
BULL. AUSTRAL. MATH. SOC. MOS 0522, (2030, 2025, 2040)

VOL. 2 (1970), 289-297.

Maximal sum-free sets in

finite abelian groups

A. H. Rhemtulla and Anne Penfold Street

A subset S of an additive group G is called a maximal

sum-free set in G if {S+S) n S = 0 and \s\ > |2"| for every

sum-free set T in G . It is shown that if G is an

elementary abelian p-group of order p , where p = 3k ± 1 ,

then a maximal sum-free set in G has kp elements. The

maximal sum-free sets in Z are characterized to within

automorphism.

Given an additive group G and non-empty subsets S, 1 of G , let

S + T denote the set {s+t; s € 5 , t f ?} , S the complement of S in

G and \s\ the cardinality of 5 . We call S a sum-free set in C if

(5+5) £ S . If, in addition, |s| i |r| for every sum-free set T in

G , then we call S a maximal sum-free set in G . We denote by \(G)

the cardinality of a maximal sum-free set in G .

If G is a finite abelian group, then according to [2],

2|G|/7 2 \{G) 5 \G\/2 . Both these bounds can be attained since

X(Z7) = 2 , A(Z2) = 1 , where Z denotes the cyclic group of order n .

Exact values of X(G) were given by Diananda and Yap [/] for |G|

divisible by 3 or by at least one prime q = 2 (3) . When every prime

divisor of |ff| is a prime p 5 1 (31) then, by [I],

(1) |c|(m-l)/3m 5 X(G) 5 (|G
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where m is the exponent of G . If G is cyclic, X(G) attains its

upper bound. It was shown in [/] that X(G) attains its lower bound when

G is the direct sum of two cyclic groups of order 1 . Here we prove the

following:

THEOREM 1. If G is an elementary abelian p-group, \G\ = pn 3

p = 3k + 1 , then X(G) = kp"'1 .

In [6], Yap characterized all the maximal sum-free sets in Z ,

where p is prime and p = 2 (3) • Here we do the same when p = 1 (3)

in the following:

THEOREM 2. Let G = Z where p = 3k + 1 is prime. Then any

maximal sum-free set S may be mapped, under some automorphism of G 3 to

one of the following:

(i) {k+1, k+2, ..., 2k] ;

(ii) {k, k+1, ..., 2k-l) ;

(iii) {k, k+2} k+3> ••., Zk-1, 2k+±) .

DEFINITIONS. Following Vosper [4], [5], we shall call a set A £ Zn

a standard set if the elements of A are in arithmetic progression. If

A, B c_ Z are standard sets with the same common difference, then (A, B)

is a standard pair.

Proof of Theorem 1. We first consider the case when \G\ = p2 and

then generalize.

(a) Let G = <.x\, x^i px• = 0, i = 1, 2; x\ + X2 = x^ + x{) .

Let X. denote <a;.} and let S be a maximal sum-free set in G .

G has (p+1) subgroups of order p , none of which contains more

than k elements of S by (l). But X(G) > kp and the union of these

(p+l) subgroups is the whole of G ; hence at least one of these

subgroups contains k elements of 5 . We assume this subgroup to be

p-1
So G = U (Xi+ix2) , and we denote by 5. the subset of X± such

i=O %
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that S. + ix2 = S n (Xi+ix2) . In particular \S I = k . If \SA 2 k

for every i = 1, ..., p-1 , then \S\ < kp . But |£| > kp by (l) and

the theorem follows.

So suppose |S.| > k for some i . We may choose x2 so that

|S1| > k . Since S is sum-free,

(2) (S.+S.) n S.+ . = 0

and, in particular,

(3) (S0+s:) n Si = 0 .

Hence

(It) |S0+Si| « p - |Si| .

By the Cauchy-Davenport theorem [3],

(5) |So| + \Si\ - 1 5 \SQ+Si\ .

By (h) and (5), 2|Si| < p + 1 - \SQ\ so that |Si| < fe+1 . Since we

assumed |5j | > k , we must have |Sj | = fe+1 . If [s , 5j) is not a

standard pair, then by Vosper's Theorem [4], [5],

|5o+5i| i \SQ\ + |sj = 2fe+l . But by (1*), I^^Sj | 5 2fe , a

contradiction. Hence (5 , 5j) is a standard pair with difference d

and without loss of generality, we may assume that d = 1 .

Since 5 is sum-free, we have three possibilities:

SQ = {k, ..., 2k-l} or {fc+1, . .. , 2k} or [k+2, ..., 2?c+l} . Since

Sy = {I, l+l, ..., l+k} for some I i Xx , neither k nor 2k + 1

belongs to S . Hence

(6) SQ = {k+l+r; r = 0, 1, ..., fc-l}

and we may choose 3:3 so that

; r = 0, 1, ..., &} .

Since 5 is sum-free, (3) bounds the range of each S. ; more
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precisely, for each v there exists a. d S. such that
"%f 1s

Si £ (<V
r; r = 0, 1, ..., k] .

We call S. a small-range set if for some m. > 0 , we have

- £ {a.+r; r = 0, 1, ..., k-l-m.}
It Is "£,

and a..+k-1-m. € S. . Similarly we call S. a normal-range set if
Is is Is %

S. c {a.+r; r = 0, ..., k-l} and a.+k-l f S. , and a big-range set if
t- Is U ts

S. £ {a.+r; r = 0, .. . , fc} and a.+fe t 5. . By (2) we have
t- ~~~ (s Is is

(7) Si+X £ (â -ffl̂ +r; r = 0, 1, ..., k+m^

when 5. is a small-range set;
If

(8) Si+1 £ {a^+r; r = 0 k]

when S. is a normal-range set;
If

(9) 5 i + 1 £ {a^+l+r; v = 0, ..., k-l}

when 5. is a big-range set.
Is

Now consider the movement of a. for i = 1, 2, ..., p-1 . If S.

is a big-range set then, by (9)» a-.n > a- . If S. is a normal-range
is'A. Is Is

set then, by (8), a. > a. . If S. is a small-range set then, by (T)»

a. 2 a--m. . In this last case, a... may be at most m. steps closer
to 0 than a. is . But then the contribution of 5. to 5 is m.v 1, ^

elements fewer than the average contribution of k elements. Since

|S | 2 kp , we must make up these m. elements, one each from ffr. of the

big-range sets . But by (2) and the Cauchy-Davenport theorem, the cosets

containing big-range sets themselves form a sum-free set in G/X\ , so

p-1
that there are at most k big-range sets. Hence m = F m. 5 k , and

i=0 %

a. i k+l-m for all i = 1, ..., p-1 , where k+1 = a by (6). Hence
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a. 2 1 for all i . A similar argument, using the relation
1*

[S.Si) n S. = </) in place of (2), shows that the right hand end-point

of 5. never exceeds p - 1 for all i . Hence 0 \ S. , S n X2 = 9

and \S\ 2 kp .

(b) Now let G he an elementary abelian group of order p . Then

G has [p -l]/(p-l) subgroups of order p , none of which contains more

than k elements of a maximal sum-free set S . But

X(G) 2 kp > (k-l)(p -l)/(p-l) so that at least one of these subgroups

contains k elements of 5 , and we denote this subgroup by X . Let Y

denote the subgroup complementing X in G . Thus J is an elementary

abelian group of order p ~ and has {pn~ -l)/(p-l) = p subgroups I.

of order p .

Now \S n x\ = k and, by (a), \S n [x+Y.)| 5 kp for all i . Thus

P
|S| = I \S n (X+Y )\ - (p-l)k

i %

< pkp - {

= pk(p-l) + k

- k v ^ .

This completes the proof of the Theorem.

We now establish the following result which we need in the proof of

Theorem 2.

LEMMA. Let G = Z and let S be a sum-free set in G satisfying

(10) \S\ = k j S = 5 + S and S = -S

where n = 3k+l . Then

I (S+g) n S = g> if and only if g € S ;

II if \{S+g) n S\ = 1 for some g i G , then

1(5+9"*) n S\ 2 k - 3 where g* = 3g/2 and ± g/2 € S ;

III if \(S+g) n S\ = X > 1 for some g € G , then there exists

g* € G such that \(S+g*) n S\ 2 k - (X+l) .
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Proof. Part I is trivial. To show II, let |(5+gr) n s\ = 1 for

some g d G . Then there exist s\, s2 ( S such that s\+g = s2 • But

S = -S , hence -S2+g = -Si i S so that s2 = -S\ and g = -2s1 . Now

5 n (S-Si) = (S-Si) n (5-2Sx) = (S-2sx) n (5-3sx) = 0 and

\S n (5-2Si)| = |(5-3Si) n (S-s^l = 1 so that |5 o (5-3s!)[ > fc-3 .

Take g* = -3sj to complete the proof of II.

By hypothesis of III, there exist S\, s2 £ S such that

sl+i?> s2+g ^ S and Si 4 S2 • Hence

0 = (5+sj) n 5 = (S+s2) n 5 = (S+^+Sj) n 5

= (S+g+s2) n S = (5+g+sj) n (5+#) = (5+^+82) n (5+^) .

Thus \(S+g+Si) n (5+g+s2)| 2 fe - (X+l) , with equality only in the case

when S u (S+g) u (S+g'+S!) u (S+g+S2) = <J • Choose g* = Sj - s2 to

complete the proof.

Proof of Theorem 2. If S is a standard set then, by taking an

automorphism of G if necessary, we can assume the common difference to

be 1 . This gives two possibilities for 5 , namely (i) and (ii) of the

theorem.

If S is not a standard set, then by Vosper's Theorem \S-S\ 5 2|s|

whence \S-S\ =• 2k or 2k+l . Since S is sum-free,

(11) S n (S+S) = S n (S-S) = (-S) n (5-5) = 0 ,

If |£-S| = 2k+l , then S u (5-5) = G and by (ll), S = -S . We now

show that the case \S-S\ = 2k does not arise. If |5-5| = 2k , then

5 u (S-S) = (g) , for some g € G and -5 £ 5 u {#} . Two cases are

possible:

(A) S - -S . Then 5+5 = 5-5 and since 0 d S-S , g 4 0 so that

-g € 5+5 . Thus for some sx, s2 (• S , -g = Sj+s2 • This

implies that g = -S1-S2 i S+S , a contradiction;

(B) -5 £ 5 U {#} and <y € -5 . Then |s u (-5) | = |S| + 1 and

\S n (-5)| = 2|S| - \S\ - 1 = \S\ - 1 , an odd number. But this

is a contradiction since 0 | S .

We may now assume that the maximal sum-free set 5 satisfies the

conditions in (10). If for some g £ G , \(S+g) n S\ = 1 , then by II of

the lemma | (5+3^/2) n S\ 2: fc-3 . Map 3g/2 to 1 so that g = k+1 .
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Now |(5+1) n S\ 4 k-1 since S is not a standard set. If

|(5+1) n S | = k-2 , then obviously S = {±k/2, ±(l+fe/2), ..., ±(fc-l)}

which maps under automorphism to the set (iii) in the statement of the

theorem. If |(5+l) n S| = fc-3 , then

5 = {a, ..., a+p-1, &+p+l, ..., 2k-p, 3k+2-a-p, ..., 3k+l-a] , where

a £ & and 1 5 p < k/2 . But -g/2 = k € S and g = fe+1 | 5 by the

lemma. Hence a+p-1 = k and

S = {fe+l-p, ..., k, k+p+l, ..., 2k-p, 2/c+l, ..., 2k+p} . But

(Zc+l-p) + (fc+p+1) = 2fe+2 € 5 . Hence p = 1 and 5 • is the set (iii) of

the statement of the theorem.

We are now left with the case where 5 satisfies the conditions in

(10) and 1(5+^) n S\ 4 1 for any g € G • By taking an automorphism of

G if necessary, assume that |(5+l) o S\ is maximal. We list the

elements of S as follows:

(12) S = {c*i, .... ai+li, a2, ...

where 0 < Uj 5 &\+?-i < CI2""1 *• «2+^2 < ••• < °4,-l < ah+^h < P » a n d

a , a.+l. denotes a string of [l .+l) consecutive elements of S .

By (10),

(13) a ^ + l^ = p - a i + 1 for all i = 0, .... fc-l .

Also

(lit) |(5+1) n S\ = k - h > \{S+g) n S\ for all g i G .

Hence h is minimal in (12). We show that h = 2 .

Let X = {al5 a2, ..., a,} and let

Y = {oii+Zx+l, ..., atflj+l} = {1-ai, ..., l-o^} = 1 - X by (13). For

any i = 1, ..., h , a—1 € s" so that by (lU) and the lemma,

j(5+a.-lj n 51 > h-1 . But for any 8 ] , s 2 € 5 , Sj+ou-1 = s 2 implies

that si Z X , s 2 € -X and Sj+a. € y . Hence

(15) h 2 I f#+a.) n y I > ft - 1 for all i = 1, ..., ft .

Also
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(16) \X+X\ >

Since 1̂ 1 = h , X + X contains at least (h-l) elements which do not

"belong to Y . By (15) X + ot. contains at most one element which does
is

not "belong to Y . Thus for at least (h-2) values of i = 1, 2, . .. , h ,

2cu I Y . But 2ou $ Y implies that 1-

Hence for at least (h-2) values of i ,

2cu I Y . But 2ou $ Y implies that 1-a. | J+Ct. since Y = 1-X .

and summing on both sides of this equation,

h
(17) (h-3)a. = 7i - 1 - 2 J a. (p) .

^ ,7=1 J

Hence h 5 3 . But ft > 1 since 5 is not a standard set. If h = 3 >

we can list the elements of S as follows:

5 = {a, ..., a+p-1, k+p+1, ..., 2k-p, 3k+2-a-p, ..., 3k+l-a} ,

where a < k and p < k/2 . From (17) we have

0 = 3-1-2(a+k+p+1-(a+p-1)) (p) or 1 H fe+2 (p) which is not possible.

Hence conclude that h = 2 and obviously

5 = {±k/2, ±(l+k/2), ..., ±(k-l)} which maps under automorphism to the

set (Hi) in the statement of the theorem.
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