Maximal sum-free sets in finite abelian groups

A. H. Rhemtulla and Anne Penfold Street

Abstract

A subset S of an aditive group G is called a maximal sum-free set in G if $(S+S) \cap S=\emptyset$ and $|S| \geq|T|$ for every sum-free set T in G. It is shown that if G is an elementary abelian p-group of order p^{n}, where $p=3 k \pm 1$, then a maximal sum-free set in G has $k p^{n-1}$ elements. The maximal sum-free sets in Z_{p} are characterized to within automorphism.

Given an additive group G and non-empty subsets S, T of G, let $S+T$ denote the set $\{s+t ; s \in S, t \in T\}, \bar{S}$ the complement of S in G and $|S|$ the cardinality of S. We call S a swm-free set in G if $(S+S) \subseteq \bar{S}$. If, in addition, $|S| \geq|T|$ for every sum-free set T in G, then we call S a maximal sum-free set in G. We denote by $\lambda(G)$. the cardinality of a maximal sum-free set in G.

If G is a finite abelian group, then according to [2], $2|G| / 7 \leq \lambda(G) \leq|G| / 2$. Both these bounds can be attained since $\lambda\left(Z_{7}\right)=2, \lambda\left(Z_{2}\right)=1$, where Z_{n} denotes the cyclic group of order n. Exact values of $\lambda(G)$ were given by Diananda and Yap [1] for $|G|$ divisible by 3 or by at least one prime $q \equiv 2$ (3) . When every prime divisor of $|G|$ is a prime $p \equiv 1$ (3) then, by [1],

$$
\begin{equation*}
|G|(m-1) / 3 m \leq \lambda(G) \leq(|G|-1) / 3, \tag{1}
\end{equation*}
$$

[^0]where m is the exponent of G. If G is cyclic, $\lambda(G)$ attains its upper bound. It was shown in [1] that $\lambda(G)$ attains its lower bound when G is the direct sum of two cyclic groups of order 7 . Here we prove the following:

THEOREM 1. If G is an elementary abelian p-group, $|G|=p^{n}$, $p=3 k+1$, then $\lambda(G)=k p^{n-1}$.

In [6], Yap characterized all the maximal sum-free sets in Z_{p}, where p is prime and $p \equiv 2$ (3). Here we do the same when $p \equiv 1$ (3) in the following:

THEOREM 2. Let $G=Z_{p}$ where $p=3 k+1$ is prime. Then any maximal sum-free set S may be mapped, under some automorphism of G, to one of the following:

$$
\begin{aligned}
& \text { (i) }\{k+1, k+2, \ldots, 2 k\} ; \\
& \text { (ii) }\{k, k+1, \ldots, 2 k-1\} ; \\
& \text { (iii) }\{k, k+2, k+3, \ldots, 2 k-1,2 k+1\} .
\end{aligned}
$$

DEFINITIONS. Following Vosper [4], [5], we shall call a set $A \subseteq Z_{n}$ a standard set if the elements of A are in arithmetic progression. If $A, B \subseteq Z_{n}$ are standard sets with the same common difference, then (A, B) is a standard pair.

Proof of Theorem 1. We first consider the case when $|G|=p^{2}$ and then generalize.
(a) Let $G=\left\langle x_{1}, x_{2} ; p x_{i}=0, i=1,2 ; x_{1}+x_{2}=x_{2}+x_{1}\right\rangle$.

Let X_{i} denote $\left\langle x_{i}\right\rangle$ and let S be a maximal sum-free set in G.
G has $(p+1)$ subgroups of order p, none of which contains more than k elements of S by (1). But $\lambda(G) \geq k p$ and the union of these $(p+1)$ subgroups is the whole of G; hence at least one of these subgroups contains k elements of S. We assume this subgroup to be X_{1}.

So $G=\bigcup_{i=0}^{p-1}\left(X_{1}+i x_{2}\right)$, and we denote by S_{i} the subset of X_{1} such
that $S_{i}+i x_{2}=S \cap\left(X_{1}+i x_{2}\right)$. In particular $\left|S_{0}\right|=k$. If $\left|S_{i}\right| \leq k$ for every $i=1, \ldots, p-1$, then $|S| \leq k p$. But $|S| \geq k p$ by (1) and the theorem follows.

So suppose $\left|S_{i}\right|>k$ for some i. We may choose x_{2} so that $\left|S_{1}\right|>k$. Since S is sum-free,

$$
\begin{equation*}
\left(S_{i}+S_{j}\right) \cap S_{i+j}=\emptyset \tag{2}
\end{equation*}
$$

and, in particular,

$$
\begin{equation*}
\left(S_{0}+S_{i}\right) \cap S_{i}=\emptyset \tag{3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left|S_{0}+S_{1}\right| \leq p-\left|S_{1}\right| . \tag{4}
\end{equation*}
$$

By the Cauchy-Davenport theorem [3],

$$
\begin{equation*}
\left|S_{0}\right|+\left|S_{1}\right|-1 \leq\left|S_{0}+S_{1}\right| \tag{5}
\end{equation*}
$$

By (4) and (5), $2\left|S_{1}\right| \leq p+1-\left|S_{0}\right|$ so that $\left|S_{1}\right| \leq k+1$. Since we assumed $\left|S_{1}\right|>k$, we must have $\left|S_{1}\right|=k+1$. If $\left(S_{0}, S_{1}\right)$ is not a standard pair, then by Vosper's Theorem [4], [5], $\left|S_{0}+S_{1}\right| \geq\left|S_{0}\right|+\left|S_{1}\right|=2 k+1$. But by (4), $\left|S_{0}+S_{1}\right| \leq 2 k$, a contradiction. Hence $\left(S_{0}, S_{I}\right)$ is a standard pair with difference d and without loss of generality, we may assume that $d=1$.

Since S_{0} is sum-free, we have three possibilities:
$S_{0}=\{k, \ldots, 2 k-1\}$ or $\{k+1, \ldots, 2 k\}$ or $\{k+2, \ldots, 2 k+1\}$. Since $S_{1}=\{\downarrow, Z+1, \ldots, \downarrow+k\}$ for some $Z \in X_{1}$, neither k nor $2 k+1$ belongs to S_{0}. Hence

$$
\begin{equation*}
S_{0}=\{k+1+r ; \quad r=0,1, \ldots, k-1\} \tag{6}
\end{equation*}
$$

and we may choose x_{2} so that

$$
S_{1}=\{k+1+r ; \quad r=0,1, \ldots, k\} .
$$

Since S is sum-free, (3) bounds the range of each S_{i}; more
precisely, for each i there exists $\alpha_{i} \in S_{i}$ such that

$$
S_{i} \subseteq\left\{\alpha_{i}+r ; \quad r=0,1, \ldots, k\right\}
$$

We call S_{i} a small-range set if for some $m_{i}>0$, we have

$$
S_{i} \subseteq\left\{\alpha_{i}+r ; r=0,1, \ldots, k-1-m_{i}\right\}
$$

and $\alpha_{i}+k-l-m_{i} \in S_{i}$. Similarly we call S_{i} a normal-range set if $S_{i} \subseteq\left\{\alpha_{i}+r ; r=0, \ldots, k-1\right\}$ and $\alpha_{i}+k-1 \in S_{i}$, and a big-range set if $S_{i} \subseteq\left\{\alpha_{i}+r ; r=0, \ldots, k\right\}$ and $\alpha_{i}+k \in S_{i}$. By (2) we have

$$
\begin{equation*}
S_{i+1} \subseteq\left\{\alpha_{i}-m_{i}+r ; \quad r=0,1, \ldots, k+m_{i}\right\} \tag{7}
\end{equation*}
$$

when S_{i} is a small-range set;

$$
\begin{equation*}
S_{i+1} \subseteq\left\{\alpha_{i}+r ; \quad r=0, \ldots, k\right\} \tag{8}
\end{equation*}
$$

when S_{i} is a normal-range set;

$$
\begin{equation*}
S_{i+1} \subseteq\left\{\alpha_{i}+l+r ; \quad r=0, \ldots, k-1\right\} \tag{9}
\end{equation*}
$$

when S_{i} is a big-range set.
Now consider the movement of α_{i} for $i=1,2, \ldots, p-1$. If S_{i} is a big-range set then, by (9), $\alpha_{i+1}>\alpha_{i}$. If S_{i} is a normal-range set then, by (8), $\alpha_{i+1} \geq \alpha_{i}$. If S_{i} is a small-range set then, by (7), $\alpha_{i+1} \geq \alpha_{i}-m_{i}$. In this last case, α_{i+1} may be at most m_{i} steps closer to 0 than α_{i} is. But then the contribution of S_{i} to S is m_{i} elements fewer than the average contribution of k elements. Since $|S| \geq k p$, we must make up these m_{i} elements, one each from m_{i} of the big-range sets. But by (2) and the Cauchy-Davenport theorem, the cosets containing big-range sets themselves form a sum-free set in G / X_{1}, so that there are at most k big-range sets. Hence $m=\sum_{i=0}^{p-1} m_{i} \leq k$, and $\alpha_{i} \geq k+1-m$ for all $i=1, \ldots, p-1$, where $k+1=\alpha_{0}$ by (6). Hence
$\alpha_{i} \geq 1$ for all i. A similar argument, using the relation $\left(S_{i}-S_{1}\right) \cap S_{i-1}=\emptyset$ in place of (2), shows that the right hand end-point of S_{i} never exceeds $p-1$ for all i. Hence $0 \notin S_{i}, S \cap X_{2}=\varnothing$ and $|S| \leq k p$.
(b) Now let G be an elementary abelian group of order p^{n}. Then G has $\left(p^{n}-1\right) /(p-1)$ subgroups of order p, none of which contains more than k elements of a maximal sum-free set S. But
$\lambda(G) \geq k p^{n-1}>(k-1)\left(p^{n}-1\right) /(p-1)$ so that at least one of these subgroups contains k elements of S, and we denote this subgroup by X. Let Y denote the subgroup complementing X in G. Thus Y is an elementary abelian group of order p^{n-1} and has $\left(p^{n-1}-1\right) /(p-1)=\rho$ subgroups y_{i} of order p.

Now $|S \cap X|=k$ and, by (a), $\left|S \cap\left(X+Y_{i}\right)\right| \leq k p$ for all i. Thus

$$
\begin{aligned}
|S| & =\sum_{i=1}^{\rho}\left|S \cap\left(X+Y_{i}\right)\right|-(\rho-1) k \\
& \leq \rho k p-(\rho-1) k \\
& =\rho k(p-1)+k \\
& =k p^{n-1} .
\end{aligned}
$$

This completes the proof of the Theorem.
We now establish the following result which we need in the proof of Theorem 2.

LEMMA. Let $G=Z_{n}$ and let S be a sum-free set in G satisfying

$$
\begin{equation*}
|S|=k, \quad \bar{S}=S+S \text { and } S=-S \tag{10}
\end{equation*}
$$

where $n=3 k+1$. Then
I $(S+g) \cap S=\varnothing$ if and only if $g \in S$;
II if $|(S+g) \cap S|=1$ for some $g \in G$, then
$\left|\left(S+g^{*}\right) \cap S\right| \geq k-3$ where $g^{*}=3 g / 2$ and $\pm g / 2 \in S$;
III if $|(S+g) \cap S|=\lambda>1$ for some $g \in G$, then there exists $g^{*} \in G$ such that $\left|\left(S+g^{*}\right) \cap S\right| \geq k-(\lambda+1)$.

Proof. Part I is trivial. To show II, let $|(S+g) \cap S|=1$ for some $g \in G$. Then there exist $s_{1}, s_{2} \in S$ such that $s_{1}+g=s_{2}$. But $S=-S$, hence $-s_{2}+g=-s_{1} \in S$ so that $s_{2}=-s_{1}$ and $g=-2 s_{1}$. Now $S \cap\left(S-s_{1}\right)=\left(S-s_{1}\right) \cap\left(S-2 s_{1}\right)=\left(S-2 s_{1}\right) \cap\left(S-3 s_{1}\right)=\emptyset$ and $\left|S \cap\left(S-2 s_{1}\right)\right|=\left|\left(S-3 s_{1}\right) \cap\left(S-s_{1}\right)\right|=1$ so that $\left|S \cap\left(S-3 s_{1}\right)\right| \geq k-3$. Take $g^{*}=-3 s_{1}$ to complete the proof of II.

By hypothesis of III, there exist $s_{1}, s_{2} \in S$ such that $s_{1}+g, s_{2}+g \in S$ and $s_{1} \neq s_{2}$. Hence $\emptyset=\left(S+s_{1}\right) \cap S=\left(S+s_{2}\right) \cap S=\left(S+g+s_{1}\right) \cap S$

$$
=\left(S+g+s_{2}\right) \cap S=\left(S+g+s_{1}\right) \cap(S+g)=\left(S+g+s_{2}\right) \cap(S+g) .
$$

Thus $\left|\left(S+g+s_{1}\right) \cap\left(S+g+s_{2}\right)\right| \geq k-(\lambda+1)$, with equality only in the case when $S \cup(S+g) \cup\left(S+g+s_{1}\right) \cup\left(S+g+s_{2}\right)=G$. Choose $g^{*}=s_{1}-s_{2}$ to complete the proof.

Proof of Theorem 2. If S is a standard set then, by taking an automorphism of G if necessary, we can assume the common difference to be 1 . This gives two possibilities for S, namely (i) and ($i i$) of the theorem.

If S is not a standard set, then by Vosper's Theorem $|S-S| \geq 2|S|$ whence $|S-S|=2 k$ or $2 k+1$. Since S is sum-free,

$$
\begin{equation*}
S \cap(S+S)=S \cap(S-S)=(-S) \cap(S-S)=\emptyset \tag{11}
\end{equation*}
$$

If $|S-S|=2 k+1$, then $S \cup(S-S)=G$ and by (11), $S=-S$. We now show that the case $|S-S|=2 k$ does not arise. If $|S-S|=2 k$, then $S \cup(S-S)=\{\bar{g}\}$, for some $g \in G$ and $-S \subseteq S \cup\{g\}$. Two cases are possible:
(A) $S=-S$. Then $S+S=S-S$ and since $0 \in S-S, g \neq 0$ so that $-g \in S+S$. Thus for some $s_{1}, s_{2} \in S,-g=s_{1}+s_{2}$. This implies that $g=-s_{1}-s_{2} \in S+S$, a contradiction;
(B) $-S \subseteq S \cup\{g\}$ and $g \in-S$. Then $|S \cup(-S)|=|S|+1$ and $|S \cap(-S)|=2|S|-|S|-1=|S|-1$, an odd number. But this is a contradiction since $0 \gtreqless S$.

We may now assume that the maximal sum-free set S satisfies the conditions in (10). If for some $g \in G,|(S+g) \cap S|=1$, then by II of the lemma $|(S+3 g / 2) \cap S| \geq k-3$. Map $3 g / 2$ to 1 so that $g=k+1$.

Now $|(S+1) \cap S| \neq k-1$ since S is not a standard set. If
$|(S+1) \cap S|=k-2$, then obviously $S=\{ \pm k / 2, \pm(1+k / 2), \ldots, \pm(k-1)\}$ which maps under automorphism to the set ($i i i$) in the statement of the theorem. If $|(S+1) \cap S|=k-3$, then
$S=\{\alpha, \ldots, \alpha+\rho-1, k+\rho+1, \ldots, 2 k-\rho, 3 k+2-\alpha-\rho, \ldots, 3 k+1-\alpha\}$, where $\alpha \leq k$ and $1 \leq \rho<k / 2$. But $-g / 2=k \in S$ and $g=k+1 \notin S$ by the lemma. Hence $\alpha+\rho-1=k$ and
$S=\{k+1-\rho, \ldots, k, k+\rho+1, \ldots, 2 k-\rho, 2 k+1, \ldots, 2 k+\rho\}$. But
$(k+1-\rho)+(k+\rho+1)=2 k+2 \in \bar{S}$. Hence $\rho=1$ and S. is the set ($i i i$) of the statement of the theorem.

We are now left with the case where S satisfies the conditions in (10) and $|(S+g) \cap S| \neq 1$ for any $g \in G$. By taking an automorphism of G if necessary, assume that $|(S+1) \cap S|$ is maximal. We list the elements of S as follows:

$$
\begin{equation*}
S=\left\{\alpha_{1}, \ldots, \alpha_{1}+l_{1}, \alpha_{2}, \ldots, \alpha_{2}+l_{2}, \ldots, \alpha_{h}, \ldots, \alpha_{h}+l_{h}\right\} \tag{12}
\end{equation*}
$$

where $0<\alpha_{1} \leq \alpha_{1}+\eta_{1}<\alpha_{2}-1<\alpha_{2}+l_{2}<\ldots<\alpha_{h}-1<\alpha_{h}+l_{h}<p$, and $\alpha_{i}, \ldots, \alpha_{i}+l_{i}$ denotes a string of $\left(l_{i}+1\right)$ consecutive elements of S. By (10),

$$
\begin{equation*}
\alpha_{h-i}+z_{h-i}=p-\alpha_{i+1} \text { for all } i=0, \ldots, h-1 \tag{13}
\end{equation*}
$$

Also
(14) $\quad|(S+1) \cap S|=k-h \geq|(S+g) \cap S|$ for all $g \in G$.

Hence h is minimal in (12). We show that $h=2$.
Let $X=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{h}\right\}$ and let
$Y=\left\{\alpha_{1}+l_{1}+1, \ldots, \alpha_{h}+l_{h}+1\right\}=\left\{1-\alpha_{1}, \ldots, 1-\alpha_{h}\right\}=1-X$ by (13). For
any $i=1, \ldots, h, \alpha_{i}-1 \in \bar{S}$ so that by (14) and the lemma,
$\left|\left(S+\alpha_{i}-1\right) \cap S\right| \geq h-1$. But for any $s_{1}, s_{2} \in S, s_{1}+\alpha_{i}-1=s_{2}$ implies that $s_{1} \in X, s_{2} \in-X$ and $s_{1}+\alpha_{i} \in Y$. Hence

$$
\begin{equation*}
h \geq\left|\left(X+\alpha_{i}\right) \cap Y\right| \geq h-1 \text { for all } i=1, \ldots, h \tag{15}
\end{equation*}
$$

Also

$$
\begin{equation*}
|X+X| \geq 2 h-1 . \tag{16}
\end{equation*}
$$

Since $|Y|=h, X+X$ contains at least ($h-1$) elements which do not belong to Y. By (15) $X+\alpha_{i}$ contains at most one element which does not belong to Y. Thus for at least (h-2) values of $i=1,2, \ldots, h$, $2 \alpha_{i} \notin Y$. But $2 \alpha_{i} \nmid Y$ implies that $1-\alpha_{i} \ddagger X+\alpha_{i}$ since $Y=1-X$. Hence for at least ($h-2$) values of i,
$\left\{\alpha_{1}+\alpha_{i}, \ldots, \alpha_{i-1}+\alpha_{i}, \alpha_{i+1}+\alpha_{i}, \ldots, \alpha_{h}+\alpha_{i}\right\}=\left(X+\alpha_{i}\right) \cap Y$

$$
=\left\{1-\alpha_{1}, \ldots, 1-\alpha_{i-1}, 1-\alpha_{i+1}, \ldots, 1-\alpha_{h}\right\},
$$

and summing on both sides of this equation,

$$
\begin{equation*}
(h-3) \alpha_{i} \equiv h-1-2 \sum_{j=1}^{h} \alpha_{j}(p) \tag{17}
\end{equation*}
$$

Hence $h \leq 3$. But $h>1$ since S is not a standard set. If $h=3$, we can list the elements of S as follows:

$$
S=\{\alpha, \ldots, \alpha+\rho-1, k+\rho+1, \ldots, 2 k-\rho, 3 k+2-\alpha-\rho, \ldots, 3 k+1-\alpha\},
$$

where $\alpha \leq k$ and $\rho<k / 2$. From (17) we have
$0 \equiv 3-1-2(\alpha+k+\rho+1-(\alpha+\rho-1))(p)$ or $1 \equiv k+2(p)$ which is not possible. Hence conclude that $h=2$ and obviously $S=\{ \pm k / 2, \pm(1+k / 2), \ldots, \pm(k-1)\}$ which maps under automorphism to the set (iii) in the statement of the theorem.

References

[1] P.H. Diananda and H.P. Yap, "Maximal sum-free sets of elements of finite groups", Proc. Jopan Acad. 45 (1969), 1-5.
[2] P. Erdös, "Extremal problems in number theory", Proc. Sympos. Pure Math. 8, 181-189. (Amer. Math. Soc., Providence. T., 1965).
[3] Henry B. Mann, Addition theorems: The addition theorems of group theory and number theory (Interscience Tracts in Pure and Applied Mathematics, Number 18; John Wiley \& Sons, New York, London, Sydney, 1965).
[4] A.G. Vosper, "The critical pairs of subsets of a group of prime order", J. London Math. Soc. 31 (1956), 200-205.
[5] A.G. Vosper, "Addendum to 'The critical pairs of subsets of a group of prime order' ", J. London Math. Soc. 31 (1956), 280-282.
[6] H.P. Yap, "The number of maximal sum-free sets in C_{p} ", Nanta Math. 2 (1968), 68-71.

The University of Alberta,
Edmonton,
Alberta, Canada.

[^0]: Received 13 February 1970. The preparation of this paper was partly supported by the National Research Council of Canada grant No. A-5299. The second author is Izaac Walton Killam Post-Doctoral Fellow.

