SMALL ZEROS OF QUADRATIC L-FUNCTIONS

Ali E. Özlük and C. Snyder

We study the distribution of the imaginary parts of zeros near the real axis of quadratic L-functions. More precisely, let $K(s)$ be chosen so that $|K(1 / 2 \pm i t)|$ is rapidly decreasing as t increases. We investigate the asymptotic behaviour of

$$
F(\alpha, D)=\left(\frac{1}{2 \zeta(2)} K\left(\frac{1}{2}\right) D\right)^{-1} \sum_{d \in \mathcal{F}(D)} \sum_{\rho(d)} K(\rho) D^{i \alpha \gamma}
$$

as $D \rightarrow \infty$. Here $\sum_{\rho^{(d)}}$ denotes the sum over the non-trivial zeros $\rho=1 / 2+i \gamma$ of the Dirichlet L-function $L\left(s, \chi_{d}\right)$, and $\chi_{d}=(\underline{d})$ is the Kronecker symbol. The outer sum $\sum_{d \in \mathcal{F}(D)}$ is over all fundamental discriminants d that are in absolute value $\leqslant D$. Assuming the Generalized Riemann Hypothesis, we show that for

$$
0<|\alpha|<\frac{2}{3}, F(\alpha, D)=-1+o(1) \text { as } D \rightarrow \infty .
$$

1. Introduction

It is well known (see $[3,4,8,11]$) that the zeros of Dirichlet L-functions $L(s, \chi)$ close to the real axis contain significant number-theoretic information. For example if χ is a quadratic character with $\chi(-1)=-1$, then zeros of $L(x, \chi)$ close to $s=1 / 2$ have an effect on the class numbers of complex quadratic fields. In another direction, if χ is the non-principal character $(\bmod 4)$ then the "first" zero of $L(s, \chi)$ in the critical strip has a bearing on how primes are distributed in residue classes 1 and 3 $(\bmod 4)$, respectively, and in particular on a phenomenon first observed by Chebysev [5] concerning discrepancies in the distribution of primes into different residue classes.

Shanks [9] has given heuristic arguments for the predominance of primes in residue classes of non-quadratic type. He conjectured that if a_{1} is a quadratic residue and a_{2} is a quadratic non-residue $(\bmod q)$, then there are "more" primes congruent to a_{2} than those congruent to $a_{1} \bmod q$. Obviously the sense in which this predominance occurs needs to be specified. Bentz [4] and Bentz and Pintz [3] have made progress in

[^0]this direction. Their work clearly displays the significance of "small" zeros of Dirichlet L-functions in comparative prime number theory. (See also [10].)

In this paper, we study under the assumption of the Generalized Riemarn Hypothesis the distribution of "small" zeros of quadratic L-functions $L\left(x, \chi_{d}\right)$ for all fundamental discriminants d that are in absolute value less than or equal to a given constant D. More specifically, if $\sum_{d \in \mathcal{F}(D)}$ denotes a summation over all such d, we investigate the asymptotic properties of $\sum_{d \in \mathcal{F}(D)} \sum_{\rho(d)} K(\rho) D^{i \alpha \gamma}$ as a function of α as $D \rightarrow \infty$. Here K is a suitable kernel, $\sum_{\rho(d)}$ denotes the sum over the non-trivial zeros $\rho=1 / 2+i \gamma$ of $L\left(s, \chi_{d}\right)$ and $\chi_{d}=(\underline{d})$ is the Kronecker symbol.

2. Preliminaries and results

Let x and D be positive real numbers and define

$$
F_{1}(x, D)=\sum_{d \in \mathcal{F}(D)} \sum_{\rho(d)} K(\rho) x^{i \gamma}
$$

where $\mathcal{F}(D)$ is the set of fundamental discriminants of quadratic number fields which are in absolute value less than or equal to $D ; \sum_{\rho(d)}$ denotes the sum over the nontrivial zeros $\rho=1 / 2+i \gamma$ of the L-series $L\left(s, \chi_{d}\right)$ where $\chi_{d}=(\underline{d})$, the Kronecker symbol. (Notice that we are assuming the Generalized Riemann Hypothesis.) Also we assume that $K(s)$ is analytic in the strip $-1<\operatorname{Re}(s)<2$ such that $\int_{c-\infty i}^{c+\infty i} K(s) x^{-s} d s$ is absolutely convergent for $-1<c<2$ and all $x>2, K(1 / 2+i t)=K(1 / 2-i t)$, and where $a(x)=1 /(2 \pi i) \int_{c-\infty i}^{c+\infty i} K(s) x^{-s} d s$ is real valued and of compact support on the interval $(0, \infty)$. As is well-known, we have

$$
K(s)=\int_{0}^{\infty} a(t) t^{t} \frac{d t}{t}
$$

Since we are interested in zeros which are near the real axis we can choose $K(s)$ so that $|K(1 / 2 \pm i t)|$ is rapidly decreasing as t increases. However for now we shall not specify any particular $K(s)$. As we derive properties of $F_{1}(x, D)$ we shall need to impose further restrictions on $a(x)$, and thus on $K(s)$, but we shall do so as we proceed.

We start by making use of the explicit formula

$$
\sum_{\rho(d)} K(\rho) x^{\rho}=-\sum_{n=1}^{\infty} a\left(\frac{n}{x}\right) \Lambda(n)\left(\frac{d}{n}\right)+a\left(\frac{1}{x}\right) \log \frac{|d|}{\pi}+O(1)
$$

This can be derived as in [6].
Consequently
where

$$
F_{1}(x, D)=A+B+O\left(x^{-1 / 2} D\right)
$$

$$
A=-x^{1 / 2} \sum_{d \in \mathcal{F}(D)} \sum_{n=1}^{\infty} a\left(\frac{n}{x}\right) \Lambda(n)\left(\frac{d}{n}\right)
$$

and

$$
B=x^{-1 / 2} a\left(\frac{1}{x}\right) \sum_{d \in \mathcal{F}(D)} \log \frac{|d|}{\pi}
$$

Now let $A=A_{1}+A_{2}$ where

$$
A_{1}=-x^{-1 / 2} \sum_{d \in \mathcal{F}(D)} \sum_{\substack{n=1 \\ n=\square}}^{\infty} a\left(\frac{n}{x}\right) \Lambda(n)\left(\frac{d}{n}\right)
$$

and

$$
A_{2}=-x^{-1 / 2} \sum_{d \in \mathcal{F}(D)} \sum_{\substack{n=1 \\ n \neq \square}}^{\infty} a\left(\frac{n}{x}\right) \Lambda(n)\left(\frac{d}{n}\right) ;
$$

here $\sum_{n=\square}$ denotes the sun over those integers which are perfect squares.
Consider first A_{1}. Since $\left(\frac{d}{n}\right)=1$ if n and d are relatively prime and $\left(\frac{d}{n}\right)=0$ if not, we see that

$$
A_{1}=-x^{-1 / 2} \sum_{d \in \mathcal{F}(D)} \sum_{\substack{n=1 \\ n=\square \\(d, n)=1}} a\left(\frac{n}{x}\right) \Lambda(n)
$$

We now write $A_{1}=A_{11}+A_{12}$ where
and

$$
\begin{gathered}
A_{11}=-x^{-1 / 2} \sum_{d \in \mathcal{F}(D)} \sum_{\substack{n=1 \\
n=\square}}^{\infty} a\left(\frac{n}{x}\right) \Lambda(n) \\
A_{12}=x^{-1 / 2} \sum_{d \in \mathcal{F}(D)} \sum_{\substack{n=1 \\
n=0 \\
(d, n)>1}}^{\infty} a\left(\frac{n}{x}\right) \Lambda(n) .
\end{gathered}
$$

But notice

$$
A_{11}=-x^{-1 / 2}|\mathcal{F}(D)| \sum_{\substack{n=1 \\ n=\square}}^{\infty} a\left(\frac{n}{x}\right) \Lambda(n)
$$

where $|\mathcal{F}(D)|$ denotes the cardinality of $\mathcal{F}(D)$. We now seek an asymptotic expansion of A_{11}. To this end we have

Lemma 1. If the Riemann Hypothesis (R.H.) holds and

$$
\begin{gathered}
\int_{0}^{\infty} v^{1 / 4} \log ^{2} v\left|a^{\prime}(v)\right| d v \text { exists and is finite, } \\
\sum_{\substack{n=1 \\
n=\square}}^{\infty} a\left(\frac{n}{x}\right) \Lambda(n)=\frac{1}{2} K\left(\frac{1}{2}\right) x^{1 / 2}+O\left(x^{1 / 4} \log ^{2} x\right) \quad(x \rightarrow \infty) .
\end{gathered}
$$

then

Proof: We use Riemann-Stieltjes integration to write

$$
\sum_{n=\square} a\left(\frac{n}{x}\right) \Lambda(n)=\int_{0}^{\infty} a\left(\frac{u}{x}\right) d \psi(\sqrt{u})
$$

where $\psi(u)=\sum_{n \leqslant u} \Lambda(n)$. Then under R.H. $\psi(u)=u+E(u)$ with $E(u) \ll u^{1 / 2} \log ^{2} u$. Consequently

But

$$
\int_{0}^{\infty} a\left(\frac{u}{x}\right) d \psi(\sqrt{u})=\int_{0}^{\infty} a\left(\frac{u}{x}\right) d \sqrt{u}+\int_{0}^{\infty} a\left(\frac{u}{x}\right) d E(\sqrt{u})
$$

$$
\int_{0}^{\infty} a\left(\frac{u}{x}\right) d \sqrt{u}=\frac{1}{2} \int_{0}^{\infty} a\left(\frac{u}{x}\right) u^{-1 / 2} d u
$$

and changing variable $v=u / \boldsymbol{x}$,

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{\infty} a\left(\frac{u}{x}\right) u^{-1 / 2} d u & =\frac{1}{2} \int_{0}^{\infty} a(v) x^{-1 / 2} v^{-1 / 2} x d v \\
& =\frac{1}{2} x^{1 / 2} \int_{0}^{\infty} a(v) v^{-1 / 2} d v=\frac{1}{2} K\left(\frac{1}{2}\right) x^{1 / 2}
\end{aligned}
$$

On the other hand, by using integration by parts we get

$$
\begin{aligned}
\int_{0}^{\infty} a\left(\frac{u}{x}\right) d E(\sqrt{u}) & =\left.a\left(\frac{u}{x}\right) E(\sqrt{u})\right|_{0} ^{\infty}-\int_{0}^{\infty} E(\sqrt{u}) d a\left(\frac{u}{x}\right) \\
& =-\int_{0}^{\infty} E(\sqrt{u}) d a\left(\frac{u}{x}\right)
\end{aligned}
$$

since $a(x)$ has compact support in ($0, \infty$). By using $E(\sqrt{u}) \ll u^{1 / 4} \log ^{2} u$ we have

$$
\int_{0}^{\infty} E(\sqrt{u}) d a\left(\frac{u}{x}\right) \ll \int_{0}^{\infty} u^{1 / 4} \log ^{2} u d a\left(\frac{u}{x}\right)=x^{-1} \int_{0}^{\infty} u^{1 / 4} \log ^{2} u a^{\prime}\left(\frac{u}{x}\right) d u
$$

Changing variable $v=u / x$ leads to

$$
\begin{aligned}
& x^{-1} \int_{0}^{\infty} u^{1 / 4} \log ^{2} u a^{\prime}\left(\frac{u}{x}\right) d u=x^{-1} \int_{0}^{\infty} x^{1 / 4} v^{1 / 4} \log ^{2}(x v) a^{\prime}(v) x d v \\
& \quad=x^{1 / 4} \int_{0}^{\infty} v^{1 / 4}\left(\log ^{2} x+2 \log x \log v+\log ^{2} v\right) a^{\prime}(v) d v \ll x^{1 / 4} \log ^{2} x
\end{aligned}
$$

by the hypothesis. This establishes the lemma.
Lemma 2. $|\mathcal{F}(D)|=\frac{1}{\zeta(2)} D+O(\sqrt{D}) \quad(D \rightarrow \infty)$.
Proof: As is well-known, see for example, Davenport [6], a fundamental discriminant is a product of relatively prime factors of the form $-4,8,-8,(-1)^{(p-1) / 2} p(p$ any odd prime). Then we have

$$
\begin{gathered}
\mathcal{F}(D)=\mathcal{F}_{1}(D) \dot{\cup} \mathcal{F}_{4}(D) \dot{\cup} \mathcal{F}_{8}(D) \\
\mathcal{F}_{1}(D)=\{d: d \text { is an odd fund. disc. and }|d| \leqslant D\} \\
\mathcal{F}_{4}(D)=\{d: d \text { is a fund. disc., } d \equiv 4(8),|d| \leqslant D\} \\
\mathcal{F}_{8}(D)=\{d: d \text { is a fund. disc., } d \equiv 0(8),|d| \leqslant D\} .
\end{gathered}
$$

where

Notice that in all cases the odd part of d is square-free. Also notice that if $m, \neq \pm 1$, is odd or $\equiv 4(8)$ and that the odd part of m is square-free, then precisely one of m or $-m$ is a fundamental discriminant. On the other hand, if $m=8 m_{0}$ where m_{0} is odd and square-free, then both m and $-m$ are fundamental discriminants. Thus we see

$$
\begin{aligned}
\left|\mathcal{F}_{1}(D)\right| & =\sum_{\substack{1<m \leqslant D \\
m \text { odd }}} \mu^{2}(m), \\
\left|\mathcal{F}_{4}(D)\right| & =\sum_{\substack{1 \leqslant m \leqslant D \\
m \text { odd }}} \mu^{2}(m),
\end{aligned}
$$

and

$$
\left|\mathcal{F}_{\mathrm{B}}(D)\right|=2 \sum_{\substack{1 \leqslant m \leqslant \frac{D}{8} \\ m \text { odd }}} \mu^{2}(m) .
$$

We now use the asymptotic formula,

$$
M_{2}(x):=\sum_{n \leqslant x} \mu^{2}(n)=\frac{1}{\zeta(2)} x+O\left(x^{1 / 2}\right)
$$

see for example, Ellison [7].
From this we show that

$$
M_{0}(x):=\sum_{\substack{n \leqslant x \\ n \text { odd }}} \mu^{2}(n)=\frac{2}{3 \zeta(2)} x+O\left(x^{1 / 2}\right)
$$

For notice that

$$
\begin{aligned}
M_{2}(x) & =M_{0}(x)+M_{0}\left(\frac{x}{2}\right) \\
M_{2}\left(\frac{x}{2}\right) & =M_{0}\left(\frac{x}{2}\right)+M_{0}\left(\frac{x}{4}\right)
\end{aligned}
$$

$$
M_{2}\left(\frac{x}{2^{\nu}}\right)=M_{0}\left(\frac{x}{2^{\nu}}\right)+M_{0}\left(\frac{x}{2^{\nu+1}}\right)
$$

and so

$$
M_{0}(x)=\sum_{0 \leqslant \nu \leqslant N}(-1)^{\nu} M_{2}\left(\frac{x}{2^{\nu}}\right) \quad \text { where } \quad N=\left[\frac{\log x}{\log 2}\right]
$$

Then

$$
\begin{aligned}
M_{0}(x) & =\frac{1}{\zeta(2)} \sum_{\nu=0}^{N}\left(\frac{(-1)^{\nu} x}{2^{\nu}}+O\left(\left(\frac{x}{2^{\nu}}\right)^{1 / 2}\right)\right) \\
& =\frac{x}{\zeta(2)} \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{2^{\nu}}-\frac{x}{\zeta(2)} \sum_{\nu>N} \frac{(-1)^{\nu}}{2^{\nu}}+O\left(x^{1 / 2}\right) \\
& =\frac{2}{3 \zeta(2)} x-\frac{x}{\zeta(2)} O\left(\frac{1}{x}\right)+O\left(x^{1 / 2}\right)=\frac{2}{3 \zeta(2)} x+O\left(x^{1 / 2}\right)
\end{aligned}
$$

But then

$$
\begin{aligned}
|\mathcal{F}(D)| & =\left|\mathcal{F}_{1}(D)\right|+\left|\mathcal{F}_{4}(D)\right|+\left|\mathcal{F}_{8}(D)\right| \\
& =M_{0}(D)-1+M_{0}\left(\frac{D}{4}\right)+2 M_{0}\left(\frac{D}{8}\right) \\
& =\frac{2}{3 \zeta(2)}\left(D+\frac{D}{4}+\frac{2 D}{8}\right)+O(\sqrt{D})=\frac{1}{\zeta(2)} D+O(\sqrt{D})
\end{aligned}
$$

as desired.
Combining Lemmas 1 and 2, we have proved
Proposition 1.

$$
A_{11}=-\frac{1}{2 \zeta(2)} K\left(\frac{1}{2}\right) D+O(\sqrt{D})+O\left(D x^{-1 / 4} \log ^{2} x\right)\binom{x \rightarrow \infty}{D \rightarrow \infty}
$$

We next consider A_{12}.
Proposition 2. Under the assumptions of Lemma 1,

$$
A_{12} \ll x^{-1 / 2}(\log x) D \log \log D \quad\binom{x \rightarrow \infty}{D \rightarrow \infty} .
$$

Proof:

$$
A_{12}=x^{-1 / 2} \sum_{d \in \mathcal{F}(D)} \sum_{\substack{n=\square \\ d, n)>1}} a\left(\frac{n}{x}\right) \Lambda(n)=x^{-1 / 2} \sum_{d \in \mathcal{F}(D)} \sum_{\substack{p, m \\ p \text { prime } \\ m \geqslant 1 \\ p \mid d}} a\left(\frac{p^{2 m}}{x}\right) \log p .
$$

We first show that for a fixed prime p,

$$
\sum_{m=1}^{\infty} a\left(\frac{p^{2 m}}{x}\right) \log p=O(\log x)
$$

Since $a(x)$ has compact support in ($0, \infty$), there exist positive constants $c_{1}<c_{2}$ such that $a(x)=0$ if $x \notin\left[c_{1}, c_{2}\right]$, and suppose $M=\max$ of $|a(x)|$. Then $a\left(p^{2 m} / x\right) \neq$ 0 implies that $c_{1} \leqslant p^{2 m} / x \leqslant c_{2}$ or equivalently that $\left(\log \left(c_{1} x\right)\right) /(2 \log p) \leqslant m \leqslant$ $\left(\log \left(c_{2} x\right)\right) /(2 \log p)$. But then $\sum_{m=1}^{\infty} a\left(p^{2 m} / x\right) \log p \ll M(\log x) /(\log p) \cdot \log p \ll \log x$. Notice that the implied constant is independent of \boldsymbol{p}. Now

$$
\begin{aligned}
A_{12} & =x^{-1 / 2} \sum_{d \in \mathcal{F}(D)} \sum_{\substack{p, m \\
p \text { prime } \\
m \geqslant 1 \\
p \mid d}} a\left(\frac{p^{2 m}}{x}\right) \log p \ll x^{-1 / 2} \sum_{d \in \mathcal{F}(D)} \sum_{p \mid d} \log x \\
& \ll x^{-1 / 2} \log x \sum_{d \leqslant D} \sum_{p \mid d} 1 .
\end{aligned}
$$

But, as is known, see [2], $\sum_{d \leqslant D} \sum_{p \mid d} 1 \sim D \log \log D$. This establishes Proposition 2. Combining the two propositions yields

Proposition 3. Under the assumptions in Lemma 1, as $x \rightarrow \infty, D \rightarrow \infty$

$$
\begin{aligned}
A_{1}=- & \frac{1}{\zeta(2)} \cdot \frac{1}{2} \cdot K\left(\frac{1}{2}\right) D+O\left(D^{1 / 2}\right)+O\left(D x^{-1 / 4} \log ^{2} x\right) \\
& +O\left(x^{-1 / 2}(\log x) D \log \log D\right)
\end{aligned}
$$

Now consider \boldsymbol{A}_{2}.
Proposition 4. If the Riemann Hypothesis holds and

$$
\int_{0}^{\infty}\left|v^{3 / 2} \log ^{5 / 2} v a^{\prime}(v)\right| d v<\infty, \text { then } A_{2} \ll D^{1 / 2} x^{3 / 4} \log ^{1 / 2} x
$$

Proof: By the arguments in Ayoub [1], we have for n not a square, that $\sum_{d \in \mathcal{F}(D)}(d / n)=O\left(D^{1 / 2} n^{1 / 4} \log ^{1 / 2} n\right)$ where the implied constant is independent of
n. Hence

$$
A_{2} \ll x^{-1 / 2} \sum_{n=1}^{\infty} a\left(\frac{n}{x}\right) \Lambda(n) D^{1 / 2} n^{1 / 4} \log ^{1 / 2} n
$$

Now we consider

$$
\begin{aligned}
& \sum_{n=1}^{\infty} a\left(\frac{n}{x}\right) \Lambda(n) n^{1 / 4} \log ^{1 / 2} n=\int_{0}^{\infty} a\left(\frac{u}{x}\right) u^{1 / 4} \log ^{1 / 2} u d \psi(u) \\
& \quad=\int_{0}^{\infty} a\left(\frac{u}{x}\right) u^{1 / 4} \log ^{1 / 2} u d u+\int_{0}^{\infty} a\left(\frac{u}{x}\right) u^{1 / 4} \log ^{1 / 2} u d E(u)
\end{aligned}
$$

where $\psi(u)=u+E(u)$ and again by R.H. $E(u) \ll u^{1 / 2} \log ^{2} u$. We consider the first integral, change variable $v=u / x$, use $\sqrt{x+y} \leqslant \sqrt{x}+\sqrt{y}$ and obtain

$$
\begin{aligned}
\int_{0}^{\infty} & a\left(\frac{u}{x}\right) u^{1 / 4} \log ^{1 / 2} u d u=\int_{0}^{\infty} a(v) x^{1 / 4} v^{1 / 4} \log ^{1 / 2}(x v) x d v \\
& =x^{5 / 4} \int_{0}^{\infty} a(v) v^{1 / 4}(\log x+\log v)^{1 / 2} d v \\
& <x^{5 / 4} \int_{0}^{\infty} a(v) v^{1 / 4}\left(\log ^{1 / 2} x+\log ^{1 / 2} v\right) d v \ll x^{5 / 4} \log ^{1 / 2} x
\end{aligned}
$$

Next we consider the second integral and integrate by parts, and changing variable as usual:

$$
\begin{aligned}
& \int_{0}^{\infty} a\left(\frac{u}{x}\right) u^{1 / 4} \log ^{1 / 2} u d E(u)=-\int_{0}^{\infty} E(u) d\left(a\left(\frac{u}{x}\right) u^{1 / 4} \log ^{1 / 2} u\right) \\
& \ll \int_{0}^{\infty} u^{1 / 2}\left(\log ^{2} u\right) u^{1 / 4} \log ^{1 / 2} u d a\left(\frac{u}{x}\right)+\int_{0}^{\infty} u^{1 / 2}\left(\log ^{2} u\right) a\left(\frac{u}{x}\right) d\left(u^{1 / 4} \log ^{1 / 2} u\right) \\
& \ll \int_{0}^{\infty} u^{3 / 4}\left(\log ^{5 / 2} u\right) a^{\prime}\left(\frac{u}{x}\right) \frac{1}{x} d u \\
& \quad+\int_{0}^{\infty} u^{1 / 2} \log ^{2} u a\left(\frac{u}{x}\right)\left(u^{-3 / 4} \log ^{1 / 2} u+u^{-3 / 4} \log ^{-1 / 2} u\right) d u \\
& \ll \int_{0}^{\infty} x^{3 / 4} v^{3 / 4} \log ^{5 / 2}(x v) a^{\prime}(v) d v+\int_{0}^{\infty} u^{-1 / 4} \log ^{5 / 2} u a\left(\frac{u}{x}\right) d u \\
& \ll x^{3 / 4} \log ^{5 / 2} x \int_{0}^{\infty} v^{3 / 4} \log ^{5 / 2} v a^{\prime}(v) d v \\
& \quad+x^{-5 / 4} \log ^{5 / 2} x \int_{0}^{\infty} v^{-1 / 4} \log ^{5 / 2} v a(v) d v \\
& \ll x^{3 / 4} \log ^{5 / 2} x .
\end{aligned}
$$

Combining the results establishes the proposition.
From Proposition 3 and 4 we obtain

Proposition 5. Under the assumptions of Proposition 4,

$$
\begin{aligned}
A= & -\frac{1}{\zeta(2)} \cdot \frac{1}{2} \cdot K\left(\frac{1}{2}\right) D+O\left(D x^{-1 / 4} \log ^{2} x\right)+O\left(x^{-1 / 2}(\log x) D \log \log D\right) \\
& +O\left(D^{1 / 2} x^{3 / 4} \log ^{1 / 2} x\right)
\end{aligned}
$$

Now we consider \boldsymbol{B}.
Proposition 6.

$$
B=\frac{1}{\zeta(2)} x^{-1 / 2} a\left(\frac{1}{x}\right) D \log D+O\left(x^{-1 / 2} a\left(\frac{1}{x}\right) D\right)
$$

Proof: We have

$$
\begin{aligned}
B & =x^{-1 / 2} a\left(\frac{1}{x}\right) \sum_{d \in \mathcal{F}(D)} \log \frac{|d|}{\pi} \\
& =x^{-1 / 2} a\left(\frac{1}{x}\right) \sum_{d \in \mathcal{F}(D)} \log |d|-x^{-1 / 2} a\left(\frac{1}{x}\right) \log \pi|\mathcal{F}(D)|
\end{aligned}
$$

First consider

$$
\sum_{d \in \mathcal{F}(D)} \log |d|=\int_{1}^{D} \log u d \mathcal{F}(u)=\int_{1}^{D} \log u d\left(\frac{1}{\zeta(2)} u+E_{1}(u)\right)
$$

where $\mathcal{F}(u)=\zeta(2)+E_{1}(u)$ and $E_{1}(u) \ll u^{1 / 2}$ by Lemma 2. Now $(1 / \zeta(2)) \int_{1}^{D} \log u d u=$ $(1 / \zeta(2)) D \log D+O(D)$ by evaluation. On the other hand,

$$
\begin{aligned}
\int_{1}^{D} \log u d E_{1}(u) & =\left.E_{1}(u) \log u\right|_{1} ^{D}-\int_{1}^{D} E_{1}(u) d \log u \\
& \ll \sqrt{D} \log D+\int_{1}^{D} u^{-1 / 2} d u \ll \sqrt{D} \log D .
\end{aligned}
$$

Thus

$$
B=\frac{1}{\zeta(2)} x^{-1 / 2} a\left(\frac{1}{x}\right)(D \log D+O(D))
$$

as desired.
Combining Propositions 5 and 6, we have
Theorem 1. Under the assumptions of Proposition 4,

$$
\begin{aligned}
F_{1}(x, D)= & -\frac{1}{\zeta(2)} \cdot \frac{1}{2} \cdot K\left(\frac{1}{2}\right) D+\frac{1}{\zeta(2)} x^{-1 / 2} a\left(\frac{1}{x}\right) D \log D \\
& +O\left(x^{-1 / 2}(\log x) D \log \log D\right)+O\left(D^{1 / 2} x^{3 / 4} \log ^{1 / 2} x\right)
\end{aligned}
$$

We now normalise $F_{1}(x, D)$ by taking $x=D^{\alpha}$ and dividing by

$$
\begin{gathered}
\frac{1}{\zeta(2)} D \cdot \frac{1}{2} \cdot K\left(\frac{1}{2}\right) \\
F(\alpha, D)=\left(\frac{1}{\zeta(2)} \cdot \frac{1}{2} \cdot K\left(\frac{1}{2}\right) D\right)^{-1} F_{1}\left(D^{\alpha}, D\right)
\end{gathered}
$$

Hence let

Then we have
Theorem 2. Under the assumptions of Proposition 4, as $D \rightarrow \infty$

$$
\begin{aligned}
F(\alpha, D)= & -1+\left(\frac{1}{2} K\left(\frac{1}{2}\right)\right)^{-1} a\left(D^{\alpha}\right) D^{-\alpha / 2} \log D \\
& +O\left(D^{-\alpha / 2} \log D^{\alpha} \log \log D\right)+O\left(D^{(3 / 4) \alpha-1 / 2} \log ^{1 / 2} D^{\alpha}\right)
\end{aligned}
$$

In particular if $0<|\alpha|<2 / 3$, then

$$
F(\alpha, D)=-1+o(1)
$$

We are now in a position of using Theorem 2 to investigate the distribution of the zeros of these L-functions.

Theorem 3. Assume the hypotheses of Theorem 2. Suppose that $r(\alpha)$ is an even function defined on $(-\infty, \infty)$ with $\widehat{r}(\alpha)$ existing and such that $\widehat{r}(\alpha)$ is supported in $[-2 / 3,2 / 3]$. Moreover suppose $\int_{-\infty}^{\infty} \alpha r(\alpha) d \alpha$ converges. Then

$$
\begin{aligned}
\left(\frac{D}{\zeta(2)}\right)^{-1} & \sum_{d \in \mathcal{F}(D)}\left(\frac{1}{2} K\left(\frac{1}{2}\right)\right)^{-1} \sum_{\rho(d)} K(\rho) r\left(\frac{\gamma \log D}{2 \pi}\right) \\
& =2 \int_{-\infty}^{\infty}\left(1-\frac{\sin 2 \pi \alpha}{2 \pi \alpha}\right) r(\alpha) d \alpha+o(1)
\end{aligned}
$$

where the implied constant depends only on the kernel K.
Proof: Consider $\int_{-\infty}^{\infty} F(\alpha, D) \widetilde{r}(\alpha) d \alpha$ which by Theorem 2 is equal to

$$
\begin{aligned}
\int_{-1}^{1} & \left(-1+\left(\frac{1}{2} K\left(\frac{1}{2}\right)\right)^{-1} a\left(D^{-\alpha}\right) D^{-\alpha / 2} \log D\right) \widehat{r}(\alpha) d \alpha+o(1) \\
& =\int_{-\infty}^{\infty}\left(-\chi_{[-1,1]}(\alpha)+\left(\left(\frac{1}{2}\right) K\left(\frac{1}{2}\right)\right)^{-1} a\left(D^{\alpha}\right) D^{-\alpha / 2} \log D\right) \widehat{r}(\alpha) d \alpha+o(1)
\end{aligned}
$$

where $\chi_{[-1,1]}$ is the characteristic function of $[-1,1]$. But

$$
\int_{-\infty}^{\infty} \chi_{[-1,1]}(\alpha) \widehat{r}(\alpha) d \alpha=\int_{-\infty}^{\infty} \widehat{\chi}_{[-1,1]}(\alpha) r(\alpha) d \alpha=2 \int_{-\infty}^{\infty} \frac{\sin (2 \pi \alpha)}{2 \pi \alpha} r(\alpha) d \alpha
$$

On the other hand,

But

$$
\begin{gathered}
\int_{-\infty}^{\infty} D^{-\alpha / 2} a\left(D^{-\alpha}\right) \widehat{r}(\alpha) d \alpha=\int_{-\infty}^{\infty} D^{-\alpha / 2} a\left(D^{-\alpha}\right) r(\alpha) d \alpha \\
\left.D^{-\alpha / 2 a\left(D^{-\alpha}\right.}\right)=\int_{-\infty}^{\infty} D^{-\beta / 2} a\left(D^{-\beta}\right) e^{-2 \pi i \alpha \beta} d \beta
\end{gathered}
$$

and by the change of variable $t=D^{-\beta}$, this integral equals

$$
\begin{aligned}
& \frac{1}{\log D} \int_{0}^{\infty} a(t) t^{1 / 2+2 \pi i \alpha / \log D} \frac{d t}{t} \\
& \quad=\frac{\alpha}{\log D} \int_{0}^{\infty} a(t) t^{1 / 2} \frac{d t}{t}+\frac{1}{\log D} \int_{0}^{\infty} a(t) t^{1 / 2}\left(t^{2 \pi i \alpha / \log D}-1\right) \frac{d t}{t}
\end{aligned}
$$

Notice that

$$
t^{2 \pi i \alpha / \log D}-1=e^{2 \pi i(\log t / \log D) \alpha}-1=2 \pi i \frac{\log t}{\log D} \alpha e^{2 \pi i(\log t / \log D) \theta_{\alpha}}
$$

for some θ_{α} between 0 and α, whence
and

$$
\begin{gathered}
t^{2 \pi i \alpha / \log D}-1 \ll \frac{\log t}{\log D} \alpha \\
\frac{1}{\log D} \int_{0}^{\infty} a(t) t^{1 / 2}\left(t^{2 \pi i \alpha / \log D}-1\right) \frac{d t}{t} \ll \frac{\alpha}{\log ^{2} D}
\end{gathered}
$$

where the constant is independent of α and D. Consequently,

$$
\begin{aligned}
\left.\int_{-\infty}^{\infty} D^{-\alpha / 2 a(D}-\alpha\right) r(\alpha) d \alpha & =\frac{1}{\log D} K\left(\frac{1}{2}\right) \int_{-\infty}^{\infty} r(\alpha) d \alpha+O\left(\frac{1}{\log ^{2} D} \int_{-\infty}^{\infty} \alpha r(\alpha) d \alpha\right) \\
& =\frac{K\left(\frac{1}{2}\right)}{\log D} \int_{-\infty}^{\infty} r(\alpha) d \alpha+O\left(\frac{1}{\log ^{2} D}\right)
\end{aligned}
$$

Thus $\quad \int_{-\infty}^{\infty}\left(-\chi_{[-1,1]}(\alpha)+\left(\frac{1}{2} K\left(\frac{1}{2}\right)\right)^{-1} a\left(D^{-\alpha}\right) D^{-\alpha / 2} \log D\right) d \alpha$

$$
=-2 \int_{-\infty}^{\infty} \frac{\sin 2 \pi \alpha}{2 \pi \alpha} r(\alpha) d \alpha+2 \int_{-\infty}^{\infty} r(\alpha) d \alpha+O\left(\frac{1}{\log D}\right)
$$

$$
=2 \int_{-\infty}^{\infty}\left(1-\frac{\sin 2 \pi \alpha}{2 \pi \alpha}\right) r(\alpha) d \alpha+O\left(\frac{1}{\log D}\right)
$$

Therefore

$$
\int_{-\infty}^{\infty} F(\alpha, D) \widehat{r}(\alpha) d \alpha=2 \int_{-\infty}^{\infty}\left(1-\frac{\sin 2 \pi \alpha}{2 \pi \alpha}\right) r(\alpha) d \alpha+o(1)
$$

On the other hand, by the definition of $F(\alpha, D)$ we have

But

$$
\begin{aligned}
& \int_{-\infty}^{\infty} F(\alpha, D) \widetilde{r}(\alpha) d \alpha \\
&=\left(\frac{D}{\zeta(2)} \frac{1}{2} K\left(\frac{1}{2}\right)\right)^{-1} \sum_{d \in \mathcal{F}(D)} \sum_{\rho(d)} K(\rho) \int_{-\infty}^{\infty} e^{i \gamma \alpha \log D_{\widetilde{r}}(\alpha) d \alpha} \\
&=\left(\frac{D}{\zeta(2)} \frac{1}{2} K\left(\frac{1}{2}\right)\right)^{-1} \sum_{d \in \mathcal{F}(D)} \sum_{\rho(d)} K(\rho) \int_{-\infty}^{\infty} \widetilde{r}(\alpha) e^{\frac{2 \pi i a \gamma \log D}{2 \pi}} d \alpha .
\end{aligned}
$$

$$
\int_{-\infty}^{\infty} \widehat{r}(\alpha) e^{\frac{2 \pi i a \gamma \log D}{2 \pi}} d \alpha=\widehat{\widehat{r}}\left(-\frac{\gamma \log D}{2 \pi}\right)=r\left(\frac{\gamma \log D}{2 \pi}\right)
$$

Thus

$$
\begin{aligned}
\left(\frac{D}{\zeta(2)}\right. & \left.\frac{1}{2} K\left(\frac{1}{2}\right)\right)^{-1} \sum_{d \in \mathcal{F}(D)} \sum_{\rho(d)} K(\rho) r\left(\frac{\gamma \log D}{2 \pi}\right) \\
& =2 \int_{-\infty}^{\infty}\left(1-\frac{\sin 2 \pi \alpha}{2 \pi \alpha}\right) r(\alpha) d \alpha+o(1)
\end{aligned}
$$

References

[1] R.G. Ayoub, An introduction to the analytic theory of numbers 10 (Math. Surveys, Providence, R.I., 1963).
[2] R. Bellman, Analytic number theory, an introduction (Benjamin Cummings Pub. Co., 1980).
[3] H.-J. Bentz and J. Pintz, 'Quadratic residues and the distribution of prime numbers', Monatshefte für Mathematik 90 (1982), 91-100.
[4] H.-J. Bentz, 'Discrepancies in the distribution of prime numbers', J. Number Theory 15 (1982), 252-274.
[5] P.L. Chebysev, 'Lettres de M. le professeur Tchebychev á M. Fuss sur un nouveau théorème relative aux nombres premiers contenus dans les formes $4 n+1$ et $4 n+3$ ', Bull. Classe Phys. de l'Acad. Imp. Sciences St. Petersburg 11 (1853), 208.
[6] H. Davenport, Multiplicative number theory, 2nd ed. (Springer-Verlag, Berlin, Heidelberg, New York, 1980).
[7] F. Ellison and W. Ellison, Prime numbers (John Wiley, New York, 1985).
[8] H.L. Montgomery and P.J. Weinberger, 'Notes on small class numbers', Acta Arith. 24 (1974), 529-542.
[9] D. Shanks, 'Quadratic residues and the distribution of primes', Math. Tables and other Aids to Comp. 13 (1959), 272-284.
[10] P. Turán, On a new method of analysis and its applications (John Wiley and Sons, Inc., New York, 1984).
[11] P.J. Weinberger, 'On small zeros of Dirichlet L-functions', Math. Comp. 29 (1975), 319-328.

Department of Mathematics
University of Maine
Neville Hall
Orono ME 044690122
United States of America

[^0]: Received 14 April 1992
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 \$A2.00+0.00.

