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SMALL ZEROS OP QUADRATIC L-FUNCTIONS

AM E. OZLUK AND C. SNYDER

We study the distribution of the imaginary parts of zeros near the real axis of
quadratic L-functions. More precisely, let K(s) be chosen so that \K(l/2 ± ii)\ is
rapidly decreasing as i increases. We investigate the asymptotic behaviour of

as D —» oo. Here ^3 denotes the sum over the non-trivial zeros p = 1/2 -f- if of

the Dirichlet L-function L(a, Xd), and Xd = (-) is the Kronecker symbol. The
outer sum ^ is over all fundamental discriminants d that are in absolute

value ^ D. Assuming the Generalized Riemann Hypothesis, we show that for

0 < \a\ < f, F{a, D) = -l + o(l) a s D - » x .
o

1. INTRODUCTION

It is well known (see [3, 4, 8, 11]) that the zeros of Dirichlet .L-functions L(s, x)
close to the real axis contain significant number-theoretic information. For example if
X is a quadratic character with x(~l) = ~ 1 | then zeros of ^(a;, x) close to s = 1/2
have an effect on the class numbers of complex quadratic fields. In another direction,
if x is the non-principal character (mod 4) then the "first" zero of L(s, x) in the
critical strip has a bearing on how primes are distributed in residue classes 1 and 3
(mod 4), respectively, and in particular on a phenomenon first observed by Chebysev
[5] concerning discrepancies in the distribution of primes into different residue classes.

Shanks [9] has given heuristic arguments for the predominance of primes in residue
classes of non-quadratic type. He conjectured that if a\ is a quadratic residue and oj
is a quadratic non-residue (mod q), then there are "more" primes congruent to a-i
than those congruent to a.\ mod q. Obviously the sense in which this predominance
occurs needs to be specified. Bentz [4] and Bentz and Pintz [3] have made progress in
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this direction. Their work clearly displays the significance of "small" zeros of Dirichlet
i-functions in comparative prime number theory. (See also [10].)

In this paper, we study under the assumption of the Generalized Riemarn Hy-
pothesis the distribution of "small" zeros of quadratic X-functions L[x, Xd) for all
fundamental discriminants d that are in absolute value less than or equal to a given
constant D. More specifically, if J3 denotes a summation over all such d, we inves-

tigate the asymptotic properties of J^ 53 K(p)Dxa~l as a function of a as D —» oo.
d€7{D) p(d)

Here if is a suitable kernel, ^2 denotes the sum over the non-trivial zeros p = 1/2+ 17

of L(s, Xd) and Xd — (-) is the Kronecker symbol.

2. PRELIMINARIES AND RESULTS

Let x and D be positive real numbers and define

Fl{x,D) =

where !F{D) is the set of fundamental discriminants of quadratic number fields which
are in absolute value less than or equal to D; £ denotes the sum over the nontrivial

zeros p = 1/2 + if of the L-series X(s, \d) where Xd — (-) 1 the Kronecker symbol.
(Notice that we are assuming the Generalized Riemann Hypothesis.) Also we assume
that K(s) is analytic in the strip - 1 < Re(j») < 2 such that J'+™ K(s)X-'da is
absolutely convergent for - 1 < c < 2 and all x > 2, K(l/2 + it) = K(l/2 - it), and
where a(x) = l/(27ri) J _ooi K{s)x~*ds is real valued and of compact support on the
interval (0, 00). As is well-known, we have

K{s)= [
o

Since we are interested in zeros which are near the real axis we can choose K(s)

so that \K(l/2 ±it)\ is rapidly decreasing as t increases. However for now we shall
not specify any particular K(s). As we derive properties of Fi(x, D) we shall need
to impose further restrictions on a(z), and thus on K(s), but we shall do so as we
proceed.

We start by making use of the explicit formula
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This can be derived as in [6].

Consequently

where A = -x1'2

Now let A = i4j + i42 where

<J6^(D) n= l v 7

'n=D
and „

Ai = - a ^
n=l

here Y2 denotes the sun over those integers which are perfect squares.
n=D

Consider first Ai. Since (^) = 1 if n and d are relatively prime and (^) = 0 if
not, we see that

Ai = —x ' y > a\ — IA(n).
•* •* \ z /

We now write Ai = An + A12 where

4 — o.-1/2 V^

n=D
00

and Alt = x-W E E «O A (» ) -
n=l

)

But notice

n = l

where |^"(Z))| denotes the cardinality of !F(D). We now seek an asymptotic expansion
of An • To this end we have

https://doi.org/10.1017/S0004972700012545 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012545


310 A.E. OzlOk and C. Snyder [4]

LEMMA 1 . If the Rlemann Hypothesis (R.H.) holds and

f°°
I u1/4 log2 v \a'(v)\ dv exists and is finite,

Jo

then Yal-)A{n) = ZK[tW/*+0[x1/*]o?x) (x -» oo).
*-* \x) 2 \2J V '
n = l V 7

PROOF: We use Riemann-Stieltjes integration to write

71= D

where i>(u) = £ A ( n ) - T h e n u n d e r R H - V»(u) = « + ^(M) ^ ^ -^("J < «1 / 2log2«.

Consequently

and changing variable i> = u/z ,

On the other hand, by using integration by parts we get

f .(=

since a(i) has compact support in (0, oo). By using E(y/u) < u1/*log2w we have

J {^)
Changing variable v = w/x leads to

1 / ° V / 4 log2 u a1 (-)du = x-1 f°° z ^ V * log2 {xv)a\v)x dv
Ja ^xJ Jo

= z1 / 4 / w1/4 (log2 x + 21og x log w + log2 v)a'(v)dv < x1/4 log2

Jo
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by the hypothesis. This establishes the lemma. D

LEMMA 2. \?{D)\ = ~-D + O(VD) (D -» co).

PROOF: AS is well-known, see for example, Davenport [6], a fundamental discrim-

inant is a product of relatively prime factors of the form —4, 8, —8, (—1) ' p (p

any odd prime). Then we have

where T\{D) = {d: d is an odd fund. disc, and \d\ ̂  D}

= {d: d is a fund, disc, d = 4(8), \d\ ̂  D}

= {d: d is a fund, disc, d = 0(8), \d\ < D}.

Notice that in all cases the odd part of d is square-free. Also notice that if m, ^ ± 1 ,
is odd or = 4(8) and that the odd part of m is square-free, then precisely one of m or
—m is a fundamental discriminant. On the other hand, if m = 8mo where TUQ is odd
and square-free, then both m and — m are fundamental discriminants. Thus we see

m odd

|JF4(D)|=

m odd
and

m odd

We now use the asymptotic formula,

see for example, Ellison [7].

From this we show that

Mo(x): =

n odd

For notice that
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and so

3C(2)

But then

= M0(D) - 1 + Mo f ^ ) + 2M0 ^ j

We next consider ^4i2-

PROPOSITION 2 . Under the assumptions of Lemma 1,

PROOF:

as desired. U

Combining Lemmas 1 and 2, we have proved

PROPOSITION 1.

n=D der(D) P'Y1 K '
)

nD der(D) Y
(d,n)>i p prime
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We first show that for a fixed prime p ,

) logp = O(log x).

Since a(x) has compact support in (0, oo), there exist positive constants c\ < c% such
that a{x) = 0 if x £ [ci, C2], and suppose M = max of |a(z)|. Then a(j>2m/x) ^
0 implies that ci < J>2m/X ^ C2 or equivalently that (log (cxx))/(2logp) ^ m ^

(log (c2a;))/(2logp). But then X) a(p2m/x) lo8P < M(logz)/(logp) • logp < logs.
m=l

Notice that the implied constant is independent of p . Now

prime

But, as is known, see [2], 52 ]T) 1 ~ DloglogD. This establishes Proposition 2. U

Combining the two propositions yields

PROPOSITION 3 . Under the assumptions in Lemma. 1, as x —> 00, fl-too

Now consider A2 •

PROPOSITION 4 . If the Riemann Hypothesis holds and

f°° \v3'2 log5/2 v a'(v)| dv < 00, then A2 < D1f2x3^ log1/2 z.

PROOF: By the arguments in Ayoub [1], we have for n not a square, that

(d/n) = O(Z?1/'2n1/4log1/'2 n) where the implied constant is independent of
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n . Hence

n=l

Now we consider

^ a ( - ) A ( n ) n 1 / 4 l o g 1 / 2 n = /°°a( - )u 1 / 4 log 1 / 2 udi/>(u
n = l * JO x

log1/2*

where i>(u) = u + E(u) and again by R.H. E(u) <: «1/2log2u. We consider the first
integral, change variable t; = u/x, use y/x + y ^ y/x + y/y and obtain

udu = i°° a{v)x1IW

= z 5 / 4 / " oCt;)™1/4^ x + log t»)1/2d«
Jo

< xs/4 y ° ° aCr),,1/4 (log1/2 x + log1/2 «)<fo < xs/4 log1/2 x.

Next we consider the second integral and integrate by parts, and changing variable
as usual:

I00 a ( ^ ) « 1 / 4 log1/2 11 dE(u) = - /°°E(«)<i(a(^)U
1/4 log1/2 »

u1'2 log2 « a ( ^ ) ( « - s / 4 log1/2 u + u-3 /4 log"1/2 «)

'(V)^+ Tu^^log^u
Joo Jo

log5/2 x [°° v*l* log5/2 « a'{v)dv
J[

o
s/i logs/2 x f tT1/4 log5/2

Jo

Combining the results establishes the proposition. D

FVom Proposition 3 and 4 we obtain
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PROPOSITION 5 . Under the assumptions of Proposition 4,

x~1/* l o 6 2 x) +o(x-1<2Qogx)D\oglogD)

Now we consider B.

PROPOSITION 6.

PROOF: We have

First consider
rD

log | d | = /
Jl

/
l

where T{u) = C.{2)-\-E1{u) and E^u) < u1'2 byLemma2. Now (1/^(2))/"log udu =
(l/C(2))X>log D + O{D) by evaluation. On the other hand,

D - D
/

l/

D
logu<f£i(tt) = Ei(tt)

,D
< \ / B log Z> + / u~1/2du <C V^Dlog Z).

Ji

Thus

as desired.

Combining Propositions 5 and 6, we have

THEOREM 1 . Under the assumptions ol Proposition 4,

F < D > • s • * ( i
0 (*"1/2(log i)D log log £)) + 0 (p^^x*!* log1/2 *) .

https://doi.org/10.1017/S0004972700012545 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012545


316 A.E. Ozliik and C. Snyder [10]

We now normalise Fi(x, D) by taking x = Da and dividing by

Hencelet F(a, D) = ( - L . *

Then we have

THEOREM 2 . Under the assumptions of Proposition 4, as D —* oo

- l

a{Da)D-al2 log D

+ 0 (D-a'2 log Da log log £>) + 0 ^s/4)a-1/2 log1/2 £»a).

In particular if 0 < |a| < 2/3, then

F(cc, D) = -l + o(l).

We are now in a position of using Theorem 2 to investigate the distribution of the
zeros of these i-functions.

THEOREM 3 . Assume the hypotheses of Theorem 2. Suppose that r(a) is an
even function defined on (—00, 00) with f[a) existing and such that r{oc) is supported
in [—2/3, 2/3]. Moreover suppose J_ooar(a)doc converges. Then

- 1

where the implied constant depends only on the kernel K.

PROOF: Consider / ^ F(a, D)r(a)da which by Theorem 2 is equal to

logD]r{a)da
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where X[-i,i] is the characteristic function of [—1, 1]. But

/

OO i»0O *OO •

X[-i,i](a)r{a)da = J X[-i ,i](<*M<*)da = 2J —
On the other hand,

f°° D-a/2a(D-a)r{a)da = / " D—7»5z>-«)r
J— oo J— oo

But D-<*7^(b-<*)

and by the change of variable t = D~&, this integral equals

Notice that
t2wia/logD _ 1 = e2xt(logt/logD)c« _ j _ 27T1

log£>

for some 0a between 0 and a, whence

< 1 < a
logD

and — ra(t)t
1'2(t2*ia'u*D - l)- < ~ ^ —

logX?y0
 i ; V / < log2D

where the constant is independent of a and D. Consequently,

.)*. - BiB* (s) £ •<">*•+ °(n?U

Thus

Therefore [°° F(a, D)r{a)da = 2 / " f 1 - s ln27ra)r(a)(fa + o(l).
7-oo 7-oo V 2na J
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On the other hand, by the definition of F(a, £>) we have

F(a, D)r\a)da

f°

But / f(a)e 3x " <fa = r I — : — = — ) = r [
7-co ^ ^ V 2TT ; V

(^G))

D
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