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ABSTRACT

The equations of motion of the star-members of the clus-
ter averaged on the elliptic orbits are obtained. These equa-
tions take into account the tidal forces of the Galaxy. The
generalization of the Lagrange-Jacobi egquation and Sundman
inequality for non-classical scheme of the many-body problems
is revised. The dynamical evolution of the moment of inertia
is studied.Some theorems which determine the type of the star mo-
tion in the cluster are formulated.

INTRODUCTION

In the frameworks of a classical theory of the gravita-
tion some dynamical aspects of non-classical scheme of the
n-body problem is investigated. Particularly the study of the
evolution behaviour of the stellar clusters and associations
in the gravitational field of the Galaxy belongs to this sch-
eme. Let us consider the galactical systems stellar clusters
and associations and assume that the center of mass of those
objects moves as a material point on the Keplerian ellipses
relatively to the center of the Galaxy. In such a approach
the regular gravitational field of the Galaxy, which is
taking into account the tidal force and the proper gravita-
tional field of clusters and associations influence the indi-
vidual members of steller clusters and associations.

According to [4], in such statement of the problem, the
equations of the motion of the i-th member of a cluster in

the pulsating coordinate system with the eccentric anomaly E
as an independent variable, have the following form:
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where @ is the force function of the system in the pulsating
coordinates and

a = ( a"%')0, r = —E—g-(l-e cos E), 0 < e< 1,
9z l-e

The relation between E and t is determined by Kepler's equa-
tion

E - e sin E= n(t-1), n = const. (2)

To obtain maximum information about the dynamical evolu-~
tion of stellar clusters, one can simplify the system of
equations (1) introducing the averaging value of an arbit-
rary 2mn periodical function f(£,n,Z,E) over the argument E,
by using formula [2]

1 2T

|

The obtained averaged equations of motion posses the Jacobi
integral

T - Y - AJ = h = const., 3)

and the integral of angular momentum in £,n,; axes
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L % , n 2 2 dEl
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where
p 3q p* (2+e”)q
8 = — A = —E—-Q- —T—_z_c,
02/1—e 2/1-e 4c”(1-e™)
Jo=qd, J =qd, I =aqd, J=7FmE2+n2+ 2.
g £’ 'n n’® ¢ T’ ; 14 i i

On the basis of the integrals mentioned above the Lagrange~
Jacobi equation, where we take E instead of the independent
variable t, can be written as

2 N |
Q2 +4yJ = 2(88 +2H), H=h +L, = const., (5)

aE L
where

;2 4 2
2/1-e“-3 P (2+
Y:A-{-qg-{»q =.—.—£———q +q-L—Su—)§q’

" aa? o " actaseh)

qg,qn and qC are positive less then unity. They represent

flattening of the clusters and associations. The coefficient
Yy may be positive or negative. If flattening of the cluster

in £ and n axes is larger than in Z axis, that is, influence
of the tidal force of the Galaxy is significantly stonger in
£ and n axes than in T axis, then Y is positive. Otherwise

Y is negative,

In order to receive information about properties of the
motion of cluster's and association's members, as considered
in equation (5), we introduce according to [ 5,7] '"mean quad-
ratic distance" for each member of the cluster. In this cage
the moment of inertia of the system J and force function €
are defined as

* ~ * n n
J=’§—R2,9=9%-,M*= I mom, M=ZIm (6)
i<j J i

This approach may be applied in the investigation of the
evolution of the stellar clusters and associations within a
Galaxy: i.e. the components are of the same order. Such sys-
tems are called the multiple systems of the Trapesium type.
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According to [1] such objects are frequent in the Galaxy. As
an example we can indicate the stellar cluster NGC-1981 Tra-
pezium.

EVOLUTION OF THE MOMENT OF INERTIA FOR THE MULTIPLE SYSTEMS
OF THE TRAPEZIUM TYPE

The Generalisation of the LagrangeJacobi equation (5)
for non-classical schemes of the n-body problems is an effec-
tive way for studying the dynamics of the Galactical gravi-
tating systems., Below, we give this equation for multiple
stellar associations and clusters in the field of tidal for-
ce of the Galaxy. In such a case equation (5) together with
the equations (6), has the form

2
dJ _ b
c-i-—E-2-+4'YJ—73+2H ()

The form of the equation (7) is similar to the form of
equation previously presented in our papers [ 5,6]. The only
difference is a physical interpretation of coefficients,The-
refore, we shall use the same mathenatical analysis for the
study of equation (7) as in [£6].

1. The equation (7) Y > 0 is investigated. The equation(7)
posseses the socalled "integral of the energy of inertia'
[8]:

C=.12.(‘H)2+2yJ2-2b/3-2HJ 8)

[o )

Line C(J,J') = const., completely defines phase trajectories
of systems of the phase plane (J,J') and it is equal to

_ 1 dJ 2

C=3 (g5 )y * 2V, -20J - 28, (9)

where index  "O" means, that the value J and dJ/dE must be
taken at E = O (t = 7). Consequently, C may be larger, equal
or smaller than zero,

Introducing in (8) instead of J its value from equation
(6) and separating a variable we have from the equation (8)

R gg2

- = E, (10)
/N(R)

1
7y Rf
1

where polynomial N(R) has the form
NR) = -2vR? + 2R + 2BR% + C > o, (11)
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and

- —— _M
hi = 28G/MHM, I& = H
As shown in f7], the evolution behaviour of stellar clusters

and associations under consideration depends on existence of
the roots of the polynomial (11).

In the case at Y > 0 polynomial (11) has two real and
two complex roots, i.e. Rl > 0, R2 > 0, R3, R4 - complex .For-

mally the expression (7) may be treated as equation of motion
for a test star under action of the force

F(E) = -4y + 0¥ 4 25

Consequently a test star on the semiplane (J > 0, dJ/dE) moves
between two circles with radii Rl and R2 the centres of which
coincide with the stellar cluster center.Accordingly the mo-
ment of inertia of the system is bounded that is it pulsates
between J . and J .

min max

2. Let us consider the case v < 0 and > 0. In this case
elementary investigation of the roots of the equation (11)
shows that in the phase semiplane (J > 0, dJ/dE), integral
curves describe oscillations with increasing amplitude.There-
fore stellar clusters and associations with positive total
energy are in state of sway oscillations.

If in the initial moment of time t = 1 (E= 0) at H> O
it determines condition

dJ 2

1 2 —
5 ( a5 )o < -zw/J0 + 2b/Jo + 2RI,

then according to (9), integral energy of the inertia C < O,
In this case polynomial (11) has the following possible com-
binations of the roots:

a) R1 > 0, Rz < 0, R3, R4 - complex. This corresponds to
the previous case. In other words, we have stable systems.

b) Rl > 0, R2 < R3 < R4 < 0. In this case there are three
regions of real star motion: R >R1, R < R2 and R < R3< R4.
Inside circle with radius R2 cluster is contracted, outside
circle with radius Rl cluster ie expanded, but between conce-

ntric circles with radii R3 and R4 system oscillates.

THE SJNDMAN INEQUALITY FOR NON-CLASSICAL SCHIRME OF THE MANY-
BODY PROELEM AND THEOREMS

Sundman inequality plays a great role in analysis of the
n-body problem to determine the property of the motion.Below

187

https://doi.org/10.1017/50252921100066057 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100066057

the inequality would be generalized for non-classical scheme
of gravitating problem for the many-body. The problem is an
application of the Sundman inequality for the evolutional be-
haviour of the stellar complex in external gravitational fie-
1d of the Galaxy,

According to [3] it is not difficult to write the foll-

owing: N
n 4P 2
2T = K + i mi( IE )", a2)
dg . dn, ac .
_1 n i 2 i 2 i (2
where T = 5 f mi[( it ¥+ ( i Y o+ ( I5 )71 - total

kinetic energy of the clusters and associations, 3 - is rad-~
ius vector of the i-th body in the axes relative to center of
mass of the systems and

n m,.

i 2 B my , L2
K= 5 (@Enj ~n8§) + I 5 (e -oyn3)
1ry 1Py
nm.,
i 2
$ I i8] - ) (13)
i

Using integral of the angular momentum of averaged system of
equation (1) and applying rules of Lagrange multipliers de-
termined conditional minimum of the sum (13):

2

"L 2 2 2 2 2
K> 5— -2 + + + = + +

>3- 2L (gt q) + (gt a ) J, LT =Ly + LT+ LY, (4)
Substituting expression (14) in (12), we have

. -+

2T>L3—2-2L (@+a) + @+ )% + 3 m( ook )? 15)

- T g n € ™n 1* dE

i=1

Then, by using Jacobi integral (3), Lagrange-Jacobi equation
(5) and inequality (15), we find

-
2 2 dp.
d°J = . L n i 2
+4YJ - 2H> —=+ I m ( = )%, (16)
dEz J j=1 1 dE
where
vy =%a+X(a+a)l-q-q) H=L (2-q.-q) +2h Qan)
2 4 “E n g n? 4 £ °n
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On the other hand it is not difficult to show that, [ 3],

n - do.
i 2 1 dJ 2 .
iflmi(d_) >3 CgE ) @as)

Consequently‘ from the inequality (16), we have

42 2
4y 1 dJ 2 " ~ . L
- odedl + 4YJ - 2H > =
;EZ 4] ( dE ) - J 19)

This inequality is a generalization of the Sundman inequality
for stellar clusters in gravitating field of the Galaxy.

Integral of this inequality can be written in the form:

J .
! dJ

> E, Cy = const. (20)

I /- §-§J2 + 8W + ¢ /7412

Investigation of above inequality will be studied later on.

THEOREM 1. If the Jacobi integral h = 0 in (9) and at
t > (E-+ «) satisfy condition
-
P
L (L)r=o
t+e YT
(E+=)
then the moment of the inertia of the system has unrestrict-
ed growth in

Jmsﬁ”@/%+

Proof: Corresponding to [ 9]

), C = const.

(Te!

N
n d ,Pi .2 _ 8TI-(dJ/AE)?
r mi[ i (—=)1 = ) .
i=1 V3 J
since >
.M d Py 2
lim ijf[d—('—__-)] =0,
t+o  i= v
(E+=)
the
dJ .2
8TJ - ( aE )Y* = 0. (21)

From Jacobi integral we have
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T = 82 + AJ.
SJbstituting this expression in (21) and using (C), we find

;A _J/Rar

By /8*+ ar3
for which

J v sh4/3(3/é-:+ g— )

THEOREM 2, If total mechanical energy of a stellar clus-
ter in field of the tidal force of the Galaxy,

=E, B = gGM,

T-8 <0

and Jacobi integral h < O, then ¥ t > 0, function
Pmin = min{pij},

is satisfied following inequality
2|-h
Pmin £/ AW ¢
Proof. From Jacobi integral it follows

T -f2=nh+AJ < 0,
or

n
ﬁ- I mm, 02 < |-nj.
i<j- J 1]
This inequality may be written
2 A "
P, . ir I mm, g_l—hl (22)
ii M i<j i3 ’
as well as
n 2
z mim. <_h-2£—-
i<j J

Then inequality (22) will be written as

. 2] -h]|

min < / TAM

190

https://doi.org/10.1017/50252921100066057 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100066057

THEOREM 3. For any time t > 0 and small € > 0, J 1°,
7' > 1, such that

ey

2[2|h|-2LC—€]

1
omin(T ) <

Proof: For any large time 1 > 0, one can find t'> 1t such that

Bl + 2E > - ¢

If not, let for definite = a value T such that
BR + 2H< - ¢, ¥t > 1

Let us solve Lagrange-Jacobi equation (5) in integral from
to tot > 1 (to-corresponds E= 0) for v > O

€ (dJ/dE), €
J<—(JO+W)COSZYE+_——2'—Y—_SII\2YE_§T.

From this equation we can obtain that for E»« the.moment of inertia
periodically reaches to negative value (if (dJ/dE)o < 0 or

(dJ/dE)o < e). But I(E) must be positive. Hence, there exists
' > 1 (E' > E) such that
BY + 2H > - €.

Since H = h+IC’ then
B3 > - +2|h| - 2L,

making this inequality stronger we obtain

. < B Mz
min - or2in|- 2L, - €]
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