
one considered here, has a diffusive character, then iterative
methods for minimizing J will tend to correct large-scale
features first. Generally, iterative inverse methods start with
an initial estimate for the model parameter and subsequently
correct the initial estimate in each iteration. The simplest way
to regularize these iterative inverse methods is to terminate
the iterations when the misfit functional, J, reaches the
predefined tolerance, T 2; this stopping criterion is called the
‘discrepancy principle’ and was first suggested by Morozov
(1966). The final result of using the discrepancy principle as
a stopping criterion in iterative inverse methods is a smooth
perturbation of the initial estimate that produces modeled
data, G(m), consistent with the error in the observations.
Small-scale features are only added if they are justified by
the observations. We refer to this as a ‘principled’ stopping
criterion. The second stopping criterion addressed here, the
recent-improvement threshold, is introduced below. It is not
a principled stopping criterion, in the sense that it depends
solely on the solution algorithm and is not informed by the
amount of observational error.
A different approach to solving inverse problems treats the

forward model as something that operates on probability
distribution. This is known as the Bayesian approach and
has been used in glaciology (e.g. by Raymond, 2007).
Data are represented as distributions (Gaussian in the
case of random and independent errors). The Bayesian
approach allows the use of a priori assumptions about
the model parameter distribution. It is particularly useful if
multimodal distributions are possible. In the case of Gaussian
distributions, the Bayesian solution is identical to using an L2

norm in one of the above inverse methods (Aster and others,
2005, ch. 11.2).
All regularization methods lead to a solution where

additional information was added to the system in order to

choose a preferred solution. This a priori information can
be the choice of a priori distributions in Bayesian methods
or the choice of norms in other methods. In this work we
use iterative methods where I(m) = J(m) is reduced until a
stopping criterion is reached. We will show that the a priori
information in this case is the choice of initial estimate, and
the choice of the iteration method, which also involves a
choice of norms. Together with the stopping criterion this
provides an implicit way of regularizing the problem.

Previous work
MacAyeal (1992) introduced iterative inverse methods to
glaciology. He described the basal stickiness using basis
functions whose resolution was restricted to four times the
ice thickness and consequently regularized the inversion.
The misfit functional was then minimized with the steepest
descent (SD) method. In later work (MacAyeal and others,
1995; Vieli and Payne, 2003; Vieli and others, 2006)
the tolerance was calculated but the misfit functional
was completely minimized with a conjugate gradient
method. Multiple sensitivity tests were performed, where
the solution of an inversion was only accepted if the
found minimum of the misfit functional was below the
tolerance. This means that every accepted solution is a
solution where a certain degree of overfitting occurred. The
majority of past studies used a misfit functional without
any regularization and a SD method, where the misfit
functional was minimized until the change in its value
in the past few iterations fell below a certain threshold
(Rommelaere and MacAyeal, 1997; Joughin and others,
2001, 2004, 2006; Larour and others, 2005; Khazendar and
others, 2007; Sergienko and others, 2008). We call this type
of stopping criterion the ‘recent-improvement threshold’.
More recently, Morlighem and others (2010) used Tikhonov
regularization and the minimization was performed with
a conjugate gradient method. Maxwell and others (2008)
introduced an accelerated Kozlov–Maz’ya iteration, where
two alternating well-posed forward problems with different
boundary conditions are solved. They employed a stopping
criterion similar to the discrepancy principle. Arthern
and Gudmundsson (2010) viewed the problem as an
‘inverse Robin problem’, also solved two well-posed forward
problems iteratively and used the same stopping criterion as
Maxwell and others (2008).
The current literature on iterative inverse methods that

solve for the basal stickiness is dominated by two mini-
mization methods: SD and the nonlinear conjugate gradient
(NLCG) method. In some studies smoothness assumptions
about the solution have been incorporated. However,
the majority of past studies did not apply or discuss
regularization. Without a smoothness term in the cost
functional or a principled stopping criterion, two undesirable
outcomes are possible. In the first case, the slowness of the
iterative method can lead to a premature termination and
therefore the solution does not exhibit the full resolution
that would be possible given the errors in the observations
(underfitting). This is especially relevant for the very slowly
converging SD method. In the second case, the iterations are
continued into a regime where overfitting occurs.

Outline
We use different combinations of iterative methods and
stopping criteria on two synthetic datasets: a simple
rectangular ice stream and a more realistic funnel-shaped
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ice stream. The three different minimization methods are
the SD method, the NLCG method and the incomplete
Gauss–Newton (IGN) method. The latter uses quadratic
approximations of the misfit functional, which are minimized
with the discrepancy principle. To our knowledge this
iterative method is new to the field of inverse problems, not
just to glaciology. We show that it leads to significantly faster
convergence than either the SD or the conjugate gradient
method. We implement these methods with two different
stopping criteria: the discrepancy principle and the recent-
improvement threshold.

METHODS
Forward model
The forward model explored in this work is the shallow-shelf
approximation (SSA), which was introduced by MacAyeal
(1989) and approximates large-scale flow of a weak-bedded
ice stream or a floating ice shelf. It is a vertically integrated
approximation of the full-Stokes equations derived by small
parameter arguments, and is given by
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where x and y are the Cartesian coordinates defining the
horizontal plane, u and v are the x and y components of
velocity, ρice is the density of ice, g is the acceleration due
to gravity, zs is the surface elevation, H is the ice thickness,
τb,x and τb,y are the components of the basal shear stress in
the x- and y-directions, and ν is the effective viscosity given
by
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B
2
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1
n−1, (5)
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defines an effective strain rate, D . Here B is the depth-
averaged flow rate factor and n is the flow law exponent,
set to n = 3. The small term, ε2ν , is introduced to linearize
the flow law for low stresses (εν = 1 × 10−40 s−1). We
use the finite-element method and Picard iteration (i.e.
computing solutions of the SSA with a viscosity determined
by the previous iteration) to find numerical solutions of the
forward model.
The basal shear stress is assumed to be a linear function

of velocity:

τb,x = γu and τb,y = γv , (6)

where γ ≥ 0 is a scalar function of position, called the
basal stickiness. One physical model for such a linear
relationship is a linearly viscous till layer underneath the ice.
A continuous spectrum of bed models from linear viscous to
perfectly plastic is implemented in our algorithm, but only
the viscous bed model is presented here. We solve for

√
γ

to enforce the positivity of γ.

Fig. 1. Velocity solutions (a) to smooth (red) and highly variable
(black) basal stickiness (b). The velocity solutions are indistinguish-
able. All plots have been non-dimensionalized.

This model and all the algorithms below were imple-
mented with Python, and FEniCS/DOLFIN (Logg and Wells,
2010) was used as the finite-element library.

The inverse problem
The inverse problem seeks to find the basal stickiness, γ (the
model,m), by solving Eqns (4) given the velocity components
u and v (data, d). For the purposes of this paper, all other
model parameters are assumed to be well known.
The ill-posedness of the inverse problem derives from

the viscous nature of ice flow, which implies a smoothing
property: high-frequency oscillations of bed stickiness are
not expressed at the surface. The SSA retains this property
of ice flow. For illustration, we calculate the flow through a
cross section of an ice slab of uniform thickness inclined
at a constant slope and with a smoothly varying basal
stickiness, solved with the one-dimensional SSA (Fig. 1). This
is then compared to the solution of the same problem with
a high-frequency component added to the basal stickiness
(black curve in Fig. 1). The two velocity responses are
indistinguishable. This damping effect increases with the
frequency of the oscillations, and illustrates the ill-posedness
of the inverse problem: when basal stickiness is reconstructed
from surface velocities, the damping becomes magnification,
and the magnification is unbounded as the frequency
increases.

Iterative inverse methods
The modeled surface-velocity field is calculated using the
SSA given a basal stickiness function, umod(γ). This model
velocity field can be compared with the observed surface
velocities, uobs, and we define the misfit functional

J(γ) =
1
2

∫
Ω

∣∣∣uobs − umod(γ)∣∣∣2 dΩ, (7)

where Ω is the area of the computational domain.
Reconstructing basal stickiness is a nonlinear inverse

problem, where iterative inverse methods are most suitable.
Any of the iterative methods applied in this study determine
a sequence, γk , of candidate minimizers of J, starting with
an initial estimate, γ init. At iteration k , a search direction,
δγk , is determined, and subsequently an inexact line search
is performed to find a scalar, αk > 0, such that J(γk+αk δγk )
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Fig. 2. Schematic iterative inverse method, where the forward model
is the SSA. For the iterative step (‘adjust’) we use three different
iterative methods. The initial estimate of the basal stickiness is γinit,
γk is the basal stickiness in the k th iteration, u

mod
k is the modeled

surface velocity in the k th iteration and uobs are the observed data.
The misfit is calculated between umodk and uobs; when the stopping

criterion is met, γmod is the final modeled basal stickiness.

is approximately minimized. Having found the approximate
minimizer in this direction, the candidate solution for the
next iteration is updated,

γk+1 = γk + αk δγk , (8)

and the algorithm is repeated (Fig. 2).
Iterative methods differ in how the search directions are

selected. We use three iterative methods: SD method, NLCG
method and IGN method.
For well-posed minimization problems iterations continue

until γk is deemed sufficiently close to the true minimizer.
For an ill-posed problem this is not a good strategy: the
true minimizer (if it exists) will be severely contaminated by
error. The iterations must be terminated early, and we discuss
two methods for doing this. One of these, the discrepancy
principle, is a core ingredient of the IGN method (Eqn (21)).

Stopping criteria
All three iterative methods used tend to correct large-
scale features first. Intuitively this happens because large-
scale features are less damped in the forward problem
and therefore more readily transferred to the surface. The
mathematical explanation is that all three methods use the
gradient of J to generate new search directions. As shown in
the Appendix, this gradient is computed using an elliptic, and
therefore smoothing, partial differential equation. The choice
of when to stop the iteration influences the scale of features
that appear in the solution. We performed experiments
using the discrepancy principle, which is widely used in
the inverse-problems community, as well as the recent-
improvement threshold, commonly used in the glaciology
community.

Discrepancy principle
The discrepancy principle stops the iterations when the
desired tolerance, T , is reached:

J(γ) ≤ λ2T 2. (9)

Here λ > 1 is needed for formal proofs of convergence;
we used λ = 1.05 in most experiments. The tolerance is
set to the expected value of all accumulated errors. If we
assume a Gaussian distribution for the random uncorrelated

observation errors we arrive at an expected value of

T =

√
2 σobs Γ

(
N+1
2

)
Γ
(
N
2

) , (10)

where σobs is the standard deviation of the distribution and
N is the number of observations. For a derivation of this
expression and a definition of the Γ function see Parker
(1994, p. 123). For large N the expression above can be
approximated by

T = σobs
√
N. (11)

The continuous version of this tolerance is T = σobs
√|Ω|,

where |Ω| is the area of the computational domain. In any
case, the standard deviation, σobs, is a necessary algorithm
input, here given in units of m a−1.
By stopping when the tolerance is first reached, we

obtain a minimally featured correction to the initial estimate
that is consistent with surface measurements. Continuing
iterations beyond this point leads to the introduction of
finer-scale features that are not supported by the quality
of the observations, and thus leads to overfitting. In real-
world applications, errors in observations are not the sole
contributors to uncertainties. Model simplifications and the
model parameter uncertainties that are part of the forward
model also need to be included. This is addressed below in
the Discussion section.

Recent-improvement threshold
Iterations are halted when the improvement in misfit
functional falls below a certain threshold, �:

J(γk+K )− J(γk ) ≤ �, (12)

where K is a fixed delay index.
This recent-improvement threshold stopping criterion is

commonly used in the glaciology community, but values
for � and K are generally not reported or discussed in the
literature. For the present study we used K = 10, as used
by Joughin and others (2004) (personal communication from
I. Joughin, 2010).
How this stopping criterion relates to errors in observations

or models is not known, and there is no guarantee that the
last iteration will not result in a significantly larger or smaller
discrepancy than the tolerance expected from the data.
Therefore, we do not recommend the recent-improvement
threshold as a stopping criterion and are merely assessing it
here because of its past use in the literature.

Choice of search directions
The three methods we used for finding a search direction all
make use of the gradient of J. The definition of the gradient
depends on a choice of scalar product on the space of
basal stickiness functions, and we used the familiar L2 scalar
product. With this choice, the gradient, ∇J(γ), is the unique
function such that for any search direction, δγ,

d
dt

∣∣∣∣
t=0
J(γ + tδγ) =

∫
Ω
(∇J(γ)) · (δγ) dΩ. (13)

In the case of the SSA, the computation of ∇J(γ) can be
done by solving an adjoint partial differential equation that
is similar to the SSA itself. Unlike most previous studies, we
use the complete adjoint for the SSA (see Appendix).
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Steepest descent
The most intuitive search direction is the direction of steepest
descent, which leads to the rule

δγk = −∇J(γk ). (14)

This method turns out to be inefficient for ill-posed problems,
but these inefficiencies can sometimes be tolerable with
respect to the specific problem being solved and the
available computing resources.

Nonlinear conjugate gradient method
The inefficiencies of steepest descent (for linear least-
squares problems) were addressed by Hestenes and Stiefel
(1952) with the conjugate gradient method (see also
J.R. Shewchuck, ‘An introduction to the conjugate gradient
method without the agonizing pain’, unpublished). There,
the search directions are modified from the directions
of steepest descent to take into account the directions
previously searched (Fig. 3). When augmented with the
discrepancy principle, the linear conjugate gradient method
is a standard tool for solving linear ill-posed problems
(Hanke, 1995).
The conjugate gradient method can be generalized

to nonlinear least-squares problems, although it is less
well understood in this case. There is more than one
generalization, and we use the Polak–Ribière rule (Press,
2007, p. 518) for finding search directions. We first compute
a scalar,

βk =
∫
Ω(∇J(γk )−∇J(γk−1))∇J(γk ) dΩ∫

Ω(∇J(γk ))2 dΩ
, (15)

and then a search direction,

δγk = −∇J(γk ) + βk δγk−1. (16)

The amount of additional coding required for the NLCG
method, compared with the SD method, is negligible.

Incomplete Gauss–Newton
The Gauss–Newton method is a standard tool for mini-
mizing nonlinear least-squares problems (Björck, 1996). We
describe here a modification, which we call the incomplete
Gauss–Newton (IGN) method, that can be applied to solving
ill-posed problems.
Let F be the map from basal stickiness, γ, to modeled

velocities, umod(γ). The misfit functional can then be written
as

J(γ) =
1
2

∫
Ω

∣∣∣uobs −F (γ)∣∣∣2 dΩ. (17)

Let F ′γ denote the linearization of F at γ, so
F (γ + δγ) ≈ F (γ) + F ′γ (δγ) (18)

for small variations δγ. The computation of F ′γ involves
solving a partial differential equation, as described in the
Appendix. In the Gauss–Newton method, at iteration k we
work with the linearized functional

Jlin(δγ) =
∫
Ω

∣∣∣uobs −F (γk )−F ′γ (δγ)∣∣∣2 dΩ, (19)

which is a linear least-squares problem and is an approx-
imation of the original nonlinear least-squares problem. The
minimizer, δγk , of Jlin is then used as a search direction.
For an ill-posed problem, however, the linearized misfit

functional, Jlin, is also ill-posed and cannot be minimized
completely. Therefore, for the ‘incomplete’ Gauss–Newton

Fig. 3. Projection of a misfit functional J onto a two-dimensional
(2-D) parameter space. The bold contour indicates the tolerance,
T 2, and every parameter combination along this contour is
an equally viable solution to the inverse problem. Parameter
combinations inside the tolerance are overfitting the data, and
parameter combinations outside the tolerance are underfitting the
data. Minimization paths of the SD (solid line) and NLCG (dashed
line) methods are displayed. IGN is not easily illustrated as a 2-D
projection and therefore is not shown here.

method we use the linear conjugate gradient algorithm, with
the discrepancy principle stopping criterion, to find regular-
ized minimizers of Jlin. Since Jlin is only an approximation of
J, there is no need to minimize it all the way to the tolerance
for the full problem (T in Eqn (11)). Instead, we remove only
a fraction of the remaining discrepancy. In particular, let Tk
be the discrepancy of the full problem at iteration k , so

∫
Ω

∣∣∣uobs − F (γk )∣∣∣2 dΩ = T 2k . (20)

In most cases, the discrepancy for Jlin is set to

Tlin =
1
2
(
Tk + T

)
, (21)

so that half the remaining discrepancy is removed when
minimizing Jlin. (In practice the fraction of discrepancy
to be removed is managed based on the success of the
previous iteration. The IGN algorithm will be described in
the mathematics literature in future papers.) The approximate
minimizer, δγ, of Jlin found using the conjugate gradient
method with the discrepancy principle is then used as the
search direction:

δγk = (approximate minimizer of Jlin). (22)

Illustration of steepest descent
Descriptively, the ill-posedness of a problem can be
associated with the existence of small singular values, and
this ultimately leads to greatly stretched contours of the misfit
functional (Trefethen and Bau, 1997, lecture 4). We illustrate
this by considering the projection of the misfit functional
onto a two-parameter space (Fig. 3).
The tolerance, which is determined by observational

errors, defines a contour along which all possible model
parameter solutions lie. Figure 3 also illustrates that the
selected solution of the minimization depends on the
initial estimate, the tolerance and the path taken. Reduced
observational errors result in a smaller tolerance, and
therefore less dependence on the initial estimate. The SD
(SD) method performs poorly in situations where the misfit
functional is greatly stretched along some dimensions, due to
the inefficient ‘zigzag’ path. In higher-dimensional parameter
spaces SD performs more poorly than indicated in Figure 3,
and may not reach the tolerance at all.
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γtrue

0

0.55 kPa m-1 a
u true

0

275 m a-1

Fig. 4. Map view of the magnitudes of γtrue and utrue for the
rectangular ice-stream example. Dimensions: 80 km × 160 km.
Mesh: 60× 120. Ice flows from top to bottom.

Synthetic ice-stream examples
In synthetic data examples, the quality of the reconstruction
can be evaluated by comparing the ‘true’ basal stickiness
with the modeled basal stickiness through the following
procedure:

1. assume a basal stickiness distribution, γ true;

2. calculate the corresponding surface velocity, utrue

(Eqn (4));

3. add Gaussian noise to simulate the random error in
surface velocity observations, uobs;

4. use uobs in the iterative inverse method to obtain γmod.

Rectangular ice stream
As a first simple example we define an idealized rectangular
ice stream of 80 km×160 km.We use a 60×120 rectangular
mesh; a Gaussian bump was used for γ with the center
at x0 = 60 km, y0 = 110 km, a minimum value of 5 ×
10−2 kPam−1 a, a maximum value of 0.5 kPam−1 a and a
standard deviation of 7× 103 m for the x- and y-directions.
The flow parameter was set to B = 700 a1/3 kPa; velocity
boundary conditions of zero were used on all boundaries
except for the lower boundary, where a stress-free boundary
was applied. The ice thickness decreases linearly from
1220m at the upstream boundary to 900m at the lower
boundary. Figure 4 shows the true basal stickiness, γ trueb , and
the resulting true surface velocity, utrue.

Funnel-shaped ice stream
To illustrate how the choice of iterative method and stopping
criterion can affect the conclusions of an experiment, we
recreated a synthetic ice-stream example from Joughin and
others (2004). They tested sensitivity to initial estimates by
considering a funnel-shaped ice stream with different sets of
γ init. They did not add any random noise to the simulated
surface velocities (uobs = utrue), but they re-gridded the
datasets for use in the inversion, which introduced minor
sampling differences. To imitate this effect, we used the
synthetic ice-stream geometry and γ true with 0.45 times the
gridpoints of Joughin and others (2004), then interpolated
these values to the full grid and used our forward model to
obtain utrue. The uobs were obtained from the forward model
on the full-grid synthetic dataset. In this manner we achieved

a slightly noisy set of simulated surface velocities with a
mean difference between uobs and utrue of 0.8ma−1. The
flow parameter was set to B = 450a1/3 kPa.

Evaluation of results
The synthetic datasets allow a direct comparison of the
final modeled basal stickiness function with the γ true used
to calculate uobs. To quantify the success of the inversion
we compute the mean, μ, and standard deviation, σ, of
the difference γ true − γmod. We use μ to assess biases
in the inversion and σ to evaluate the overall quality of
the reconstruction. Also included is the cross-correlation
coefficient, ρ, between γmod and γ true, to evaluate how well
the spatial structure is reproduced.

RESULTS
We present results from the inversion of the rectangular
ice stream and the funnel-shaped ice stream with three
different iterative methods: steepest descent (SD), nonlinear
conjugate gradient (NLCG) and incomplete Gauss–Newton
(IGN). For SD and NLCG two different stopping criteria were
used (the discrepancy principle and the recent-improvement
threshold). For IGN only the discrepancy principle was used
as a stopping criterion, because the discrepancy principle is
necessary for finding regularized minimizers of the linearized
misfit functional (Eqn (21)). All examples with the rectangular
ice stream use a constant basal stickiness as the initial
estimate. All givenmisfit and tolerance values are normalized
by the domain area and have units of m a−1:

Jnorm =

√
J
|Ω| , T norm =

T√|Ω| . (23)

Convergence rates
Each iteration includes a line search, and each line search
involves at least one, and sometimes several, forward-model
calculations. Figure 5a shows the relative performance of SD,
NLCG and IGN in solving a particular inverse problem. For
each iterative method, the outermost iteration is dominated
by the line search where nonlinear problems are solved, so
this is a good proxy for speed. IGN is consistently faster
than NLCG and SD, but the ratio of the convergence rates
depends on the problem set-up and the grid spacing. The
reconstructed basal stickiness when using the discrepancy
principle stopping criterion is virtually independent of the
method of finding a search direction (Table 1). A constant

Table 1. Evaluation of results using the discrepancy principle
(T norm = 2.8ma−1) with three different iterative methods. The
mean, μ, and standard deviation, σ, of γtrue − γmod are given in
kPam−1 a. The correlation coefficient between γtrue and γmod is
denoted by ρ. Themisfit values, Jnorm, are normalized by the domain
area (Eqn (23)) and have units of m a−1

SD NLCG IGN

μ −8.3× 10−4 −9.7× 10−4 −9.0× 10−4
σ 0.014 0.013 0.010
ρ 0.98 0.98 0.97
Jnorm 2.9 2.9 2.8
Number of 113 24 7
line searches
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0.27 kPa m-1 a

Fig. 5. (a) Convergence rates with the discrepancy principle and the
rectangular ice stream for the three iterative methods. Each marker
depicts a completed line search and the dashed line shows the
normalized tolerance, T norm. The algorithm stops when λT norm

is reached. (b) Map view of γtrue − γmod for the three methods
(see Fig. 4 for utrue and γtrue). Areas where the inversion solution
matches the ‘true’ basal stickiness well are colored green.

initial estimate of basal stickiness and a 1% error in the
simulated surface velocities were used.

Stopping criteria
Using the discrepancy principle for all three iterative
methods yields minimal differences in basal stickiness
solutions (Fig. 5b). Green colors in the difference plots show
areas where the inversion solution matches the ‘true’ basal
stickiness well. Even though the figure might suggest that the
IGN solution is superior to the other two solutions, inspection
of the statistics in Table 1 shows that the IGN solution obtains
a marginally better fit at the expense of a slightly worse
correlation coefficient.
The recent-improvement threshold stopping criterion was

directly implemented in SD and NLCG, and the results for
an arbitrarily chosen threshold value, of � = 1ma−1, are
shown in Figure 6. The solution for SD does not reach the
full possible resolution, whereas NLCG coincidentally stops
at the same normalized misfit value as in Figure 5.
The IGN algorithm is intrinsically joined to the idea of

a discrepancy principle. Therefore, the recent-improvement
threshold stopping criterion could not be implemented in
the algorithm. But when iterations are continued past the
actual tolerance, T norm0 (by setting T norm = 0.92T norm0 ), a
clear slowdown of the convergence can be observed and
the resulting basal stickiness is overfitted (Fig. 6). The lower
correlation coefficient (ρ = 0.89) reflects the small-scale
features that are not present in the ‘true’ solution (Table 2).

0.27 kPa m-1 a

Fig. 6. (a) Convergence rate for SD and NLCG with the recent-
improvement threshold (� = 1ma−1). For comparison the IGN
method was continued past the discrepancy principle tolerance by
setting T norm = 0.92 T norm0 . T norm0 is shown as a dashed line for
reference. (b) Differences between the true and the modeled basal
stickiness for SD, NLCG and IGN. Table 2 evaluates these results.
There was a constant initial estimate of basal stickiness and a 1%
error in the simulated surface velocities.

Fitting to known error
To assess the influence of error on the basal stickiness
reconstruction, we performed inversions on the rectangular
ice stream where the standard deviation of the added
Gaussian noise is 1%, 5% and 15% of the maximum
value of utrue. The standard deviation of the added random
error determines the value of the tolerance used (Eqn (11)).
Increased error in the simulated surface velocities leads to
less capability of the model to resolve the irregularity in the
velocity due to the Gaussian bump in basal stickiness (Fig. 7;
Table 3).

Table 2. Evaluation of results using the recent-improvement
threshold (� = 1ma−1) for SD and NLCG (Fig. 6). For comparison
the IGN method was continued past the discrepancy principle
tolerance (T norm = 2.8ma−1) until a visible slowdown was
reached. (Variable description and units as in Table 1)

SD NLCG IGN

μ −9.4× 10−4 −8.8× 10−4 −1.5× 10−3
σ 0.029 0.012 0.026
ρ 1.00 0.98 0.89
Jnorm 4.7 2.9 2.7
Number of 31 31 15
line searches
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Fig. 7. Symptoms of error in the simulated surface velocities on the
resolving power of the inversion. Map view of the rectangular ice
stream that flows from top to bottom. We used the IGN method and
a constant initial estimate of basal stickiness. Each column shows
(a) the observed velocities, (b) the modeled velocities and (c) the
differences between the true and the modeled basal stickiness for
that particular run. The standard deviation of the added Gaussian
noise is 1%, 5% and 15% of the maximum value of utrue.

Symptoms of overfitting
To demonstrate how the data may be overfit we performed a
series of experiments where the discrepancy principle was
used as a stopping criterion. Instead of using the actual
normalized tolerance, T norm0 , we only used a fraction, θ, of
the tolerance. This leads to a tolerance, T norm = θ T norm0 ,
where 0 ≤ θ ≤ 1. Therefore the iterations continue until that
fraction of the error is matched in the modeled velocities;
the values used are θ = 0.96, 0.94 and 0.93.
In the last column of Figure 8 the error in the simulated

surface velocities is clearly visible in the modeled velocity,

Table 3. Evaluation of results using 1%, 5% and 15% added error
in the simulated surface velocities (Fig. 7). (Variable description and
units as in Table 1)

Added error: 1% 5% 15%
T norm 2.8ma−1 13.8m a−1 41.3m a−1

μ −8.6× 10−6 −1.5× 10−5 −2.3× 10−5
σ 1.0× 10−4 2.9× 10−4 4.2× 10−4
ρ 0.98 0.87 0.62
Jnorm 2.8 14.2 42.8
Number of 8 5 3
line searches
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Fig. 8. Symptoms of overfitting the data. Map view of the rectangular
ice stream that flows from top to bottom. We used the IGN method
and a constant initial estimate of basal stickiness. Each column
shows (a) the observed velocities, (b) the modeled velocities and
(c) the differences between the true and modeled basal stickiness
for that particular run. Values of θ = 0.96, 0.94 and 0.93 were used
when setting the normalized tolerance, T norm = θ T norm0 . All three
runs have 10% error in the simulated surface velocities.

and the resulting basal stickiness contains very unrealistic
features. Table 4 evaluates the results.

Dependence on initial estimates
We examined the sensitivity to different initial estimates by
repeating synthetic inversions, following Joughin and others
(2004). Four different initial estimates are used: γ true (‘truth’),
γ true with added noise that has a minimum wavelength
of 10 km (‘noisy’), γ corresponding to 50% of the driving
stress (‘1/2 driving’) and a constant γ (‘constant’), as shown
in Figure 9a. To recreate the previous results, we inverted

Table 4. Evaluation of results using three different amounts of
overfitting (Fig. 8). The actual normalized tolerance for the 10% error
in the simulated surface velocities that was used in this example is
T norm0 = 27.5. (Variable description and units as in Table 1)

θ used in T norm = θ T norm0

0.96 0.94 0.93

μ −8.0× 10−6 −2.3× 10−5 −3.0× 10−4
σ 2.3× 10−4 3.2× 10−4 3.9× 10−3
ρ 0.91 0.84 0.15
Jnorm 27.5 27.3 26.8
Number of 4 6 39
line searches
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for the basal stickiness with the SD method and a recent-
improvement threshold of 10ma−1 over ten iterations. This
arbitrary value for the threshold gave results that resembled
the original work by Joughin and others (2004).
Figure 9b shows the resulting basal shear stress difference

for the SD run that is comparable to figure 3 of Joughin and
others (2004). Joughin and others (2004) report a value of
ρ = 0.99 for the ‘truth’ example, but their figure shows
discrepancies between the resulting basal shear stress and
the ‘true’ value along the edges of the ice stream, which is
also reflected in the high reported normalized misfit value
of Jnorm = 3ma−1. Our SD ‘truth’ run exhibits better
correspondence between the modeled and true basal shear
stress: ρ = 1 and Jnorm = 1.1ma−1 (Table 5). These
improved results are possibly due to the sampling differences
mentioned in the Methods section and to our use of the
complete adjoint for the SSA equations.
We also used the IGN method with the discrepancy

principle (T norm = 1ma−1 with λ = 1.1) as a stopping
criterion on the same synthetic dataset as above. This leads
to the basal shear stress differences depicted in Figure 9c.
The tolerance value T norm = 1ma−1 was chosen as a
conservative estimate of standard deviation for the set of
simulated surface velocities with a mean difference between
uobs and utrue of 0.8ma−1 (Methods section).

DISCUSSION
Convergence rates and stopping criteria
The higher efficiency of IGN (Fig. 5) makes it suitable
for use with higher-order forward models and in larger
domains. However, this higher convergence rate also
makes it more important to choose the tolerance in the
discrepancy principle correctly, because we reach the regime
of overfitting faster.
The iterative solution of an inverse problem is predicated

on three choices: an initial estimate, an iterative method
and a stopping criterion. The experiments in Figure 5 all
use the same initial estimate and tolerance, and the three
methods are all based on a variation of the SD method. It
should not, therefore, be surprising to obtain near-identical
solutions (Table 1). The primary difference between the
methods is the rate of convergence and thus the efficiency
of the algorithm.
However, with uninformed stopping criteria, such as the

recent-improvement threshold, the basal stickiness solutions
for the different methods can show different features for the

b

a

c

Fig. 9. Synthetic ice-stream example reproduced from Joughin and
others (2004). Ice flows from top to bottom. (a) Different initial
estimates of basal shear stress: ‘truth’, with added noise (‘noisy’),
50% of the driving stress (‘1/2 driving’) and a constant τb (‘constant’).
(b) Difference between true and modeled basal shear stress for
SD method with a recent-improvement threshold of 10ma−1 in
the past ten iterations. (c) Difference between true and modeled
basal shear stress for IGN method with a normalized tolerance of
T norm = 1ma−1 with λ = 1.1.

same threshold (Fig. 6). The amount of observation error is
not used by the algorithm; instead it is stopped when it slows
down. This occurs at different times for the different methods,
so the solutions can range from underfitting to overfitting
(Table 2).

Table 5. Evaluation of results using four different initial estimates of basal shear stress and two different iterative methods: recent-improvement
threshold (� = 10ma−1) for SD and discrepancy principle (T norm = 1ma−1 with λ = 1.1) for IGN (Fig. 9). (Variable description and units
as in Table 1.) The variables μ, σ and ρ are calculated only over the fast-moving parts of the ice stream (area moving faster than 300ma−1),
whereas Jnorm covers the entire domain

‘truth’ ‘noisy’ ‘1/2 driving’ ‘constant’

SD IGN SD IGN SD IGN SD IGN

μ 0.060 0.010 0.243 −0.143 −0.407 −0.062 −0.345 −0.065
σ 0.17 0.07 5.94 3.07 2.71 1.43 3.20 1.50
ρ 1.00 1.00 0.66 0.90 0.92 0.98 0.88 0.97
Jnorm 1.1 0.8 19.4 1.1 14.5 1.0 15.0 1.1
Number of 11 2 31 15 21 10 21 14
line searches
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For larger and more-complex systems the SD method will
need a large number of iterations to reach the tolerance in
the discrepancy principle and may not be a practical method
to use. A probable reason for the popularity of the SD is that
its convergence rate is slow enough that it does not reach the
regime of overfitting. This can be an advantage because then
the choice of stopping criterion is not crucial. However, it is
likely to lead to underfitted solutions.

Fitting to known error
When using the discrepancy principle as the stopping
criterion the iterations stop before the model attempts to
fit errors in the data. Large errors in observations lead to
a large tolerance, T , which results in a smaller number of
line searches (Table 3). Consequently, the algorithm only
makes large-scale adjustments to the initial estimate of
basal stickiness, and the resulting basal stickiness has a
smooth appearance as long as the initial estimate itself
was smooth (Fig. 7). The quality of the reconstruction
decreases as the observation error increases (Table 3; Fig. 7);
however, this decreased quality does not manifest itself in
a noisier appearance of the solution. With larger error in
the observations we expect lower resolution in the solution,
without any over- or underfitting.

Symptoms of overfitting
Fitting observation errors in the velocities means that we are
trying to generate small-scale abrupt features at the surface
by modifying the basal stickiness. The damping properties of
the SSA lead to a magnification of these abrupt changes in
the basal stickiness. This overfitting can be seen in the last
column of Figure 8. Even though the SSA has the tendency to
dampen and smooth jumps in basal stickiness, it is possible
(at least in the simple rectangular ice stream used here) to
fit a certain amount of observation error in the modeled
surface velocities (Fig. 8b, last column). The positivity of the
basal stickiness adds some constraint to the reconstruction
but there is no other bound on the basal stickiness, so
the features can get unrealistically large in order to fit the
given velocities at the surface. Increased overfitting requires
a sharp increase in the number of line searches necessary to
produce the unrealistically large features in basal stickiness.
The smoothing properties of the SSA make it difficult to fit
observation errors, especially with the added constraint of
positive basal stickiness. This leads to the small range of
chosen θ values for the overfitting experiment (θ = 0.96,
0.94 and 0.93).

Dependence on initial estimates
Joughin and others (2004) found that their inversion results
depended on their initial estimates, even in synthetic
examples with negligible error. We suspect that this
dependence on initial estimates is due to the use of
the recent-improvement threshold as a stopping criterion,
together with the slowly converging SD method and the
resulting underfitting.
We reproduced the results shown in figure 3 of Joughin

and others (2004) with the SD method and repeated the
same experiment with the IGN method. Joughin and others
(2004) concluded from their SD run that the ‘1/2 driving’
initial estimate gives the best basal stickiness solution, and
the same conclusion can be drawn from our SD results
(Table 5). However, our IGN experiment (Fig. 9c) shows a
negligible difference between the solutions for ‘constant’ and

‘1/2 driving’ initial estimates, and there is no dependence
on initial estimates for these two cases when using IGN
with the discrepancy principle. This shows the importance of
achieving the maximum possible resolution. Only the ‘noisy’
initial estimate results in a slightly worse reconstruction when
using IGN. The small-scale features that are present in the
initial estimate are not corrected, which suggests that the
initial estimate should not contain unjustified small-scale
features. Using the SD method in this example, we were not
able to obtain the resolution achieved by the IGN algorithm,
even after allowing it to run for 1000 iterations.
Smoothness of a reconstruction should not be interpreted

as a physical property of the basal stickiness, however,
but rather as a lack of information about the solution; any
additional features in the solution should be justified by
the data. If in a certain situation it is known that the basal
stickiness changes abruptly at a point in space, this additional
information should be incorporated into the initial estimate.
If the abrupt change is consistent with the observations at the
surface, it will be preserved through the iterations to the final
solution; if it is not consistent it will be corrected.

Modeling error
All examples in this work are synthetic examples, where
the error is well known and the tolerance is well defined.
Real-world situations are more complex, because in addition
to observational error, there are errors introduced by the
simplifications of the physical model (modeling errors),
including the prescribed parameters therein. The accuracy of
the prescribed parameters can sometimes be estimated, but
other modeling errors are harder to quantify. In future work,
synthetic experiments comparing solutions of an inverse
problem using a full-Stokes model to solutions using a
simplified model, such as the SSA, could give a bound
on modeling errors. Additionally, the SSA is a low-order
approximation of the Stokes equations, and residual terms
can be calculated that give an upper bound for the modeling
error. In many cases, modeling errors will quite possibly be
larger than observational errors, especially when forward
model parameters, such as the ice thickness, are assumed
to be error-free. Gudmundsson and Raymond (2008) note
that basal stickiness is highly sensitive to un-modeled errors
in basal topography, which highlights the importance of
incorporating modeling errors by adjusting the stopping
criterion in iterative inverse methods or by inverting for more
parameters. In the case of Gaussian assumptions for model
and observation errors, modeling and observational errors
simply combine by addition of the respective covariance
matrices, even when the forward problem is nonlinear
(Tarantola, 2005, p. 35, example 1.36).
The abrupt change in slope of the IGN misfit curve in

Figure 6 indicates the possible validity of the often-used ‘L-
curve criterion’ (Aster and others, 2005, p. 91). This refers to a
procedure in which the tolerance is chosen at the point of the
‘corner’ in the misfit curve, defined by the point of maximum
curvature. It defines a point at which further improvements
to the misfit functional come at great cost to the norm of the
solution. The sharpness of the corner will vary from problem
to problem and it is not guaranteed that a clear corner will
even be present. In real-world examples, where the modeling
error is difficult to quantify, a rapidly converging method
might give a clear point of slowdown that can serve as an
estimate of the combined error in model and observations.
While our results indicate that such an approach would be
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valid in our case, it needs to be stressed that the ‘L-curve
criterion’ has no physical justification and has proven to be
non-convergent, in the sense that the selected regularization
parameter vanishes too rapidly as the noise-to-signal ratio in
the data goes to zero (Hanke, 1996).

CONCLUSIONS
Iterative inverse methods paired with a principled stopping
criterion can be used to regularize and solve inverse
problems. By stopping when a tolerance is reached, we
obtain a minimally featured correction to an initial estimate
that is consistent with observed velocities. Every ill-posed
inverse problem needs to be regularized and every method
of regularization requires additional information, in order
to stably find a unique solution. The preferred approach
presented here is the discrepancy principle stopping criterion
together with the incomplete Gauss–Newton method, which
is intrinsically tied to the discrepancy principle. The main
advantage is that additional information needed to regularize
the problem is very natural: all that is required is an initial
estimate of the basal stickiness and a desired level of misfit,
expressed as a normalized tolerance in ma−1.
Errors in velocity observations influence the basal sticki-

ness solution. A stopping criterion that is informed about
the amount of observation error will result in decreased
resolution with increased observation error. Because the
allowed misfit between observed and modeled velocity is
larger with greater observation error, the algorithm will
stop after correcting large-scale features. Increased noise or
measurement error leads to a less-detailed solution, rather
than a solution polluted with unphysical details.
Small-scale features in basal stickiness might and most

likely do exist, but introducing small-scale features through
overfitting must be avoided. Any features in basal stickiness
should be justified by surface observations; consequently,
any features in the initial estimate need to be based on prior
information about the basal stickiness. If no prior information
exists, a constant initial estimate is the recommended
choice. For solutions of inverse problems, smoothness should
be interpreted as a lack of information in the system to
determine smaller-scale features.
Inevitable observation and model errors result in a risk of

overfitting. Errors in observations can be largely magnified
in the basal stickiness, and especially with faster-converging
methods, such as incomplete Gauss–Newton this regime
of overfitting can be reached easily. Consequently, the
choice of a principled stopping criterion becomes even more
important. The SDmethod, however, has a slow convergence
rate. Therefore, using SD prevents overfitting; however, it
also inhibits us from reaching full resolution in the basal
stickiness, and increases the dependence on initial estimates.
The benefits we observed using IGN may be of benefit

to other nonlinear ill-posed inverse problems. An open-
source implementation of the IGN algorithm is available
as a part of ‘siple: a small inverse problems library’,
which can be downloaded along with its tutorial from
https://github.com/damaxwell/siple.
These conclusions are valid for any situation where errors

are present in observations or in the model (which is always
the case in real-world situations), even if only numerical
errors are present. In all these situations there will be a
possibility of over- or underfitting the data.
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APPENDIX: THE LINEARIZED SSA, ITS ADJOINT
AND THE GRADIENT OF J
The gradient computation needed for minimizing the misfit
functional, J, is usually described in the glaciology literature
using the framework of constrained functional minimization
and Lagrange multipliers. We give an alternative derivation
that allows us to also describe the PDE computations used
by the incomplete Gauss–Newton method.
To write the SSA more compactly we introduce some

notation. For a velocity field u = (u1,u2), the symmetric part
of the derivative of u is D(u), so

Diju =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (A1)

Then divu = trDu = ∂iui ; the summation convention
applies wherever an index is repeated. Given two square
matrices, A = [Aij ] and B = [Bij ], we define

A · B = AijBij (A2)

and |A|2 = A ·A. The viscosity appearing in the SSA can then
be written as

ν = ν(u) =
B
2

[
ε2ν +

1
2
|Du|2 + 1

2
(divu)2

](1−n)/2n
. (A3)

Assuming a linear basal stress, τb = −γu = −γ(u, v ), and a
driving stress, f = −ρicegH∇zs, the SSA becomes

−∂i
[
2ν(u)H

(
Diju+ divu δij

)]
+ γuj = fj , (A4)

where δij = 1 if i = j and is zero otherwise.
Let SSA(u) denote the left-hand side of Eqn (A4). The

linearized SSA (at u) is given by

Lu(w) =
d
dt

∣∣∣∣
t=0
SSA(u+ tw). (A5)

So, if t is small,

SSA(u+ tw) ≈ SSA(u) + tLu(w). (A6)

A computation starting from Eqn (A5) shows that

Lu(w) = −∂i
[
2ν(u)H

(
Dijw + divw δij

)]
−∂i

[
2ζ(u,w)H

(
Diju+ div u δij

)]
+ γwj ,

where

ζ(u,w) =
(
1− n
2n

)
B
2

[
ε2ν +

1
2
|Du|2 + 1

2
(divu)2

] 1−n
2n −1

× (
Du ·Dw + divudivw)

.

If the SSA is being solved with periodic or Dirichlet boundary
conditions, then Lu is solved with corresponding periodic
or zero Dirichlet boundary conditions. The term involving
ζ(u,w) has typically been omitted in previous studies with
the SSA, but it is straightforward to include when it is written
as above and when using the finite-element method for the
numerical computations. Goldberg and Sergienko (2011)
include the term ζ(u,w) for a hybrid ice flow model and
in some cases observed improved convergence rates for
steepest descent inversion using the complete versus the
incomplete adjoint.
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Let F (γ) be the map from basal stickiness to the
corresponding solution, u, of the SSA, Eqn (A4). Implicitly
differentiating Eqn (A4) with respect to u and γ it follows
that the derivative of F at γ in the direction δγ (i.e. F ′γ (δγ))
is the vector field, w, solving

Luw = −δγ u, (A7)

where u = F (γ). The map, F ′γ , described here is used
crucially in the incomplete Gauss–Newton method.
All the algorithms we use employ the L2 gradient of the

misfit functional

J(γ) =
1
2

∫
Ω

∣∣∣uobs −F (γ)∣∣∣2 dΩ. (A8)

Recall that the L2 gradient,∇J(γ), is the unique function such
that for any variation δγ,

d
dt

∣∣∣∣
t=0
J(γ + tδγ) =

∫
Ω
(∇J(γ)) · (δγ) dΩ. (A9)

The derivative of J at γ in the direction δγ is

J ′γ (δγ) =
∫
Ω

(
uobs −F (γ)

)
· F ′γ (δγ) dΩ

=
∫
Ω

[
(F ′γ )∗

(
uobs −F (γ)

)]
δγ dΩ,

(A10)

where (F ′γ )∗ is the adjoint of F ′γ . So
∇J(γ) = (F ′γ )∗

(
uobs −F (γ)

)
. (A11)

To compute the gradient, we therefore need the adjoint of
F ′γ . From Eqn (A7),

F ′γ (δγ) = L−1u (−u δγ) . (A12)

Just as for the matrix equation, (A−1B)∗ = B∗(A−1)∗, it
follows that

(F ′γ )∗(r) = −u ·
(
L−1u

)∗
(r) (A13)

for any velocity field, r. But Lu is a self-adjoint PDE, so

(F ′γ )∗(r) = −u ·
(
L−1u

)
(r). (A14)

In summary, to compute ∇J for a given γ,

1. compute u = F (γ) (i.e. solve the SSA with basal stickiness
γ), and

2. find the vector field, z, solving the linear equation, Luz =
uobs − u.

Then ∇J(γ) is the scalar field, −u · z, where u and z are
computed in steps 1 and 2 above.
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