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Abstract. Let µ be a Borel measure on �. The paper contains the proofs of the
estimates

||Mµf ||Lq,∞(A,µ) ≤ cp,q||f ||Lp(�,µ) µ(A)1/q−1/p, 1 ≤ p < ∞, q ∈ (0, p],

and

||Mµf ||Lq,∞(A,µ) ≤ Cp,q||f ||Lp,∞(�,µ) µ(A)1/q−1/p, 1 < p < ∞, q ∈ (0, p].

Here A is a subset of �, f is a µ-locally integrable function, Mµ is the uncentred
maximal operator with respect to µ and cp,q, and Cp,q are finite constants depending
only on the parameters indicated. In the case when µ is the Lebesgue measure, the
optimal choices for cp,q and Cp,q are determined. As an application, we present some
related tight bounds for the strong maximal operator on �n with respect to a general
product measure.

2000 Mathematics Subject Classification. Primary: 42B25. Secondary: 42B35,
46E30.

1. Introduction. Suppose µ is a non-negative Borel measure on �n and let f :
�n → � be a µ-locally integrable function. The uncentred maximal function of f with
respect to µ is given by the formula

(Mµf )(x) = sup
x∈B

1
µ(B)

∫
B

|f |dµ,

where the supremum is taken over all closed balls B, which contain the point x. If µ

is the Lebesgue measure, then Mµ is the usual uncentred maximal operator of Hardy
and Littlewood [4]. It is well known (see, e.g. Stein [6]) that if µ satisfies the doubling
condition

µ(B(x, 2r)) ≤ Cµ(B(x, r)) for some C < ∞ and all x ∈ �n, r > 0

(here B(x, r) denotes the closed ball of centre x and radius r), then Mµ maps Lp(�n, µ)
into itself for p > 1, and L1(�n, µ) into L1,∞(�n, µ). This is still true, without the
doubling property if and only if n = 1 (see [1, 2, 5]).
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The question about the precise evaluation of strong and weak norms of Mµ has
gained some interest in the literature, and the objective of this paper is to establish
two new results of this type. We will be particularly interested in the one-dimensional
case. We have the following Lp-estimates for Mµ: For any µ-locally integrable f and
1 < p < ∞ we have

||Mµf ||Lp(�,µ) ≤ cp||f ||Lp(�,µ), (1.1)

where cp is the unique positive solution of the equation

(p − 1)xp − pxp−1 − 1 = 0. (1.2)

This statement, with µ being the Lebesgue measure, was proved by Grafakos and
Montgomery-Smith in [3]; for the general case, consult Grafakos and Kinnunen [2].
In general, constant cp in (1.1) cannot be replaced by a smaller number, see [3]. The
L1-inequality does not hold in general with any finite constant c1, but we have the
sharp weak-type estimate

||Mµf ||L1,∞(�,µ) ≤ 2||f ||L1(�,µ),

as proved in [2]. Here, as usual, for any Borel subset A of � and any 0 < p < ∞, we
define the weak p-th norm of f on A by the formula

||f ||Lp,∞(A,µ) = sup
λ>0

λ
[
µ({x ∈ A : |f (x)| > λ})]1/p

.

There is a natural question about the best constants in the corresponding weak-type
(p, p) estimates for Mµ, 1 < p < ∞. In fact, we will study this question in a more
general setting and compare the weak q-th norm of Mµf to the p-th norm of f , where
p ≥ 1 and q ∈ (0, p]. Introduce constant

Cp = (p − 1)(2p/(p−1) − 1)
p

(
(p − 1)(2p/(p−1) − 2)

)−1/p

when 1 < p < ∞, and put C1 = 2. We will establish the following result.

THEOREM 1.1. For any µ-locally integrable function f : � → �, any Borel subset A
of � and any 1 ≤ p < ∞, q ∈ (0, p], we have

||Mµf ||Lq,∞(A,µ) ≤ Cp||f ||Lp(�,µ)µ(A)1/q−1/p. (1.3)

If µ is the Lebesgue measure, then the constant Cp is the best possible.

In particular, if p = q, then (1.3) yields the weak-type (p, p) estimate

||Mµf ||Lp,∞(�,µ) ≤ Cp||f ||Lp(�,µ), (1.4)

which, as we will see, is also sharp, provided µ is the Lebesgue measure.
The next problem we will study concerns the sharp comparison of the weak norms

of f and Mµf . Here constants cp of Grafakos and Montgomery-Smith [3] come into
play; we will prove the following statement.
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THEOREM 1.2. For any µ-locally integrable function f : � → �, any Borel subset A
of � and any 1 < p < ∞, q ∈ (0, p], we have

||Mµf ||Lq,∞(A,µ) ≤ cp||f ||Lp,∞(�,µ)µ(A)1/q−1/p. (1.5)

If µ is the Lebesgue measure, then the constant cp is the best possible.

As previously, let us distinguish the choice p = q ∈ (1,∞). It gives the bound

||Mµf ||Lp,∞(�,µ) ≤ cp||f ||Lp,∞(�,µ), (1.6)

which will be proved to be sharp in the case when µ is the Lebesgue measure.
Theorems 1.1 and 1.2 will be established in the next section. In Section 3 we will

apply these two theorems to obtain related results in the higher dimensional setting:
more precisely, we will show tight weak-type estimates for the so-called strong maximal
operator on �n, n ≥ 2.

2. Proofs of theorems 1.1 and 1.2. We start with recalling the main lemma
from [2] (see also [3] for the special case in which µ is the Lebesgue measure).
This result can be regarded as an appropriate version of the weak-type estimate
for Mµ. Here and below, we use the notation {f > λ} for the set {x ∈ � :
f (x) > λ}.

LEMMA 2.1. If f is a non-negative and µ-locally integrable function on �, then for
any λ > 0 we have

λ
(
µ

({Mµf > λ}) + µ ({f > λ})
)

≤
∫

{Mµf >λ}
f dµ +

∫
{f >λ}

f dµ. (2.1)

In other words, for any f , λ as in the statement above, we have∫
�

u
(
f (x)/λ,Mµf (x)/λ

)
dµ(x) ≤ 0, (2.2)

where u : [0,∞) × [0,∞] → � is the function given by the formula

u(x, y) = (
χ{x>1} + χ{y>1}

)
(1 − x).

Introduce the parameters

rp = p
(p − 1)(2p/(p−1) − 1)

, sp = p 21/(p−1)

(p − 1)(2p/(p−1) − 1)

and

αp = 2p/(p−1) − 1
2p/(p−1) − 2

.

LEMMA 2.2. For any 0 ≤ x ≤ y and any 1 < p < ∞, we have

αpu(x, y) ≥ χ{y>1} − Cp
pxp. (2.3)
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Proof. If y ≤ 1, then the estimate becomes 0 ≥ −Cp
pxp, which is obvious. Suppose

y > 1 and x ≤ 1. Then (2.3) is equivalent to

F(x) := αp(1 − x) − 1 + Cp
pxp ≥ 0,

which holds true for all x ≥ 0. This is the consequence of the fact that F is a convex
function, combined with equalities F(rp) = F ′(rp) = 0. Finally, if both x and y are
larger than 1, inequality (2.3) can be rewritten in the form

G(x) := 2αp(1 − x) − 1 + Cp
pxp ≥ 0,

which follows from the convexity of G and equalities G(sp) = G′(sp) = 0. �
Proof of (1.3) We may assume that f is a non-negative function which satisfies

||f ||Lp(�,µ) < ∞. Combining (2.2) and (2.3), we obtain that for p > 1,

λpµ
({Mµf > λ}) ≤ Cp

p ||f ||pLp(�,µ). (2.4)

This bound is also true for p = 1, as we have already mentioned above. Thus, since
µ

({x ∈ A : Mµf (x) > λ}) ≤ min
{
µ(A), µ({Mµf > λ})}, we have

λqµ({x ∈ A : Mµf (x) > λ}) ≤ λqµ({Mµf ≥ λ})q/pµ(A)1−q/p

≤ Cq
p ||f ||qLp(�,µ)µ(A)1−q/p, (2.5)

where the latter passage is due to (2.4). It remains to take supremum over λ in (2.5) to
obtain (1.3). �

Sharpness for the Lebesgue measure. Let rp and sp be as above and introduce the
parameter βp = 2(sp − 1)/(1 − rp). Consider the function

f = spχ[−1,1] + rp
(
χ[−βp−1,−1) + χ(1,βp+1]

)
and let A = [−βp − 1, βp + 1]. The identity

1∣∣[−βp − 1, 1]
∣∣
∫ 1

−βp−1
f (x)dx = 1∣∣[−1, βp + 1]

∣∣
∫ βp+1

−1
f (x)dx = 2sp + βprp

2 + βp
= 1

and the definition of the maximal operator imply that M|·|f (x) ≥ 1 for x ∈ A.
Therefore,

|{x ∈ A : M|·|f (x) ≥ 1}|
||f ||qLp(�,|·|)|A|1−q/p

=
(

|A|
||f ||pLp(�,|·|)

)q/p

=
(

2(βp + 1)

2βprp
p + 2sp

p

)q/p

,

and the latter expression is easily checked to be equal to Cq
p . This proves the sharpness

of (1.3). The same example yields the optimality of Cp in (1.4): we have

||M|·|f ||pLp,∞(�,|·|) ≥ |{M|·|f ≥ 1}| ≥ |A| = Cp
p ||f ||pLp(�,|·|).

�
Proof of (1.5) It suffices to consider functions f , which are non-negative and

satisfy 0 < ||f ||Lp,∞(�,µ) < ∞. In addition, by homogeneity, we may and do assume
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that ||f ||Lp,∞(�,µ) = 1. Rewrite (2.1) in the form

λµ({Mµf > λ}) ≤
∫

{Mµf >λ}
f dµ +

∫
{f >λ}

(
f − λ

)
dµ.

The well-known inequality of Hardy and Littlewood (see, e.g. [4]) states that if h is a
non-negative function and A is a Borel subset of �, then

∫
A

hdµ ≤
∫ µ(A)

0
h∗(t)dt, (2.6)

where h∗(t) = inf
{
s > 0 : µ({f > s}) ≤ t

}
is the non-increasing rearrangement of h.

Since ||f ||Lp,∞(�,µ) = 1, we have µ({f > λ}) ≤ λ−p for all λ > 0 and hence f ∗(t) ≤ t−1/p

for all positive t. Putting all these facts together, we obtain

λ µ({Mµf > λ}) ≤
∫ µ({Mµf >λ})

0
t−1/pdt +

∫ λ−p

0
(t−1/p − λ)dt

= p
p − 1

µ({Mµf > λ})(p−1)/p + λ1−p

p − 1
.

Multiplying both sides by (p − 1)λp−1 yields

(p − 1)λpµ({Mµf > λ}) ≤ p
(
λpµ({Mµf > λ}))(p−1)/p + 1.

In view of (1.2), this implies

λpµ({Mµf > λ}) ≤ cp
p = cp

p||f ||Lp,∞(�,µ). (2.7)

Indeed, we have cp ≥ 1 and the function x 	→ (p − 1)xp − pxp−1 is increasing on [1,∞).
Thus, we have established (1.6). Furthermore, (2.7) yields

λqµ({x ∈ A : Mµf (x) > λ}) ≤ cq
p||f ||qLp,∞(�,µ)µ(A)1−q/p,

which can be seen by repeating the argument leading from (2.4) to (2.5). The proof of
(1.5) is complete. �

Sharpness for the Lebesgue measure. Fix p > 1 and let f : � → � be given by
f (t) = |2t|−1/p. It is easy to check that ||f ||Lp,∞(�) = 1. Furthermore, for any x > 0 we
have

1

|[−c−p
p x, x]|

∫ x

−cp
px

f (t)dt = (2x)−1/p p(1 + c1−p
p )

(p − 1)(1 + c−p
p )

= cp(2x)−1/p, (2.8)

where the latter equality follows from (1.2). Thus, by the definition of the maximal
operator, we haveM|·|f (x) ≥ cp(2x)−1/p for x > 0 and similarlyM|·|f (x) ≥ cp(−2x)−1/p

for negative x. Consequently, ||M|·|f ||Lp,∞(�,|·|) ≥ cp and the equality in (1.6) is attained.
Next, putting A = {M|·|f ≥ 1}, we see that [−cp

p/2, cp
p/2] ⊆ A and hence

||M|·|f ||qLq,∞(A,|·|) ≥ |A| ≥ cq
p|A|1−q/p = cq

p|A|1−q/p||f ||qLp,∞(�,|·|).

This yields the desired optimality of cp in (1.5). �
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3. Estimates for the strong maximal function. This section contains applications
of previous results to the study of maximal operators in higher dimensions. Let n ≥ 1
be a fixed integer and let µ be a product measure on �n: µ = µ1 ⊗ µ2 ⊗ . . . ⊗ µn for
some Borel measures µ1, µ2, . . ., µn on �. The strong maximal operator Mµ is an
operator that acts on µ-locally integrable functions f by the formula

Mµf (x) = sup
x∈D

1
µ(D)

∫
D

|f |dµ,

where the supremum is taken over all closed rectangles D, with sides parallel to the
axes, satisfying x ∈ D. Observe that for n = 1, operators Mµ and Mµ coincide.

We will prove the following fact.

THEOREM 3.1. Let µ and Mµ be as above.

(i) If n ≥ 2, then in general Mµ does not map L1(�n, µ) into L1,∞(�n, µ).
(ii) If 1 < p < ∞, then for any f : �n → � we have

||Mµf ||Lp,∞(�n,µ) ≤ Cpcn−1
p ||f ||Lp(�nµ). (3.1)

If µ is the Lebesgue measure on �n, then the constant has the optimal order
O((p − 1)1−n) as p → 1.

(iii) If 1 < p < ∞, then for any f : �n → � we have

||Mµf ||Lp,∞(�n,µ) ≤ cn
p||f ||Lp,∞(�n,µ). (3.2)

If µ is the Lebesgue measure on �n, then the constant is the best possible.

REMARK 3.2. By the argument from the previous section, (3.1) and (3.2) imply the
estimates

||Mµf ||Lq,∞(A,µ) ≤ Cpcn−1
p ||f ||Lp(�nµ)µ(A)1/q−1/p

and

||Mµf ||Lq,∞(A,µ) ≤ cn
p||f ||Lp,∞(�n,µ)µ(A)1/q−1/p (3.3)

for all µ-locally integrable functions f : �n → �, all Borel subsets A of �n and all
1 < p < ∞, 0 < q ≤ p. We will prove below that (3.3) is sharp, provided µ is the
Lebesgue measure.

Proof of Theorem 3.1. (i) This will be shown in the proof of (ii) below.
(ii) The key observation is that

Mµ ≤ M(1)
µ1

◦ M(2)
µ2

◦ . . . ◦ M(n)
µn

, (3.4)

where M(k)
µk denotes the maximal operator Mµk applied to the k-th coordinate. Let f

be a non-negative function on �n satisfying ||f ||Lp(�n,µ) < ∞. Using (1.4) with respect
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to Mµ1 and then (1.1) with respect to Mµ2 , Mµ3 , . . ., Mµn , we obtain

λpµ
({
M(1)

µ1
◦ M(2)

µ2
◦ . . . ◦ M(n)

µn
f > λ

})
=

∫
�n−1

λpµ1

(
{x1 : M(1)

µ1
◦ . . . ◦ M(n)

µn
f (x1, x2, . . . , xn) > λ}

)
dµ2(x2) . . . dµn(xn)

≤ Cp
p

∫
�n−1

[∫
�

[
M(2)

µ2
◦ . . . ◦ M(n)

µn
f (x1, x2, . . . , xn)

]p
dµ1(x1)

]
dµ2(x2) . . . dµn(xn)

= Cp
p

∫
�n

[
M(2)

µ2
◦ . . . ◦ M(n)

µn
f (x1, x2, . . . , xn)

]p
dµ1(x1)dµ2(x2) . . . dµn(xn)

= Cp
p

∫
�n−1

[∫
�

[
M(2)

µ2
◦ . . . ◦ M(n)

µn
f (x)

]p
dµ2(x2)

]
dµ1(x1)dµ3(x3) . . . dµn(xn)

≤ Cp
pcp

p

∫
�n

[
M(3)

µ3
◦ . . . ◦ M(n)

µn
f (x1, x2, . . . , xn)

]p
dµ1(x1)dµ2(x2) . . . dµn(xn)

≤ . . .

≤ Cp
pc(n−1)p

p ||f ||pLp(�n,µ).

This yields (3.1). It is not difficult to check that 1 ≤ Cp ≤ 2 and p
p−1 ≤ cp ≤ 2p

p−1 for

1 < p < ∞, so the constant Cpcn−1
p is of the order O((p − 1)1−n) when p → 1. To see

that this order is optimal when µ is the Lebesgue measure, take p ∈ (1, 2), n ≥ 2 and
put f = χ[−1,1]n . Then, for any x = (x1, x2, . . . , xn) ∈ �n, we have

Mµf (x) ≥
n∏

k=1

min
(

2
|xk| + 1

, 1
)

,

which can be verified by considering the smallest rectangle that contains x and the
cube [−1, 1]n. Thus, for any λ ∈ (0, 1) we may write

|{Mµf > λ}| ≥ 2n

∣∣∣∣∣
{

x ∈ [1,∞)n :
n∏

k=1

2
xk + 1

> λ

}∣∣∣∣∣
= 2n

∫ a1

1

∫ a2

1
. . .

∫ an

1
dxndxn−1 . . . dx1, (3.5)

where a1 = 2/λ − 1 and

ak = 2k

λ(x1 + 1) . . . (xk−1 + 1)
− 1, k = 2, 3, . . . , n.

Denote the right-hand side of (3.5) by γn. Deriving the inner integral with respect to
xn gives the identity

γn = 2n
∫ a1

1

∫ a2

1
. . .

∫ an−1

1

2n

λ(x1 + 1) . . . (xn−1 + 1)
dxn−1 . . . dx1 − 4γn−1,

valid for n ≥ 2. By induction, we easily verify that

∫ ak

1
. . .

∫ an−1

1

1
(xk + 1) . . . (xn−1 + 1)

dxn−1 . . . dxk = 1
(n − k)!

(
log

ak + 1
2

)n−k
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and hence

γn

4n
=

(
log λ−1

)n−1

λ(n − 1)!
− γn−1

4n−1
. (3.6)

This, in turn, implies that for n ≥ 3,

γn

4n
=

(
log λ−1

)n−1

λ(n − 1)!
−

(
log λ−1

)n−2

λ(n − 2)!
+ γn−2

4n−2
>

(
log λ−1

)n−1

λ(n − 1)!
−

(
log λ−1

)n−2

λ(n − 2)!
. (3.7)

This is also true for n = 2: we have γ1 = 4(λ−1 − 1) and hence by (3.6),

γ2

4
= log λ−1

λ
− 1

λ
+ 1.

Consequently, we have limλ→0 λ|{Mµf > λ}| = ∞ and (i) is proved. Next, if we plug
λ = exp(−(n − 1)/(p − 1)) into (3.7), we obtain that

||Mµf ||pLp,∞(�n,|·|)
||f ||pLp(�n,|·|)

≥ λp|{Mµf > λ}|
2n

> 2ne1−n (n − 1)n−1

(n − 1)!
2 − p

(p − 1)n−1

≥ κn

(p − 1)(n−1)p
,

for some constant κn depending only on n. This gives the optimality of the order.
(iii) Introduce the operators Tk = M(k)

µk ◦ M(k+1)
µk+1 ◦ . . . ◦ M(n)

µn , k = 1, 2, . . . , n,
and let Tn+1 = Id. We will prove that

||Tkf ||Lp,∞(�,µ) ≤ cp||Tk+1f ||Lp,∞(�nµ) (3.8)

for any f and any k ∈ {1, 2, . . . , n}; this will immediately yield (3.2). To do this,
fix λ > 0 and let Aλ = {Tkf > λ} and Bλ = {Tk+1f > λ}. Let µ(k) denote the product
measure µ1 ⊗ µ2 ⊗ . . . ⊗ µk−1 ⊗ µk+1 ⊗ . . . ⊗ µn on �n−1. By (2.1), applied to M(k)

µk ,
the measure µk and the function t 	→ Tk+1f (x1, . . . , xk−1, t, xk+1, . . . , xn), t ∈ �,

λµk
({xk ∈ � : Tkf (x1, x2, . . . , xn) > λ})

≤
∫

{xk∈�:Tkf (x)>λ}
Tk+1f (x)dµk(xk) +

∫
{xk∈�:Tk+1f (x)>λ}

(
Tk+1f (x) − λ

)
dµk(xk).

Integrating this over �n−1 with respect to dµ(k)(x1, x2, . . . , xk−1, xk+1, . . . , xn) and
multiplying both sides by λp−1, we obtain

λpµ(Aλ) ≤ λp−1
[∫

Aλ

Tk+1f (x)dµ(x) +
∫

Bλ

(
Tk+1f (x) − λ

)
dµ(x)

]
.

Let (Tk+1f )∗ be the non-increasing rearrangement of Tk+1f (the definition is analogous
to that of one-dimensional setting). We have

µ(Bλ) = µ({Tk+1f > λ}) ≤ λ−p||Tk+1f ||pLp,∞(�n,µ), (3.9)
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so (Tk+1f )∗(t) ≤ t−1/p||Tk+1f ||Lp,∞(�n,µ) for any t > 0. Therefore, using the version of
inequality (2.6) in �n, we obtain

λpµ(Aλ) ≤ λp−1

[ ∫ µ(Aλ)

0
t−1/p||Tk+1f ||Lp,∞(�n,µ)dt

+
∫ µ(Bλ)

0

(
t−1/p||Tk+1f ||Lp,∞(�n,µ) − λ

)
dt

]
.

If we apply (3.9) and compute the integrals above, we obtain an inequality which can
be rewritten in the equivalent form

(p − 1)
λpµ(Aλ)

||Tk+1f ||pLp,∞(�n,µ)

≤ p

(
λpµ(Aλ)

||Tk+1f ||pLp,∞(�n,µ)

)1−1/p

+ 1.

By virtue of (1.2), this yields λpµ(Aλ) ≤ cp||Tk+1f ||Lp,∞(�n,µ) and (3.8) follows. We turn
to the sharpness. Let µ = | · | be the Lebesgue measure on �n, fix p′ > p and consider
the function

f (x1, x2, . . . , xn) =
n∏

k=1

|2xk|−1/p′
χ[−1,1]n (x).

It belongs to Lp(�n, | · |), so in particular ||f ||Lp,∞(�n,|·|) < ∞. By (2.8), applied to each
coordinate (here we use the product structure of f ), we have M|·|f ≥ cn

p′f on �n.
Therefore, ||M|·|f ||Lp,∞(�n,|·|) ≥ cn

p′ ||f ||Lp,∞(�n,|·|) and it remains to let p′ → p to see that cn
p

is optimal in (3.2). Finally, to prove the sharpness of (3.3), let f be as above. Fix κ > 1
and choose λ > 0 such that λp|{f > λ}| · κ > ||f ||pLp,∞(�n,µ). If we put A = {f > λ}, then
M|·|f > cn

p′λ on A, so

||M|·|f ||Lq,∞(A,|·|)
||f ||Lp,∞(�n,|·|)

≥ cn
p′λ|A|1/q

κ1/pλ|A|1/p
= cn

p′

κ
|A|1/q−1/p.

Since κ > 1 and p′ > p were arbitrary, constant cn
p is the best in (3.3). �
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