BEST CONSTANTS IN THE WEAK-TYPE ESTIMATES FOR UNCENTERED MAXIMAL OPERATORS

ADAM OSĘKOWSKI

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland e-mail: ados@mimuw.edu.pl

(Received 20 November 2011; accepted 25 January 2012; first published online 30 March 2012)

Abstract. Let μ be a Borel measure on \mathbb{R} . The paper contains the proofs of the estimates

$$||\mathcal{M}_{\mu}f||_{L^{q,\infty}(A,\mu)} \le c_{p,q}||f||_{L^{p}(\mathbb{R},\mu)}\,\mu(A)^{1/q-1/p}, \qquad 1 \le p < \infty, \ q \in (0,p],$$

and

$$||\mathcal{M}_{\mu}f||_{L^{q,\infty}(A,\mu)} \le C_{p,q}||f||_{L^{p,\infty}(\mathbb{R},\mu)}\,\mu(A)^{1/q-1/p}, \quad 1$$

.. ..

Here A is a subset of \mathbb{R} , f is a μ -locally integrable function, \mathcal{M}_{μ} is the uncentred maximal operator with respect to μ and $c_{p,q}$, and $C_{p,q}$ are finite constants depending only on the parameters indicated. In the case when μ is the Lebesgue measure, the optimal choices for $c_{p,q}$ and $C_{p,q}$ are determined. As an application, we present some related tight bounds for the strong maximal operator on \mathbb{R}^n with respect to a general product measure.

2000 Mathematics Subject Classification. Primary: 42B25. Secondary: 42B35, 46E30.

1. Introduction. Suppose μ is a non-negative Borel measure on \mathbb{R}^n and let $f : \mathbb{R}^n \to \mathbb{R}$ be a μ -locally integrable function. The uncentred maximal function of f with respect to μ is given by the formula

$$(\mathcal{M}_{\mu}f)(x) = \sup_{x \in B} \frac{1}{\mu(B)} \int_{B} |f| \mathrm{d}\mu,$$

where the supremum is taken over all closed balls B, which contain the point x. If μ is the Lebesgue measure, then \mathcal{M}_{μ} is the usual uncentred maximal operator of Hardy and Littlewood [4]. It is well known (see, e.g. Stein [6]) that if μ satisfies the doubling condition

$$\mu(B(x, 2r)) \le C\mu(B(x, r))$$
 for some $C < \infty$ and all $x \in \mathbb{R}^n$, $r > 0$

(here B(x, r) denotes the closed ball of centre x and radius r), then \mathcal{M}_{μ} maps $L^{p}(\mathbb{R}^{n}, \mu)$ into itself for p > 1, and $L^{1}(\mathbb{R}^{n}, \mu)$ into $L^{1,\infty}(\mathbb{R}^{n}, \mu)$. This is still true, without the doubling property if and only if n = 1 (see [1, 2, 5]).

ADAM OSĘKOWSKI

The question about the precise evaluation of strong and weak norms of \mathcal{M}_{μ} has gained some interest in the literature, and the objective of this paper is to establish two new results of this type. We will be particularly interested in the one-dimensional case. We have the following L^{p} -estimates for \mathcal{M}_{μ} : For any μ -locally integrable f and 1 we have

$$||\mathcal{M}_{\mu}f||_{L^{p}(\mathbb{R},\mu)} \leq c_{p}||f||_{L^{p}(\mathbb{R},\mu)},\tag{1.1}$$

where c_p is the unique positive solution of the equation

$$(p-1)x^p - px^{p-1} - 1 = 0. (1.2)$$

This statement, with μ being the Lebesgue measure, was proved by Grafakos and Montgomery-Smith in [3]; for the general case, consult Grafakos and Kinnunen [2]. In general, constant c_p in (1.1) cannot be replaced by a smaller number, see [3]. The L^1 -inequality does not hold in general with any finite constant c_1 , but we have the sharp weak-type estimate

$$||\mathcal{M}_{\mu}f||_{L^{1,\infty}(\mathbb{R},\mu)} \leq 2||f||_{L^{1}(\mathbb{R},\mu)},$$

as proved in [2]. Here, as usual, for any Borel subset A of \mathbb{R} and any 0 , we define the weak p-th norm of f on A by the formula

$$||f||_{L^{p,\infty}(A,\mu)} = \sup_{\lambda>0} \lambda \Big[\mu(\{x \in A : |f(x)| > \lambda\}) \Big]^{1/p}.$$

There is a natural question about the best constants in the corresponding weak-type (p, p) estimates for \mathcal{M}_{μ} , 1 . In fact, we will study this question in a more general setting and compare the weak*q* $-th norm of <math>\mathcal{M}_{\mu}f$ to the *p*-th norm of *f*, where $p \ge 1$ and $q \in (0, p]$. Introduce constant

$$C_p = \frac{(p-1)(2^{p/(p-1)}-1)}{p} \left((p-1)(2^{p/(p-1)}-2) \right)^{-1/p}$$

when $1 , and put <math>C_1 = 2$. We will establish the following result.

THEOREM 1.1. For any μ -locally integrable function $f : \mathbb{R} \to \mathbb{R}$, any Borel subset A of \mathbb{R} and any $1 \le p < \infty$, $q \in (0, p]$, we have

$$||\mathcal{M}_{\mu}f||_{L^{q,\infty}(A,\mu)} \le C_p ||f||_{L^p(\mathbb{R},\mu)} \mu(A)^{1/q-1/p}.$$
(1.3)

If μ is the Lebesgue measure, then the constant C_p is the best possible.

In particular, if p = q, then (1.3) yields the weak-type (p, p) estimate

$$||\mathcal{M}_{\mu}f||_{L^{p,\infty}(\mathbb{R},\mu)} \le C_p||f||_{L^p(\mathbb{R},\mu)},\tag{1.4}$$

which, as we will see, is also sharp, provided μ is the Lebesgue measure.

The next problem we will study concerns the sharp comparison of the weak norms of f and $\mathcal{M}_{\mu}f$. Here constants c_p of Grafakos and Montgomery-Smith [3] come into play; we will prove the following statement.

THEOREM 1.2. For any μ -locally integrable function $f : \mathbb{R} \to \mathbb{R}$, any Borel subset A of \mathbb{R} and any $1 , <math>q \in (0, p]$, we have

$$||\mathcal{M}_{\mu}f||_{L^{q,\infty}(A,\mu)} \le c_p ||f||_{L^{p,\infty}(\mathbb{R},\mu)} \mu(A)^{1/q-1/p}.$$
(1.5)

If μ is the Lebesgue measure, then the constant c_p is the best possible.

As previously, let us distinguish the choice $p = q \in (1, \infty)$. It gives the bound

$$||\mathcal{M}_{\mu}f||_{L^{p,\infty}(\mathbb{R},\mu)} \le c_p ||f||_{L^{p,\infty}(\mathbb{R},\mu)},\tag{1.6}$$

which will be proved to be sharp in the case when μ is the Lebesgue measure.

Theorems 1.1 and 1.2 will be established in the next section. In Section 3 we will apply these two theorems to obtain related results in the higher dimensional setting: more precisely, we will show tight weak-type estimates for the so-called strong maximal operator on \mathbb{R}^n , $n \ge 2$.

2. Proofs of theorems 1.1 and 1.2. We start with recalling the main lemma from [2] (see also [3] for the special case in which μ is the Lebesgue measure). This result can be regarded as an appropriate version of the weak-type estimate for \mathcal{M}_{μ} . Here and below, we use the notation $\{f > \lambda\}$ for the set $\{x \in \mathbb{R} : f(x) > \lambda\}$.

LEMMA 2.1. If f is a non-negative and μ -locally integrable function on \mathbb{R} , then for any $\lambda > 0$ we have

$$\lambda\Big(\mu\left(\{\mathcal{M}_{\mu}f > \lambda\}\right) + \mu\left(\{f > \lambda\}\right)\Big) \le \int_{\{\mathcal{M}_{\mu}f > \lambda\}} f d\mu + \int_{\{f > \lambda\}} f d\mu.$$
(2.1)

In other words, for any f, λ as in the statement above, we have

$$\int_{\mathbb{R}} u(f(x)/\lambda, \mathcal{M}_{\mu}f(x)/\lambda) \mathrm{d}\mu(x) \le 0,$$
(2.2)

where $u: [0, \infty) \times [0, \infty] \to \mathbb{R}$ is the function given by the formula

$$u(x, y) = (\chi_{\{x>1\}} + \chi_{\{y>1\}})(1-x).$$

Introduce the parameters

$$r_p = \frac{p}{(p-1)(2^{p/(p-1)}-1)}, \qquad s_p = \frac{p \, 2^{1/(p-1)}}{(p-1)(2^{p/(p-1)}-1)}$$

and

$$\alpha_p = \frac{2^{p/(p-1)} - 1}{2^{p/(p-1)} - 2}.$$

LEMMA 2.2. For any $0 \le x \le y$ and any 1 , we have

$$\alpha_p u(x, y) \ge \chi_{\{y>1\}} - C_p^p x^p.$$
 (2.3)

ADAM OSĘKOWSKI

Proof. If $y \le 1$, then the estimate becomes $0 \ge -C_p^p x^p$, which is obvious. Suppose y > 1 and $x \le 1$. Then (2.3) is equivalent to

$$F(x) := \alpha_p (1 - x) - 1 + C_p^p x^p \ge 0$$

which holds true for all $x \ge 0$. This is the consequence of the fact that F is a convex function, combined with equalities $F(r_p) = F'(r_p) = 0$. Finally, if both x and y are larger than 1, inequality (2.3) can be rewritten in the form

$$G(x) := 2\alpha_p(1-x) - 1 + C_p^p x^p \ge 0$$

which follows from the convexity of *G* and equalities $G(s_p) = G'(s_p) = 0$.

Proof of (1.3) We may assume that f is a non-negative function which satisfies $||f||_{L^p(\mathbb{R},\mu)} < \infty$. Combining (2.2) and (2.3), we obtain that for p > 1,

$$\lambda^{p}\mu\big(\{\mathcal{M}_{\mu}f > \lambda\}\big) \le C_{p}^{p}||f||_{L^{p}(\mathbb{R},\mu)}^{p}.$$
(2.4)

This bound is also true for p = 1, as we have already mentioned above. Thus, since $\mu(\{x \in A : \mathcal{M}_{\mu}f(x) > \lambda\}) \le \min \{\mu(A), \mu(\{\mathcal{M}_{\mu}f > \lambda\})\}$, we have

$$\lambda^{q} \mu(\{x \in A : \mathcal{M}_{\mu}f(x) > \lambda\}) \leq \lambda^{q} \mu(\{\mathcal{M}_{\mu}f \geq \lambda\})^{q/p} \mu(A)^{1-q/p} \leq C_{p}^{q} ||f||_{L^{p}(\mathbb{R},\mu)}^{q} \mu(A)^{1-q/p},$$
(2.5)

where the latter passage is due to (2.4). It remains to take supremum over λ in (2.5) to obtain (1.3).

Sharpness for the Lebesgue measure. Let r_p and s_p be as above and introduce the parameter $\beta_p = 2(s_p - 1)/(1 - r_p)$. Consider the function

$$f = s_p \chi_{[-1,1]} + r_p \left(\chi_{[-\beta_p - 1, -1)} + \chi_{(1,\beta_p + 1]} \right)$$

and let $A = [-\beta_p - 1, \beta_p + 1]$. The identity

$$\frac{1}{\left|\left[-\beta_{p}-1,\,1\right]\right|}\int_{-\beta_{p}-1}^{1}f(x)\mathrm{d}x = \frac{1}{\left|\left[-1,\,\beta_{p}+1\right]\right|}\int_{-1}^{\beta_{p}+1}f(x)\mathrm{d}x = \frac{2s_{p}+\beta_{p}r_{p}}{2+\beta_{p}} = 1$$

and the definition of the maximal operator imply that $\mathcal{M}_{|\cdot|}f(x) \ge 1$ for $x \in A$. Therefore,

$$\frac{|\{x \in A : \mathcal{M}_{|\cdot|}f(x) \ge 1\}|}{||f||_{L^{p}(\mathbb{R},|\cdot|)}^{q}|A|^{1-q/p}} = \left(\frac{|A|}{||f||_{L^{p}(\mathbb{R},|\cdot|)}^{p}}\right)^{q/p} = \left(\frac{2(\beta_{p}+1)}{2\beta_{p}r_{p}^{p}+2s_{p}^{p}}\right)^{q/p}$$

and the latter expression is easily checked to be equal to C_p^q . This proves the sharpness of (1.3). The same example yields the optimality of C_p in (1.4): we have

$$||\mathcal{M}_{|\cdot|f}||_{L^{p,\infty}(\mathbb{R},|\cdot|)}^{p} \ge |\{\mathcal{M}_{|\cdot|f} \ge 1\}| \ge |\mathcal{A}| = C_{p}^{p}||f||_{L^{p}(\mathbb{R},|\cdot|)}^{p}.$$

Proof of (1.5) It suffices to consider functions f, which are non-negative and satisfy $0 < ||f||_{L^{p,\infty}(\mathbb{R},\mu)} < \infty$. In addition, by homogeneity, we may and do assume

that $||f||_{L^{p,\infty}(\mathbb{R},\mu)} = 1$. Rewrite (2.1) in the form

$$\lambda\mu(\{\mathcal{M}_{\mu}f > \lambda\}) \leq \int_{\{\mathcal{M}_{\mu}f > \lambda\}} f \mathrm{d}\mu + \int_{\{f > \lambda\}} (f - \lambda) \mathrm{d}\mu.$$

The well-known inequality of Hardy and Littlewood (see, e.g. [4]) states that if h is a non-negative function and A is a Borel subset of \mathbb{R} , then

$$\int_{A} h \mathrm{d}\mu \le \int_{0}^{\mu(A)} h^{*}(t) \mathrm{d}t, \qquad (2.6)$$

where $h^*(t) = \inf \{s > 0 : \mu(\{f > s\}) \le t\}$ is the non-increasing rearrangement of *h*. Since $||f||_{L^{p,\infty}(\mathbb{R},\mu)} = 1$, we have $\mu(\{f > \lambda\}) \le \lambda^{-p}$ for all $\lambda > 0$ and hence $f^*(t) \le t^{-1/p}$ for all positive *t*. Putting all these facts together, we obtain

$$\begin{split} \lambda \,\mu(\{\mathcal{M}_{\mu}f > \lambda\}) &\leq \int_{0}^{\mu(\{\mathcal{M}_{\mu}f > \lambda\})} t^{-1/p} \mathrm{d}t + \int_{0}^{\lambda^{-p}} (t^{-1/p} - \lambda) \mathrm{d}t \\ &= \frac{p}{p-1} \mu(\{\mathcal{M}_{\mu}f > \lambda\})^{(p-1)/p} + \frac{\lambda^{1-p}}{p-1}. \end{split}$$

Multiplying both sides by $(p-1)\lambda^{p-1}$ yields

$$(p-1)\lambda^p \mu(\{\mathcal{M}_{\mu}f > \lambda\}) \le p \left(\lambda^p \mu(\{\mathcal{M}_{\mu}f > \lambda\})\right)^{(p-1)/p} + 1.$$

In view of (1.2), this implies

$$\lambda^p \mu(\{\mathcal{M}_{\mu}f > \lambda\}) \le c_p^p = c_p^p ||f||_{L^{p,\infty}(\mathbb{R},\mu)}.$$
(2.7)

Indeed, we have $c_p \ge 1$ and the function $x \mapsto (p-1)x^p - px^{p-1}$ is increasing on $[1, \infty)$. Thus, we have established (1.6). Furthermore, (2.7) yields

$$\lambda^{q}\mu(\{x \in A : \mathcal{M}_{\mu}f(x) > \lambda\}) \le c_{p}^{q}||f||_{L^{p,\infty}(\mathbb{R},\mu)}^{q}\mu(A)^{1-q/p},$$

which can be seen by repeating the argument leading from (2.4) to (2.5). The proof of (1.5) is complete. \Box

Sharpness for the Lebesgue measure. Fix p > 1 and let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(t) = |2t|^{-1/p}$. It is easy to check that $||f||_{L^{p,\infty}(\mathbb{R})} = 1$. Furthermore, for any x > 0 we have

$$\frac{1}{|[-c_p^{-p}x,x]|} \int_{-c_p^{p}x}^{x} f(t) dt = (2x)^{-1/p} \frac{p(1+c_p^{1-p})}{(p-1)(1+c_p^{-p})} = c_p(2x)^{-1/p}, \qquad (2.8)$$

where the latter equality follows from (1.2). Thus, by the definition of the maximal operator, we have $\mathcal{M}_{|\cdot|}f(x) \ge c_p(2x)^{-1/p}$ for x > 0 and similarly $\mathcal{M}_{|\cdot|}f(x) \ge c_p(-2x)^{-1/p}$ for negative *x*. Consequently, $||\mathcal{M}_{|\cdot|}f||_{L^{p,\infty}(\mathbb{R},|\cdot|)} \ge c_p$ and the equality in (1.6) is attained. Next, putting $A = \{\mathcal{M}_{|\cdot|}f \ge 1\}$, we see that $[-c_p^p/2, c_p^p/2] \subseteq A$ and hence

$$||\mathcal{M}_{|\cdot|}f||_{L^{q,\infty}(A,|\cdot|)}^q \ge |A| \ge c_p^q |A|^{1-q/p} = c_p^q |A|^{1-q/p} ||f||_{L^{p,\infty}(\mathbb{R},|\cdot|)}^q.$$

This yields the desired optimality of c_p in (1.5).

ADAM OSĘKOWSKI

3. Estimates for the strong maximal function. This section contains applications of previous results to the study of maximal operators in higher dimensions. Let $n \ge 1$ be a fixed integer and let μ be a product measure on \mathbb{R}^n : $\mu = \mu_1 \otimes \mu_2 \otimes \ldots \otimes \mu_n$ for some Borel measures $\mu_1, \mu_2, \ldots, \mu_n$ on \mathbb{R} . The strong maximal operator M_{μ} is an operator that acts on μ -locally integrable functions f by the formula

$$M_{\mu}f(x) = \sup_{x \in D} \frac{1}{\mu(D)} \int_{D} |f| \mathrm{d}\mu,$$

where the supremum is taken over all closed rectangles D, with sides parallel to the axes, satisfying $x \in D$. Observe that for n = 1, operators M_{μ} and \mathcal{M}_{μ} coincide.

We will prove the following fact.

THEOREM 3.1. Let μ and M_{μ} be as above.

- (i) If $n \ge 2$, then in general M_{μ} does not map $L^{1}(\mathbb{R}^{n}, \mu)$ into $L^{1,\infty}(\mathbb{R}^{n}, \mu)$.
- (ii) If $1 , then for any <math>f : \mathbb{R}^n \to \mathbb{R}$ we have

$$||M_{\mu}f||_{L^{p,\infty}(\mathbb{R}^{n},\mu)} \le C_{p}c_{p}^{n-1}||f||_{L^{p}(\mathbb{R}^{n}\mu)}.$$
(3.1)

If μ is the Lebesgue measure on \mathbb{R}^n , then the constant has the optimal order $O((p-1)^{1-n})$ as $p \to 1$.

(iii) If $1 , then for any <math>f : \mathbb{R}^n \to \mathbb{R}$ we have

$$||M_{\mu}f||_{L^{p,\infty}(\mathbb{R}^{n},\mu)} \le c_{p}^{n}||f||_{L^{p,\infty}(\mathbb{R}^{n},\mu)}.$$
(3.2)

If μ is the Lebesgue measure on \mathbb{R}^n , then the constant is the best possible.

REMARK 3.2. By the argument from the previous section, (3.1) and (3.2) imply the estimates

$$||M_{\mu}f||_{L^{q,\infty}(A,\mu)} \leq C_p c_p^{n-1} ||f||_{L^p(\mathbb{R}^n\mu)} \mu(A)^{1/q-1/p}$$

and

$$||M_{\mu}f||_{L^{q,\infty}(A,\mu)} \le c_p^n ||f||_{L^{p,\infty}(\mathbb{R}^n,\mu)} \mu(A)^{1/q-1/p}$$
(3.3)

for all μ -locally integrable functions $f : \mathbb{R}^n \to \mathbb{R}$, all Borel subsets A of \mathbb{R}^n and all $1 , <math>0 < q \le p$. We will prove below that (3.3) is sharp, provided μ is the Lebesgue measure.

Proof of Theorem 3.1. (i) This will be shown in the proof of (ii) below. (ii) The key observation is that

$$M_{\mu} \leq \mathcal{M}_{\mu_1}^{(1)} \circ \mathcal{M}_{\mu_2}^{(2)} \circ \ldots \circ \mathcal{M}_{\mu_n}^{(n)}, \tag{3.4}$$

where $\mathcal{M}_{\mu_k}^{(k)}$ denotes the maximal operator \mathcal{M}_{μ_k} applied to the *k*-th coordinate. Let *f* be a non-negative function on \mathbb{R}^n satisfying $||f||_{L^p(\mathbb{R}^n,\mu)} < \infty$. Using (1.4) with respect

to \mathcal{M}_{μ_1} and then (1.1) with respect to $\mathcal{M}_{\mu_2}, \mathcal{M}_{\mu_3}, \ldots, \mathcal{M}_{\mu_n}$, we obtain

$$\begin{split} \lambda^{p} \mu \left(\left\{ \mathcal{M}_{\mu_{1}}^{(1)} \circ \mathcal{M}_{\mu_{2}}^{(2)} \circ \ldots \circ \mathcal{M}_{\mu_{n}}^{(n)} f > \lambda \right\} \right) \\ &= \int_{\mathbb{R}^{n-1}} \lambda^{p} \mu_{1} \left(\left\{ x_{1} : \mathcal{M}_{\mu_{1}}^{(1)} \circ \ldots \circ \mathcal{M}_{\mu_{n}}^{(n)} f(x_{1}, x_{2}, \dots, x_{n}) > \lambda \right\} \right) d\mu_{2}(x_{2}) \dots d\mu_{n}(x_{n}) \\ &\leq C_{p}^{p} \int_{\mathbb{R}^{n-1}} \left[\int_{\mathbb{R}} \left[\mathcal{M}_{\mu_{2}}^{(2)} \circ \ldots \circ \mathcal{M}_{\mu_{n}}^{(n)} f(x_{1}, x_{2}, \dots, x_{n}) \right]^{p} d\mu_{1}(x_{1}) \right] d\mu_{2}(x_{2}) \dots d\mu_{n}(x_{n}) \\ &= C_{p}^{p} \int_{\mathbb{R}^{n}} \left[\mathcal{M}_{\mu_{2}}^{(2)} \circ \ldots \circ \mathcal{M}_{\mu_{n}}^{(n)} f(x_{1}, x_{2}, \dots, x_{n}) \right]^{p} d\mu_{1}(x_{1}) d\mu_{2}(x_{2}) \dots d\mu_{n}(x_{n}) \\ &= C_{p}^{p} \int_{\mathbb{R}^{n-1}} \left[\int_{\mathbb{R}} \left[\mathcal{M}_{\mu_{2}}^{(2)} \circ \ldots \circ \mathcal{M}_{\mu_{n}}^{(n)} f(x_{1})^{p} d\mu_{2}(x_{2}) \right] d\mu_{1}(x_{1}) d\mu_{3}(x_{3}) \dots d\mu_{n}(x_{n}) \\ &\leq C_{p}^{p} c_{p}^{p} \int_{\mathbb{R}^{n}} \left[\mathcal{M}_{\mu_{3}}^{(3)} \circ \ldots \circ \mathcal{M}_{\mu_{n}}^{(n)} f(x_{1}, x_{2}, \dots, x_{n}) \right]^{p} d\mu_{1}(x_{1}) d\mu_{2}(x_{2}) \dots d\mu_{n}(x_{n}) \\ &\leq \dots \\ &\leq C_{p}^{p} c_{p}^{(n-1)p} ||f||_{L^{p}(\mathbb{R}^{n}, \mu)}^{p}. \end{split}$$

This yields (3.1). It is not difficult to check that $1 \le C_p \le 2$ and $\frac{p}{p-1} \le c_p \le \frac{2p}{p-1}$ for $1 , so the constant <math>C_p c_p^{n-1}$ is of the order $O((p-1)^{1-n})$ when $p \to 1$. To see that this order is optimal when μ is the Lebesgue measure, take $p \in (1, 2), n \ge 2$ and put $f = \chi_{[-1,1]^n}$. Then, for any $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$, we have

$$M_{\mu}f(x) \ge \prod_{k=1}^{n} \min\left(\frac{2}{|x_k|+1}, 1\right),$$

which can be verified by considering the smallest rectangle that contains x and the cube $[-1, 1]^n$. Thus, for any $\lambda \in (0, 1)$ we may write

$$|\{M_{\mu}f > \lambda\}| \ge 2^{n} \left| \left\{ x \in [1, \infty)^{n} : \prod_{k=1}^{n} \frac{2}{x_{k} + 1} > \lambda \right\} \right|$$
$$= 2^{n} \int_{1}^{a_{1}} \int_{1}^{a_{2}} \dots \int_{1}^{a_{n}} dx_{n} dx_{n-1} \dots dx_{1},$$
(3.5)

where $a_1 = 2/\lambda - 1$ and

$$a_k = \frac{2^k}{\lambda(x_1+1)\dots(x_{k-1}+1)} - 1, \qquad k = 2, 3, \dots, n.$$

Denote the right-hand side of (3.5) by γ_n . Deriving the inner integral with respect to x_n gives the identity

$$\gamma_n = 2^n \int_1^{a_1} \int_1^{a_2} \dots \int_1^{a_{n-1}} \frac{2^n}{\lambda(x_1+1)\dots(x_{n-1}+1)} \, \mathrm{d}x_{n-1}\dots \, \mathrm{d}x_1 - 4\gamma_{n-1},$$

valid for $n \ge 2$. By induction, we easily verify that

$$\int_{1}^{a_{k}} \dots \int_{1}^{a_{n-1}} \frac{1}{(x_{k}+1)\dots(x_{n-1}+1)} \mathrm{d}x_{n-1}\dots\mathrm{d}x_{k} = \frac{1}{(n-k)!} \left(\log\frac{a_{k}+1}{2}\right)^{n-k}$$

and hence

$$\frac{\gamma_n}{4^n} = \frac{\left(\log \lambda^{-1}\right)^{n-1}}{\lambda(n-1)!} - \frac{\gamma_{n-1}}{4^{n-1}}.$$
(3.6)

This, in turn, implies that for $n \ge 3$,

$$\frac{\gamma_n}{4^n} = \frac{\left(\log\lambda^{-1}\right)^{n-1}}{\lambda(n-1)!} - \frac{\left(\log\lambda^{-1}\right)^{n-2}}{\lambda(n-2)!} + \frac{\gamma_{n-2}}{4^{n-2}} > \frac{\left(\log\lambda^{-1}\right)^{n-1}}{\lambda(n-1)!} - \frac{\left(\log\lambda^{-1}\right)^{n-2}}{\lambda(n-2)!}.$$
 (3.7)

This is also true for n = 2: we have $\gamma_1 = 4(\lambda^{-1} - 1)$ and hence by (3.6),

$$\frac{\gamma_2}{4} = \frac{\log \lambda^{-1}}{\lambda} - \frac{1}{\lambda} + 1.$$

Consequently, we have $\lim_{\lambda\to 0} \lambda |\{M_{\mu}f > \lambda\}| = \infty$ and (i) is proved. Next, if we plug $\lambda = \exp(-(n-1)/(p-1))$ into (3.7), we obtain that

$$\begin{aligned} \frac{||M_{\mu}f||^{p}_{L^{p,\infty}(\mathbb{R}^{n},|\cdot|)}}{||f||^{p}_{L^{p}(\mathbb{R}^{n},|\cdot|)}} &\geq \frac{\lambda^{p}|\{M_{\mu}f > \lambda\}|}{2^{n}} \\ &> 2^{n}e^{1-n}\frac{(n-1)^{n-1}}{(n-1)!}\frac{2-p}{(p-1)^{n-1}} \\ &\geq \frac{\kappa_{n}}{(p-1)^{(n-1)p}}, \end{aligned}$$

for some constant κ_n depending only on *n*. This gives the optimality of the order.

(iii) Introduce the operators $T_k = \mathcal{M}_{\mu_k}^{(k)} \circ \mathcal{M}_{\mu_{k+1}}^{(k+1)} \circ \ldots \circ \mathcal{M}_{\mu_n}^{(n)}, k = 1, 2, \ldots, n$, and let $T_{n+1} = \text{Id}$. We will prove that

$$||T_k f||_{L^{p,\infty}(\mathbb{R},\mu)} \le c_p ||T_{k+1} f||_{L^{p,\infty}(\mathbb{R}^n\mu)}$$
(3.8)

for any f and any $k \in \{1, 2, ..., n\}$; this will immediately yield (3.2). To do this, fix $\lambda > 0$ and let $A_{\lambda} = \{T_k f > \lambda\}$ and $B_{\lambda} = \{T_{k+1} f > \lambda\}$. Let $\mu^{(k)}$ denote the product measure $\mu_1 \otimes \mu_2 \otimes ... \otimes \mu_{k-1} \otimes \mu_{k+1} \otimes ... \otimes \mu_n$ on \mathbb{R}^{n-1} . By (2.1), applied to $\mathcal{M}_{\mu_k}^{(k)}$, the measure μ_k and the function $t \mapsto T_{k+1} f(x_1, ..., x_{k-1}, t, x_{k+1}, ..., x_n), t \in \mathbb{R}$,

$$\lambda \mu_k \big(\{ x_k \in \mathbb{R} : T_k f(x_1, x_2, \dots, x_n) > \lambda \} \big)$$

$$\leq \int_{\{ x_k \in \mathbb{R} : T_k f(x) > \lambda \}} T_{k+1} f(x) \mathrm{d} \mu_k(x_k) + \int_{\{ x_k \in \mathbb{R} : T_{k+1} f(x) > \lambda \}} \big(T_{k+1} f(x) - \lambda \big) \mathrm{d} \mu_k(x_k).$$

Integrating this over \mathbb{R}^{n-1} with respect to $d\mu^{(k)}(x_1, x_2, \dots, x_{k-1}, x_{k+1}, \dots, x_n)$ and multiplying both sides by λ^{p-1} , we obtain

$$\lambda^{p}\mu(A_{\lambda}) \leq \lambda^{p-1} \left[\int_{A_{\lambda}} T_{k+1}f(x) \mathrm{d}\mu(x) + \int_{B_{\lambda}} \left(T_{k+1}f(x) - \lambda \right) \mathrm{d}\mu(x) \right].$$

Let $(T_{k+1}f)^*$ be the non-increasing rearrangement of $T_{k+1}f$ (the definition is analogous to that of one-dimensional setting). We have

$$\mu(B_{\lambda}) = \mu(\{T_{k+1}f > \lambda\}) \le \lambda^{-p} ||T_{k+1}f||_{L^{p,\infty}(\mathbb{R}^{n},\mu)}^{p},$$
(3.9)

662

so $(T_{k+1}f)^*(t) \le t^{-1/p} ||T_{k+1}f||_{L^{p,\infty}(\mathbb{R}^n,\mu)}$ for any t > 0. Therefore, using the version of inequality (2.6) in \mathbb{R}^n , we obtain

$$\lambda^{p}\mu(A_{\lambda}) \leq \lambda^{p-1} \left[\int_{0}^{\mu(A_{\lambda})} t^{-1/p} ||T_{k+1}f||_{L^{p,\infty}(\mathbb{R}^{n},\mu)} \mathrm{d}t + \int_{0}^{\mu(B_{\lambda})} \left(t^{-1/p} ||T_{k+1}f||_{L^{p,\infty}(\mathbb{R}^{n},\mu)} - \lambda\right) \mathrm{d}t \right]$$

If we apply (3.9) and compute the integrals above, we obtain an inequality which can be rewritten in the equivalent form

$$(p-1)\frac{\lambda^p \mu(A_{\lambda})}{||T_{k+1}f||_{L^{p,\infty}(\mathbb{R}^n,\mu)}^p} \le p\left(\frac{\lambda^p \mu(A_{\lambda})}{||T_{k+1}f||_{L^{p,\infty}(\mathbb{R}^n,\mu)}^p}\right)^{1-1/p} + 1.$$

By virtue of (1.2), this yields $\lambda^p \mu(A_\lambda) \leq c_p ||T_{k+1}f||_{L^{p,\infty}(\mathbb{R}^n,\mu)}$ and (3.8) follows. We turn to the sharpness. Let $\mu = |\cdot|$ be the Lebesgue measure on \mathbb{R}^n , fix p' > p and consider the function

$$f(x_1, x_2, \ldots, x_n) = \prod_{k=1}^n |2x_k|^{-1/p'} \chi_{[-1,1]^n}(x).$$

It belongs to $L^p(\mathbb{R}^n, |\cdot|)$, so in particular $||f||_{L^{p,\infty}(\mathbb{R}^n, |\cdot|)} < \infty$. By (2.8), applied to each coordinate (here we use the product structure of f), we have $M_{|\cdot|}f \ge c_p^n f$ on \mathbb{R}^n . Therefore, $||M_{|\cdot|}f||_{L^{p,\infty}(\mathbb{R}^n, |\cdot|)} \ge c_{p'}^n ||f||_{L^{p,\infty}(\mathbb{R}^n, |\cdot|)}$ and it remains to let $p' \to p$ to see that c_p^n is optimal in (3.2). Finally, to prove the sharpness of (3.3), let f be as above. Fix $\kappa > 1$ and choose $\lambda > 0$ such that $\lambda^p |\{f > \lambda\}| \cdot \kappa > ||f||_{L^{p,\infty}(\mathbb{R}^n,\mu)}^p$. If we put $A = \{f > \lambda\}$, then $M_{|\cdot|}f > c_{p'}^n \lambda$ on A, so

$$\frac{||M_{|\cdot|}f||_{L^{q,\infty}(\mathcal{A},|\cdot|)}}{||f||_{L^{p,\infty}(\mathbb{R}^n,|\cdot|)}} \geq \frac{c_{p'}^n \lambda |A|^{1/q}}{\kappa^{1/p} \lambda |A|^{1/p}} = \frac{c_{p'}^n}{\kappa} |A|^{1/q-1/p}.$$

Since $\kappa > 1$ and p' > p were arbitrary, constant c_p^n is the best in (3.3).

ACKNOWLEDGEMENTS. The research was partially supported by MNiSW Grant N N201 397437.

REFERENCES

1. A. Bernal, A note on the one-dimensional maximal function, Proc. Roy. Soc. Edinburgh **111A** (1989), 325–328.

2. L. Grafakos and J. Kinnunen, *Sharp inequalities for maximal functions associated with general measures, Proc. Roy. Soc. Edinburgh* **128A** (1998), 717–723.

3. L. Grafakos and S. Montgomery-Smith, *Best constants for uncentered maximal functions, Bull. London Math. Soc.* **29** (1997), 60–64.

4. G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities*, 2nd ed. (Cambridge University Press, Cambridge, UK, 1952).

5. P. Sjögren, A remark on the maximal function for measures in \mathbb{R}^n , Amer. J. Math. **105** (1983), 1231–1233.

6. E. M. Stein, *Harmonic analysis: Real variable theory, orthogonality, and oscillatory integrals* (Princeton University Press, Princeton, NJ, 1993).