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Maximal sum-free sets in
finite abelian groups

A. H. Rhemtulla and Anne Penfold Street

A subset S of an additive group G 1is called a maximal
sun-free set in G if (S+S) n S =¢ and |S| = |T| for every

sum-free set T in G . It is shown that if & 1is an
elementary abelian p-group of order pn , where p =3k 1 ,

-1
then a maximal sum-free set in G has kpn elements. The

maximal sum-free sets in Zp are characterized to within

automorphism.

Given an additive group G and non-empty subsets S, T of G , let
S + T denote the set {s+t; ¢ €S , + € T} , S the complement of S in
G and |S| the cardinality of S . We call § a swun-free set in G if
(5+5) E_E . If, in addition, |S| = |T| for every sum-free set T in
G , then we call S a maximal sum-free set in G . We denote by A(G)

the cardinality of a maximal sum-free set in G .

If G is a finite abelian group, then according to [21,
2|G|/7 < A(G) = |G|/2 . Both these bounds can be attained since
AM2Zy) =2, X2y) =1 , where Zn denotes the cyclic group of order = .

Exact values of A(G) were given by Diananda and Yap [I1] for Fed
divisible by 3 or by at least one prime ¢ = 2 (3) . When every prime
divisor of |G| is a prime p = 1 (3) then, by [1],

(1) l6|(m-1)/3n = x(G) = (|6]-1)/3 ,

Received 13 February 1970. The preparation of this paper was partly
supported by the National Research Council of Canada grant No. A~5299.
The second author is Izaac Walton Killam Post-Doctoral Fellow.

289

https://doi.org/10.1017/5000497270004199X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270004199X

290 A.H. Rhemtulla and Anne Penfold Street

vhere m is the exponent of G . If G is cyclic, A(G) attains its
upper bound. It was shown in [I] that A{G) attains its lower bound when
G 1is the direct sum of two cyclic groups of order 7 . Here we prove the
following:

THEOREM 1. If G <is an elementary abelian p-group, |G| = pn R
p=3k+1, then AG) = kpn_l .

In [6], Yap characterized all the maximal sum-free sets in Zp s

where p 1is prime and p = 2 (3) . Here we do the same when p = 1 (3)

in the following:
THEOREM 2. Let G = Zp where p = 3k + 1 <is prime. Then any

maximal sum-free set S may be mapped, under some automorphism of G , to
one of the following:

() {k+1, k+2, ..., 2k} ;
(22) {k, k+1, ..., 2k-1};
(iit) {k, k+2, k+3, ..., 2k-1, 2k+1} .

DEFINITIONS. TFollowing Vosper [4], [5], we shall call a set 4 C Zn

a standard set if the elements of A are in arithmetic progression. If

A, B¢ Zn are standard sets with the same common difference, then (4, B)
is a standard pair.

Proof of Theorem 1. We first consider the case when |G] = p?2 and

then generalize.

(a) Let G=(x1,x2;pxi=0, T =1, 25 2y + Ty = Xy + 217 .
Let Xi denote (xi> and let S be a maximal sum-free set in G .

G has (p+l) subgroups of order p , none of which contains more
than k elements of S by (1). But A(G) = kp and the union of these

(p+l) subgroups is the whole of G ; hence at least one of these

subgroups contains k elements of S . We assume this subgroup to be
Xy
p-1
So G= U (X;+iz,) , and we denote by Si the subset of X, such
=0
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that Si + 7z, = § n (X1+ixy) . In particular |§

=k Ir lsil <k

for every ¢ =1, ..., p-1, then |S| skp . But |S| =z kp by (1) and

the theorem follows.

So suppose ISiI >k for some 7 . We may choose x; so that

|S;]| > k . Since S is sum-free,

(2) S£+Sj) ns;,:=9

and, in particular,

(3) (5,45} ns, =9 .
Hence

) ls*s1] =p - |s1]

By the Cauchy-Davenport theorem [3],

(s) Is,b + 151} -~ 1 = s *s1] .

By (4) anda (5), 2|S1} sp+1- ISO| so that |S)| < k+1 . Since we
assumed |S,| > k , we must have |S,]| = k+1 . If (SO, 51) is not a
standard pair, then by Vosper's Theorem [4], [5],

ISO+51I > lsol + |8,| = 2k+1 . But by (L), |s+51] = 2k ,
contradiction. Hence 650, Sl) is a standard pair with difference d
and without loss of generality, we may assume that d =1 .

Since So is sum-free, we have three possibilities:
S, =1k, ..., 2k-1} or {k+1, ..., 2k} or {k+2, ..., 2k+l1} . Since

0]
Sy = {i, 1+1, ..., 1+k} for some 1 € X, , neither k nor 2k + 1
belongs to So . Hence

(6) S = {k+tl+r; r =0, 1, ..., k-1}

o]
and we may choose x, so that
Sy = {k+tl+ry r=0,1, ..., k} .

Since S 1is sum-free, (3) bounds the range of each Si ; more
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precisely, for each 7 there exists o, € Si such that
5, ¢ {0‘7:”’; r=0,1, ..., k} .

We call Si a small-range set if for some m, > 0 , we have
5. ¢ {ai+r; r=0,1, ..., k—l—mi}

and ai+k_l—mi € Si . Similarly we call Si a normal-range set if

S. ¢ {0‘7,'“’5 r=20, ..., k-1} and a;+k-1 € S, , and a big-range set if

S. < {ociﬂ’; r=0, ..., k} and “i*k €5, . By (2) we have

7
(7) Si+l g_{ai—mi+r; r=0,1, ..., k+mi}
when Si is a small-range set;
(8) Si+1 [ {ai+r; r=0, ..., k}
when Si is a normal-range set;
(9) 5.1 S {oci+l+r; r=0, ..., k=11
when Si is a big-range set.

Now consider the movement of o for ©=1,2, ..., p-1 . If Si
is a big-range set then, by (9), Orpg > O - If Si is a normal-range
set then, by (8), Oy 0y If Si is a small-range set then, by (T),
ai+1 = ui—mi . In this last case, ai+1 may be at most mi steps closer

to O than ai is. But then the contribution of Si to S5 1is mi

elements fewer than the average contribution of k elements. Since

[S[ > kp , we must make up these mi elements, one each from mi of the

big-range sets. But by (2) and the Cauchy-Davenport theorem, the cosets

containing big-range sets themselves form a sum-free set in G/X; , so
p-1

that there are at most Kk big-range sets. Hence m = z m. =k , and
1=0

o, = k+1-m for all i =1, ..., p-1 , wvhere k+l = a, by (6). Hence
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ai > 1 for all 2 . A similar argument, using the relation
S.—Sl) n Si—l = @ in place of (2), shows that the right hand end-point
S

never exceeds p - 1 for all < . Hence O ¢ S; SnX, =29

(b) Now let G be an elementary abelian group of order pn . Then

G has (pn—l)/(p—l) subgroups of order p , none of which contains more

than Kk elements of a maximal sum-free set S . But

A(G) = kpn_l > (k—l)[pn—l)/(p—l) so that at least one of these subgroups
contains k elements of S , and we denote this subgroup by X . Let Y

denote the subgroup complementing X in G . Thus Y 1is an elementary
abelian group of order pn_l and has (pn—l-l]/(p—l) = p subgroups ¥,
of order p .

Now [$ nX| =k and, by (a), |Sn (X+Yi)| <kp for all < . Thus

Y
R (X#Yi)| - (p-1)k

Is| =
=1
< pkp - (p-1)k
= pk(p-1) + k
- kpn—l .

This completes the proof of the Theorem.

We now establish the following result which we need in the proof of

Theorem 2.

LEMMA. Let G = Z, and let S be a sum-free set in G satisfying

(10) S| =k, 5=5+5 and 5= -S
where n = 3k+1 . Then
I (Stg)nS=9 ifand only if g € S ;

I1 if |(S+g) nS| =1 for some g € G, then
|(S+g*) nS| =2 k - 3 where g*=3g/2 and * g/2 €8S ;

III if |(S+g) n S| = A >1 for some g € G, then there exists
g* € G such that |(S+g*) n S| =z k - (A1) .
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Proof. Part I is trivial. To show II, let |(S+g) nS| =1 for
some g € G . Then there exist s;, s € § such that s;+g = s, . But
§ = -5 , hence ~g3tg = -s; € § so that s, = -g; and g = -25; . Now
S n (S-8;) = (S-8;) n (5-28;) = (S-28;) n (S-38;) = ¥ and
|8 n (5-281)} = [(S-381) n (S-sy)| =1 so that |S n (5-351)| = k-3 .
Take g* = -3s; to complete the proof of II.

By hypothesis of III, there exist s;, s € S such that
81+g, 82+g €S and s, ¥ 5, . Hence
@ = (S+s;) n S = (5+s;) n 8 = (S+g+s,) n §
= (S+g+s;) n S = (Stg+sy) n (S+g) = (Stg+sy) n (S+g) .

Thus ~|(S+g+s1) n (S+g+sy)| = k - (A+1) , with equality only in the case
when S u (S+g) u (S+g+s|) u (S+g+s,) = G . Choose g* =8, - 8, to
complete the proof.

Proof of Theorem 2. If S is a standard set then, by taking an
automorphism of (G 1if necessary, we can assume the common difference to
be 1 . This gives two possibilities for S , namely (<) and (ZZ) of the

theorem.

If § 1is not a standard set, then by Vosper's Theorem [S-S| = 2{3|

whence [S-S]\= 2k or 2k+1 . Since § is sum-free,
(11) Sn (5+8) =8 n (5=8) = (=8) n (§-5) =¢ .

If |5-S| = 2k+1 , then S u (S-5) = G and by (11), S = -S . We now
show that the case [$-S| = 2k does not arise. If |$-S| = 2k , then
S u (5-5) = {g} , for some g € ¢ and -5 ¢ S u {g} . Two cases are

possible:

(A) §=-5. Then GS+S = $-5 and since 0 € 5-§ , g # O so that
-g € S+5 . Thus for some 8;, § €S , -g = sy+s, . This

implies that g = -s)-5, € §+5 , a contradiction;
(B) -ScS5uig)l and g €-S. Then |Swu(-S)|=1[8] +1 and
IS n (=8)| =2|8] - |8] -1=]8] -1, an odd number. But this

is a contradiction since O { S .

We may now assume that the maximal sum-free set S satisfies the
conditions in (10). If for some g € G, [|(Stg) nS| =1, then by II of
the lemma |[(S+3g/2) n S| = k-3 . Map 3g/2 to 1 so that g = k+1 .
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Now |(5+1) n S| 4 k-1 since S is not a standard set. If

[(5+1) n S| = k-2 , then obviously S = {*k/2, +(1+k/2), ..., #(k-1)}
which maps under automorphism to the set (ZZZ) in the statement of the
theorem. If |[(5+41) n S| = k=3 , then

S = {aty, «u., atp=1, k+p+l, ..., 2k-p, 3k+2-0~-p, ..., 3k+l-0} , where
o=k and 1<p<kf2. But -g/2=k €S5S and g =k+1 § S by the
lemma. Hence a+p-l =k and

S = {k+l-p, ..., k, k+p+1, ..., 2k-p, 2k+1, ..., 2k+p} . But

(k+1-p) + (k+p+1) = 2k+2 € S . Hence p =1 and S -is the set (iii) of

the statement of the theorem.

We are now left with the case where S satisfies the conditions in
(10) and {(S+g) nS| 41 for any g € G . By taking an automorphism of
G if necessary, assume that |(S+l) n SI is maximal. We list the

elements of S as follows:
(12) S = {d], caey 0L1+Zl, O,y sy az+12, cevs U.h, caey ah+7,h}
where 0 < 0y = o+l < 0p=1 < Qp+ly < ... < -l < ah+Zh <p , and

Oss sves di+li denotes a string of (Zi+l) consecutive elements of S .

7
By (10),

(13) o s+t 1l =p-o,, forall 1=0, ..., h-1 .
Also

(14) [($+1) n S| =k - h = |(S+g) n S| for all g € G .

Hence A is minimal in (12). We show that h = 2,
Let X = {0}, ay, ..., “h} and let
Y= {ag+ly#1, ..o, op¥lp 41} = 1m0y, ool 1y} = 1 - X by (13). For
any =1, ..., b, a1 ¢ 5 so that by (1) and the lemma,
{{s+0,-1) nS[ =z h~1 . But for any &1, 52 €5, si%a;-1 =5, implies

that &) € X , & € =X and s%0,; € Y . Hence
(15) hz [{x+a) n¥|2h -1 forall £=1, ..., h.

Also
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(16) |x+x| = 2n - 1 .
Since |¥| =k , X + X contains at least (kh-1) elements which do not
belong to Y . By (15) X + oy contains at most one element which does

not belong to Y . Thus for at least (h-2) wvalues of ©Z =1, 2, ..., h ,
20, ¢ Y . But 2a;, ¢ Y implies that 1-o, ¢ X+a, since Y = 1-X .

Hence for at least (h-2) values of 7 ,

{a1+ai, ey O ¥, OO, L, ah+ai} = (X+ai) ny
= {1-a;, ..., I-o g5 1=0L g5 cees 1—ah} s
and summing on both sides of this equation,
h
(a7 (h-3)a, =h-1-2 ] o, (p)
T 551 J

Hence h =3 . But A > 1 since S is not a standard set. If h =3,

we can list the elements of S as follows:

S =10, «.., O+p~-1, k+p+l, ..., 2k-p, 3k+2-0-p, ..., 3k+l-a} ,
where o =<k and p < k/2 . From (17) we have
0 = 3—1-2(a+k+p+l-(a+p—l)) (p) or 1 = k+2 (p) which is not possible.
Hence conclude that %4 = 2 and obviously
S = {tk/2, *(1+k/2), ..., *(k-1)} which maps under automorphism to the

set (727) in the statement of the theorem.
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