BULL. AUSTRAL. MATH. SOC. VOL. 2 (1970), 289-297.

Maximal sum-free sets in finite abelian groups

A. H. Rhemtulla and Anne Penfold Street

A subset S of an additive group G is called a maximal sum-free set in G if $(S+S) \cap S = \emptyset$ and $|S| \ge |T|$ for every sum-free set T in G. It is shown that if G is an elementary abelian p-group of order p^n , where $p = 3k \pm 1$, then a maximal sum-free set in G has kp^{n-1} elements. The maximal sum-free sets in Z_p are characterized to within automorphism.

Given an additive group G and non-empty subsets S, T of G, let S + T denote the set $\{s+t; s \in S, t \in T\}$, \overline{S} the complement of S in G and |S| the cardinality of S. We call S a sum-free set in G if $(S+S) \subseteq \overline{S}$. If, in addition, $|S| \ge |T|$ for every sum-free set T in G, then we call S a maximal sum-free set in G. We denote by $\lambda(G)$ the cardinality of a maximal sum-free set in G.

If G is a finite abelian group, then according to [2], $2|G|/7 \leq \lambda(G) \leq |G|/2$. Both these bounds can be attained since $\lambda(Z_7) = 2$, $\lambda(Z_2) = 1$, where Z_n denotes the cyclic group of order n. Exact values of $\lambda(G)$ were given by Diananda and Yap [1] for |G|divisible by 3 or by at least one prime $q \equiv 2$ (3). When every prime divisor of |G| is a prime $p \equiv 1$ (3) then, by [1],

(1) $|G|(m-1)/3m \le \lambda(G) \le (|G|-1)/3$,

Received 13 February 1970. The preparation of this paper was partly supported by the National Research Council of Canada grant No. A-5299. The second author is Izaac Walton Killam Post-Doctoral Fellow.

where *m* is the exponent of *G*. If *G* is cyclic, $\lambda(G)$ attains its upper bound. It was shown in [1] that $\lambda(G)$ attains its lower bound when *G* is the direct sum of two cyclic groups of order 7. Here we prove the following:

THEOREM 1. If G is an elementary abelian p-group, $|G| = p^n$, p = 3k + 1, then $\lambda(G) = kp^{n-1}$.

In [6], Yap characterized all the maximal sum-free sets in Z_p , where p is prime and $p \equiv 2$ (3). Here we do the same when $p \equiv 1$ (3) in the following:

THEOREM 2. Let $G = Z_p$ where p = 3k + 1 is prime. Then any maximal sum-free set S may be mapped, under some automorphism of G, to one of the following:

(i) {k+1, k+2, ..., 2k};
(ii) {k, k+1, ..., 2k-1};
(iii) {k, k+2, k+3, ..., 2k-1, 2k+1}.

290

DEFINITIONS. Following Vosper [4], [5], we shall call a set $A \subseteq Z_n$ a standard set if the elements of A are in arithmetic progression. If $A, B \subseteq Z_n$ are standard sets with the same common difference, then (A, B)is a standard pair.

Proof of Theorem 1. We first consider the case when $|G| = p^2$ and then generalize.

(a) Let $G = \langle x_1, x_2; px_i = 0, i = 1, 2; x_1 + x_2 = x_2 + x_1 \rangle$.

Let X_i denote $\langle x_i \rangle$ and let S be a maximal sum-free set in G.

G has (p+1) subgroups of order p, none of which contains more than k elements of *S* by (1). But $\lambda(G) \geq kp$ and the union of these (p+1) subgroups is the whole of *G*; hence at least one of these subgroups contains k elements of *S*. We assume this subgroup to be X_1 .

So $G = \bigcup_{i=0}^{p-1} (X_1 + ix_2)$, and we denote by S_i the subset of X_1 such i=0

https://doi.org/10.1017/S000497270004199X Published online by Cambridge University Press

that $S_i + ix_2 = S \cap (X_1 + ix_2)$. In particular $|S_0| = k$. If $|S_i| \le k$ for every $i = 1, \ldots, p-1$, then $|S| \le kp$. But $|S| \ge kp$ by (1) and the theorem follows.

So suppose $|S_i| > k$ for some i. We may choose x_2 so that $|S_1| > k$. Since S is sum-free,

(2)
$$(S_i + S_j) \cap S_{i+j} = \emptyset$$

and, in particular,

$$(3) \qquad (S_0 + S_i) \cap S_i = \emptyset .$$

Hence

(4)
$$|S_0 + S_1| \le p - |S_1|$$
.

By the Cauchy-Davenport theorem [3],

(5)
$$|S_0| + |S_1| - 1 \le |S_0 + S_1|$$
.

By (4) and (5), $2|S_1| \leq p + 1 - |S_0|$ so that $|S_1| \leq k+1$. Since we assumed $|S_1| > k$, we must have $|S_1| = k+1$. If (S_0, S_1) is not a standard pair, then by Vosper's Theorem [4], [5], $|S_0+S_1| \geq |S_0| + |S_1| = 2k+1$. But by (4), $|S_0+S_1| \leq 2k$, a contradiction. Hence (S_0, S_1) is a standard pair with difference d and without loss of generality, we may assume that d = 1.

Since S_0 is sum-free, we have three possibilities: $S_0 = \{k, \ldots, 2k-1\}$ or $\{k+1, \ldots, 2k\}$ or $\{k+2, \ldots, 2k+1\}$. Since $S_1 = \{l, l+1, \ldots, l+k\}$ for some $l \in X_1$, neither k nor 2k + 1belongs to S_0 . Hence

(6)
$$S_0 = \{k+1+r; r = 0, 1, \dots, k-1\}$$

and we may choose x_2 so that

$$S_1 = \{k+1+r; r = 0, 1, \dots, k\}$$

Since S is sum-free, (3) bounds the range of each S_{i} ; more

precisely, for each *i* there exists $\alpha_i \in S_i$ such that

$$S_{i} \subseteq \{\alpha_{i} + r; r = 0, 1, ..., k\}$$

We call S_i a small-range set if for some $m_i > 0$, we have

$$S_i \subseteq \{\alpha_i + r; r = 0, 1, \ldots, k - 1 - m_i\}$$

and $\alpha_i + k - 1 - m_i \in S_i$. Similarly we call S_i a normal-range set if $S_i \subseteq \{\alpha_i + r; r = 0, ..., k - 1\}$ and $\alpha_i + k - 1 \in S_i$, and a big-range set if $S_i \subseteq \{\alpha_i + r; r = 0, ..., k\}$ and $\alpha_i + k \in S_i$. By (2) we have

(7)
$$S_{i+1} \subseteq \{\alpha_i - m_i + r; r = 0, 1, ..., k + m_i\}$$

when S_i is a small-range set;

(8)
$$S_{i+1} \subseteq \{\alpha_i + r; r = 0, \ldots, k\}$$

when S_i is a normal-range set;

(9)
$$S_{i+1} \subseteq \{\alpha_i + 1 + r; r = 0, ..., k-1\}$$

when S_{i} is a big-range set.

Now consider the movement of α_i for i = 1, 2, ..., p-1. If S_i is a big-range set then, by (9), $\alpha_{i+1} > \alpha_i$. If S_i is a normal-range set then, by (8), $\alpha_{i+1} \ge \alpha_i$. If S_i is a small-range set then, by (7), $\alpha_{i+1} \ge \alpha_i - m_i$. In this last case, α_{i+1} may be at most m_i steps closer to 0 than α_i is. But then the contribution of S_i to S is m_i elements fewer than the average contribution of k elements. Since $|S| \ge kp$, we must make up these m_i elements, one each from m_i of the big-range sets. But by (2) and the Cauchy-Davenport theorem, the cosets containing big-range sets themselves form a sum-free set in G/X_1 , so that there are at most k big-range sets. Hence $m = \sum_{i=0}^{p-1} m_i \le k$, and $\alpha_i \ge k+1-m$ for all i = 1, ..., p-1, where $k+1 = \alpha_0$ by (6). Hence $\alpha_i \geq 1$ for all i. A similar argument, using the relation $(S_i - S_1) \cap S_{i-1} = \emptyset$ in place of (2), shows that the right hand end-point of S_i never exceeds p - 1 for all i. Hence $0 \notin S_i$, $S \cap X_2 = \emptyset$ and $|S| \leq kp$.

(b) Now let G be an elementary abelian group of order p^n . Then G has $(p^{n}-1)/(p-1)$ subgroups of order p, none of which contains more than k elements of a maximal sum-free set S. But $\lambda(G) \geq kp^{n-1} > (k-1)(p^{n}-1)/(p-1)$ so that at least one of these subgroups contains k elements of S, and we denote this subgroup by X. Let Y denote the subgroup complementing X in G. Thus Y is an elementary abelian group of order p^{n-1} and has $(p^{n-1}-1)/(p-1) = \rho$ subgroups Y_i of order p.

Now $|S \cap X| = k$ and, by (a), $|S \cap (X+Y_i)| \le kp$ for all i. Thus

$$\begin{split} |S| &= \sum_{i=1}^{p} |S \cap (X + Y_i)| - (p-1)k \\ &\leq pkp - (p-1)k \\ &= pk(p-1) + k \\ &= kp^{n-1} . \end{split}$$

This completes the proof of the Theorem.

We now establish the following result which we need in the proof of Theorem 2.

LEMMA. Let $G = Z_n$ and let S be a sum-free set in G satisfying (10) |S| = k, $\overline{S} = S + S$ and S = -Swhere n = 3k+1. Then I $(S+g) \cap S = \emptyset$ if and only if $g \in S$; II if $|(S+g) \cap S| = 1$ for some $g \in G$, then $|(S+g^*) \cap S| \ge k - 3$ where $g^* = 3g/2$ and $\pm g/2 \in S$; III if $|(S+g) \cap S| = \lambda > 1$ for some $g \in G$, then there exists

$$g^* \in G$$
 such that $|(S+g^*) \cap S| \geq k - (\lambda+1)$.

Proof. Part I is trivial. To show II, let $|(S+g) \cap S| = 1$ for some $g \in G$. Then there exist $s_1, s_2 \in S$ such that $s_1+g = s_2$. But S = -S, hence $-s_2+g = -s_1 \in S$ so that $s_2 = -s_1$ and $g = -2s_1$. Now $S \cap (S-s_1) = (S-s_1) \cap (S-2s_1) = (S-2s_1) \cap (S-3s_1) = \emptyset$ and $|S \cap (S-2s_1)| = |(S-3s_1) \cap (S-s_1)| = 1$ so that $|S \cap (S-3s_1)| \ge k-3$. Take $g^* = -3s_1$ to complete the proof of II.

By hypothesis of III, there exist $s_1, s_2 \in S$ such that $s_1+g, s_2+g \in S$ and $s_1 \neq s_2$. Hence $\emptyset = (S+s_1) \cap S = (S+s_2) \cap S = (S+g+s_1) \cap S$ $= (S+g+s_2) \cap S = (S+g+s_1) \cap (S+g) = (S+g+s_2) \cap (S+g)$.

Thus $|(S+g+s_1) \cap (S+g+s_2)| \ge k - (\lambda+1)$, with equality only in the case when $S \cup (S+g) \cup (S+g+s_1) \cup (S+g+s_2) = G$. Choose $g^* = s_1 - s_2$ to complete the proof.

Proof of Theorem 2. If S is a standard set then, by taking an automorphism of G if necessary, we can assume the common difference to be 1. This gives two possibilities for S, namely (i) and (ii) of the theorem.

If S is not a standard set, then by Vosper's Theorem $|S-S| \ge 2|S|$ whence |S-S| = 2k or 2k+1. Since S is sum-free,

(11) $S \cap (S+S) = S \cap (S-S) = (-S) \cap (S-S) = \emptyset$,

If |S-S| = 2k+1, then $S \cup (S-S) = G$ and by (11), S = -S. We now show that the case |S-S| = 2k does not arise. If |S-S| = 2k, then $S \cup (S-S) = \{\overline{g}\}$, for some $g \in G$ and $-S \subseteq S \cup \{g\}$. Two cases are possible:

- (A) S = -S. Then S+S = S-S and since $0 \in S-S$, $g \neq 0$ so that $-g \in S+S$. Thus for some $s_1, s_2 \in S$, $-g = s_1+s_2$. This implies that $g = -s_1-s_2 \in S+S$, a contradiction;
- (B) $-S \subseteq S \cup \{g\}$ and $g \in -S$. Then $|S \cup (-S)| = |S| + 1$ and $|S \cap (-S)| = 2|S| |S| 1 = |S| 1$, an odd number. But this is a contradiction since $0 \notin S$.

We may now assume that the maximal sum-free set S satisfies the conditions in (10). If for some $g \in G$, $|(S+g) \cap S| = 1$, then by II of the lemma $|(S+3g/2) \cap S| \ge k-3$. Map 3g/2 to 1 so that g = k+1.

https://doi.org/10.1017/S000497270004199X Published online by Cambridge University Press

294

Now $|(S+1) \cap S| \neq k-1$ since S is not a standard set. If $|(S+1) \cap S| = k-2$, then obviously $S = \{\pm k/2, \pm (1+k/2), \ldots, \pm (k-1)\}$ which maps under automorphism to the set *(iii)* in the statement of the theorem. If $|(S+1) \cap S| = k-3$, then $S = \{\alpha, \ldots, \alpha+\rho-1, k+\rho+1, \ldots, 2k-\rho, 3k+2-\alpha-\rho, \ldots, 3k+1-\alpha\}$, where $\alpha \leq k$ and $1 \leq \rho < k/2$. But $-g/2 = k \in S$ and $g = k+1 \notin S$ by the lemma. Hence $\alpha+\rho-1 = k$ and $S = \{k+1-\rho, \ldots, k, k+\rho+1, \ldots, 2k-\rho, 2k+1, \ldots, 2k+\rho\}$. But $(k+1-\rho) + (k+\rho+1) = 2k+2 \in \overline{S}$. Hence $\rho = 1$ and $S \cdot is$ the set *(iii)* of the statement of the theorem.

We are now left with the case where S satisfies the conditions in (10) and $|(S+g) \cap S| \neq 1$ for any $g \in G$. By taking an automorphism of G if necessary, assume that $|(S+1) \cap S|$ is maximal. We list the elements of S as follows:

(12)
$$S = \{\alpha_1, \ldots, \alpha_1 + l_1, \alpha_2, \ldots, \alpha_2 + l_2, \ldots, \alpha_h, \ldots, \alpha_h + l_h\}$$

where $0 \le \alpha_1 \le \alpha_1 + l_1 \le \alpha_2 + l_2 \le \alpha_2 + l_2 \le \alpha_2 + l_2 \le \alpha_3 + l_2 \le \alpha_4 + l_4 \le \alpha_5 + l_5 \le$

where $0 < \alpha_1 \le \alpha_1 + l_1 < \alpha_2 - 1 < \alpha_2 + l_2 < \ldots < \alpha_h - 1 < \alpha_h + l_h < p$, and $\alpha_i, \ldots, \alpha_i + l_i$ denotes a string of $\{l_i + 1\}$ consecutive elements of S. By (10),

(13)
$$\alpha_{h-i} + l_{h-i} = p - \alpha_{i+1}$$
 for all $i = 0, ..., h-1$.

Also

(14)
$$|(S+1) \cap S| = k - h \ge |(S+g) \cap S|$$
 for all $g \in G$.

Hence h is minimal in (12). We show that h = 2.

Let $X = \{\alpha_1, \alpha_2, \ldots, \alpha_h\}$ and let $Y = \{\alpha_1 + l_1 + 1, \ldots, \alpha_h + l_h + 1\} = \{1 - \alpha_1, \ldots, 1 - \alpha_h\} = 1 - X$ by (13). For any $i = 1, \ldots, h$, $\alpha_i - 1 \in \overline{S}$ so that by (14) and the lemma, $|\{S + \alpha_i - 1\} \cap S| \ge h - 1$. But for any $s_1, s_2 \in S$, $s_1 + \alpha_i - 1 = s_2$ implies that $s_1 \in X$, $s_2 \in -X$ and $s_1 + \alpha_i \in Y$. Hence

(15)
$$h \ge | \{X + \alpha_i\} \cap Y| \ge h - 1 \text{ for all } i = 1, \ldots, h.$$

Also

A.H. Rhemtulla and Anne Penfold Street

$$(16) |X+X| \ge 2h - 1 .$$

Since |Y| = h, X + X contains at least (h-1) elements which do not belong to Y. By (15) $X + \alpha_i$ contains at most one element which does not belong to Y. Thus for at least (h-2) values of i = 1, 2, ..., h, $2\alpha_i \notin Y$. But $2\alpha_i \notin Y$ implies that $1-\alpha_i \notin X+\alpha_i$ since Y = 1-X. Hence for at least (h-2) values of i, $\{\alpha_1+\alpha_i, \ldots, \alpha_{i-1}+\alpha_i, \alpha_{i+1}+\alpha_i, \ldots, \alpha_h+\alpha_i\} = (X+\alpha_i) \cap Y$ $= \{1-\alpha_1, \ldots, 1-\alpha_{i-1}, 1-\alpha_{i+1}, \ldots, 1-\alpha_h\}$,

and summing on both sides of this equation,

(17)
$$(h-3)\alpha_{i} \equiv h-1-2\sum_{j=1}^{h}\alpha_{j}(p)$$

Hence $h \leq 3$. But h > 1 since S is not a standard set. If h = 3, we can list the elements of S as follows:

$$S = \{\alpha, \ldots, \alpha + p - 1, k + p + 1, \ldots, 2k - p, 3k + 2 - \alpha - p, \ldots, 3k + 1 - \alpha\},\$$

where $\alpha \leq k$ and $\rho < k/2$. From (17) we have $0 \equiv 3-1-2(\alpha+k+\rho+1-(\alpha+\rho-1))$ (p) or $1 \equiv k+2$ (p) which is not possible. Hence conclude that h = 2 and obviously $S = \{\pm k/2, \pm(1+k/2), \ldots, \pm(k-1)\}$ which maps under automorphism to the set (*iii*) in the statement of the theorem.

References

- [1] P.H. Diananda and H.P. Yap, "Maximal sum-free sets of elements of finite groups", Proc. Japan Acad. 45 (1969), 1-5.
- [2] P. Erdös, "Extremal problems in number theory", Proc. Sympos. Pure Math. 8, 181-189. (Amer. Math. Soc., Providence, P.J., 1965).
- [3] Henry B. Mann, Addition theorems: The addition theorems of group theory and number theory (Interscience Tracts in Pure and Applied Mathematics, Number 18; John Wiley & Sons, New York, London, Sydney, 1965).

296

- [4] A.G. Vosper, "The critical pairs of subsets of a group of prime order", J. London Math. Soc. 31 (1956), 200-205.
- [5] A.G. Vosper, "Addendum to 'The critical pairs of subsets of a group of prime order' ", J. London Math. Soc. 31 (1956), 280-282.
- [6] H.P. Yap, "The number of maximal sum-free sets in C_p ", Nanta Math. 2 (1968), 68-71.

The University of Alberta, Edmonton, Alberta, Canada.