
JFP 19 (2): 145–156, 2009. c© 2008 Cambridge University Press

doi:10.1017/S0956796808007089 First published online 23 December 2008 Printed in the United Kingdom

145

FUNCTIONAL PEARL

Type-safe pattern combinators

MORTEN RHIGER∗

The IT University of Copenhagen, Copenhagen, Denmark

(e-mail: mir@itu.dk)

Abstract

Macros still haven’t made their way into typed higher-order programming languages such as

Haskell and Standard ML. Therefore, to extend the expressiveness of Haskell or Standard

ML, one must express new linguistic features in terms of functions that fit within the static

type systems of these languages. This is particularly challenging when introducing features that

span across multiple types and that bind variables. We address this challenge by developing,

in a step by step manner, mechanisms for encoding patterns and pattern matching in Haskell

in a type-safe way.

1 Untyped patterns

Let us tacitly ignore the existence of Haskell’s pattern-matching facility, and let us

attempt to extend Haskell with our own implementation of patterns and pattern

matching:

data Pat = Pcst Int | Ppair Pat Pat | Pvar String

data Val = Vcst Int | Vpair Val Val

match :: Pat → Val → [(String ,Val)]

match (Pvar x) v = [(x , v)]

match (Pcst i) (Vcst j) = if i ≡ j then [] else error "match"

match (Ppair p q) (Vpair v w) = match p v ++ match q w

match = error "type error"

This solution defines data types of patterns (consisting of integer constants, pairs,

and pattern variables) and of values (consisting of integer constants and pairs) and a

function that matches a pattern against a value and that produces a list of bindings

on success. The solution is first order and untyped : All type checks involving patterns

are performed at runtime, by inspecting patterns and values. For example while an

application of Haskell’s built-in pattern-matching facility such as

case ((1, 2), (3, 4)) of

(5, x) → 2 + x

∗At the time of writing, the author is on leave from Roskilde University, Roskilde, Denmark.

https://doi.org/10.1017/S0956796808007089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007089

146 Morten Rhiger

results in compile-time type errors (in this particular case since the types of the

pattern 5 and the value (1, 2) mismatch and since the variable x is used as an integer

but bound to a pair), the “type errors” in its encoded counterpart

case (match (Ppair (Pcst 5) (Pvar "x"))

(Vpair (Vpair (Vcst 1) (Vcst 2))

(Vpair (Vcst 3) (Vcst 4)))) of

[("x",Vcst v)] → 2 + v

→ error "type error"

pass undetected through Haskell’s type checker.

The goal of this paper is to implement a library of type-safe patterns that can

be extended with new and (hopefully) interesting patterns. Unlike the first-order

solution above, our implementation does not require values to be encoded in terms

of a data type, and it does not demand the use of Haskell’s built-in pattern matching

to decode the values of bound variables.

The means are functional programming techniques: We demonstrate that poly-

morphic higher-order functions alone enable us to develop the mechanisms required

to encode type-safe patterns in Haskell and Standard ML in a way that goes beyond

their built-in pattern-matching facilities.

Example 1. Using the operations match , pair , cst , var and →→ from the library

implemented in Section 4 of this paper, the example presented above is encoded as

follows:

match ((1, 2), (3, 4)) $

pair (cst 5) var →→ λx → 2 + x

As required, this expression does not type check in Haskell.

Example 2. Again using the library from Section 4, the following example does type

check and yields 7:

match (5, (3, 4)) $

pair (cst 5) (pair var var) →→ λx y → x + y

2 Patterns exposing their type

We first introduce machinery allowing us to expose to Haskell’s type system the

types of patterns and the structure of bindings produced on successful matches.

2.1 Exposing types

We want the value of the first argument (the pattern) to match to determine the

type of the second argument (the value). For example, if the first argument is

Ppair (Pint 1) (Pint 2), then the second argument should be of type (Int , Int).

We expose this relationship by representing patterns of type α as functions

whose argument has type α, as follows (the intricacies of pattern variables having

deliberately been postponed to the discussion below):

https://doi.org/10.1017/S0956796808007089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007089

Functional pearl 147

var x = λv → . . .

cst v ′ = λv → if v ≡ v ′ then [] else error "match"

pair p q = λv → p (fst v) ++ q (snd v)

match p v = p v

This implementation is typed : All type errors that result from a mismatch between

the pattern and the value are detected at compile time. Furthermore, run-time values

need no longer be encoded and decoded using a data type. An additional advantage

is that the combinator cst , unlike its first-order counterpart Pcst , is not restricted to

integers but may be applied to values of any type that exhibit equality. As an example,

match (pair (cst 1) (cst True))

is a function that expects an argument of type (Int ,Bool) and matches this argument

against the pattern (1,True).

The technique applied here has been used by Danvy (1998) to implement printf

in Standard ML, by Fridlender and Indrika (2000) to implement a generic zipWith

in Haskell, and by Filinski (1999), Yang (2004), and the author (Rhiger, 1999) to

implement type-directed partial evaluation in Standard ML. It is described in detail

by Yang (2004).

2.2 Exposing bindings

In the first-order untyped implementation of patterns, the right-hand side of a clause

would be represented by a function accepting a list of bindings and fetching the

values of bound variables from this list as follows:

λenv → . . . lookup "x" env . . .

We must avoid such representations of pattern variables as strings, since they

hinder reasoning about the number and the types of pattern variables within

Haskell’s type system.

For the time being, we will be content with fetching values of bound variables

from a structure that is isomorphic to the pattern in question rather than from a

list-like structure. For this purpose, we introduce a pattern var that marks a place in

the pattern at which a variable occurs, without requiring us to name that variable.

This idea results in a notion of nameless patterns, implemented as follows:

var = λv → v

cst v ′ = λv → if v ≡ v ′ then () else error "match"

pair p q = λv → (p (fst v), q (snd v))

match p v = p v

Again, this implementation is typed: All type errors that result from mismatches

between the definition and the use of variables are detected at compile time. For

example we have the following typings (with the left-hand side of the function arrow

being the type of the value to match against and the right-hand side representing

the bindings produced on a successful match):

match (pair var (pair (cst 2) var)) :: (α, (Int , β)) → (α, ((), β))

https://doi.org/10.1017/S0956796808007089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007089

148 Morten Rhiger

Therefore, the Haskell expression

case (1, (2, 3)) of (x , (2, y))) → x + y

is represented by

case match (pair var (pair (cst 2) var)) (1, (2, 3)) of

(x , ((), y)) → x + y

And indeed, we’re not required to encode values in a data type and there’s no

dynamic look-up of pattern variables.

However, as satisfying as this may seem, we’re not quite done yet: The imple-

mentation still requires us to fetch the values of pattern variables inside a structure

that resembles the original value that the pattern was matched against. Therefore,

we must encode the structure of a pattern twice, first using the pattern combinators

and then using Haskell’s built-in patterns.

3 Patterns producing flat bindings

To improve the implementation presented above, we employ a flattened represen-

tation of bindings as heterogeneous sequences. The structure of such bindings is

independent of the structure of the corresponding pattern, just as in the first-order

untyped implementation of patterns. But unlike the first-order implementation, the

heterogeneous sequences correctly expose their length and the types of their elements

within Haskell’s type system.

Assuming the existence of operations to build empty sequences (nil) and singleton

sequences (one v) and to append two sequences (m # n), the implementation of

patterns is defined as follows:

var = λv → one v -- bind v

cst v ′ = λv → if v ≡ v ′ then nil else error "match" -- bind nothing or fail

pair p q = λv → p (fst v) # q (snd v) -- append bindings

We present two implementations of heterogeneous sequences below, one that

results in a direct-style program that uses an accumulator and one that results in a

style of programming resembling continuation-passing style.

3.1 Direct style, uncurried

We first represent sequences as nested pairs terminated by an empty tuple. Such a

flattened representation encodes traditional lists by replacing [] by () and (x : xs)

by (x , xs). It allows elements of different types in one sequence.

More precisely, a sequence is represented as a function that accepts a tail and that

“conses” (using a pair) its elements onto that tail, as follows:

nil = λac → ac -- cons no element

one v = λac → (v , ac) -- cons v

m # n = λac → m (n ac) -- let n cons first, then m

https://doi.org/10.1017/S0956796808007089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007089

Functional pearl 149

It is straightforward to verify that nil is both a left unit and a right unit of # and

that # is associative. In other words, # and nil form a monoid over heterogeneous

sequences.

Example 3. The following expression constructs a sequence containing an integer, a

boolean, and a string:

one 5 # nil # one True # one "abc" # nil

The type of this expression, α → (Int , (Bool , (String , α))), indeed reflects the number

and the types of the elements of the corresponding sequence, as required. Passing

this expression the empty tuple () yields (5, (True, ("abc", ()))).

When encoding heterogeneous sequences in direct style like this, the well-typed

Haskell expression

case ((1, 2), 3) of ((x , 2), y) → x + y

can be represented by the well-typed

case (match (pair (pair var (cst 2)) var) ((1, 2), 3)) of

(x , (y , ())) → x + y

3.2 Continuation-passing style, curried

Even though the structure of bindings is now independent of the structure of the

corresponding pattern, we still rely on Haskell’s built-in pattern matching to fetch

the values of bound pattern variables. (Alternatively, we may use the functions

fst and snd to fetch the values from the sequence, but such a solution would be

cumbersome.)

To overcome this problem and to make bindings digestible, we curry the functions

that process them. To enable such a change, we adopt a representation of sequences

as functions that pass all the elements of a sequence to a given curried continuation.

The operations on sequences are defined as follows:

nil = λk → k -- pass no values to k

one v = λk → k v -- pass v to k

m # n = λk → n (m k) -- let m pass values first, then n

It is again straightforward to verify that # and nil form a monoid over heteroge-

neous sequences. Notice that according to this implementation, any non-functional

value is a “continuation” of zero arguments: In general, the representation of a

sequence of length n passes its elements to a function of n arguments. When n = 0,

such a “function” can be a value of any type. As we shall see in the next section,

this generalisation allows us to represent a right-hand side of a pattern-matching

clause as a value of base type when the corresponding pattern is “ground” (that is,

one that does not contain variables).

https://doi.org/10.1017/S0956796808007089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007089

150 Morten Rhiger

Example 4. The following expression constructs a sequence containing an integer, a

boolean, and a string:

one 5 # nil # one True # one "abc" # nil

The type of this expression, (Int → Bool → String → α) → α, again reflects the

number and the types of the elements of the corresponding sequence. Passing this

expression the continuation λx y z → (x , y , z) yields (5,True, "abc").

When encoding heterogeneous sequences in continuation-passing style like this,

the well-typed Haskell expression

case ((1, 2), 3) of ((x , 2), y) → x + y

can be represented by the well-typed

match (pair (pair var (cst 2)) var)

((1, 2), 3)

(λx y → x + y)

Thus, we have replaced the need for Haskell’s built-in pattern matching to fetch the

values of pattern variables by the application of a curried function.

Danvy’s statically typed implementation of printf in Standard ML (Danvy, 1998)

used curried continuations in a similar fashion. But where Danvy’s formatting

combinators consume a heterogeneous sequence of values, our pattern-matching

combinators produce such a heterogeneous sequence of values.

4 A library of typed patterns

With the basic mechanisms at hand, let us design a library that takes us beyond

the capabilities of Haskell’s built-in pattern matching. To this end, we extend the

language of patterns presented so far with disjunctions and conjunctions (also known

as or patterns and and patterns), predicates, and a set-like view on lists.

To support disjunctions, we add a failure continuation to the encoding of

sequences. However, this addition rules out the implementation above in which

currying happens on the fly. (In a curried implementation, the failure continuation

is expected to consume bindings. This contradicts the intuition that the failure

continuation is applied only when a pattern does not match and hence when no

bindings are available.)

To address this issue, we employ an uncurried encoding of bindings as nested pairs

during the construction of patterns, as in the direct-style implementation above. We

then uncurry a given curried (success) continuation before passing it to a pattern.

To this end, we use the following typed and generic implementation of uncurrying

of functions:

zero f = λ() → f

succ n f = λ(x , xs) → n (f x) xs

uncurry n f = n f

https://doi.org/10.1017/S0956796808007089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007089

Functional pearl 151

The functions zero and succ define a representation of numerals with the property

that an n-ary curried function can be uncurried by the representation of n.1

Fridlender and Indrika (2000) also use a higher-order representation of numerals in

their generic and well-typed implementation of an n-ary zipWith .

Example 5. To uncurry a function of two arguments, we apply the following

representation of the numeral 2 to the function:

succ (succ zero) :: (α → β → γ) → (α, (β, ())) → γ

4.1 Basic patterns

We represent heterogeneous sequences in continuation-passing style, using two

continuations (a success continuation ks and a failure continuation kf) and an

accumulator. We also add two constructions, fail and catch , that introduce an

exception mechanism into the language of sequences:

nil = λks kf ac → ks ac

one v = λks kf ac → ks (v , ac)

m # n = λks kf ac → n (m ks kf) kf ac

fail = λks kf ac → kf ()

m ‘catch ‘ n = λks kf ac → m ks (λ() → n ks kf ac) ac

Both (# , nil) and (catch , fail) form monoids over heterogeneous sequences.

A pattern consists of a pair of functions. The first increments a given numeral

(in the representation presented above) by the number of variables of the pattern.

Eventually, this component is used to curry success continuations. The second

component implements the matching itself. The basic patterns are defined as

follows:

var = (succ, λv → one v)

cst v ′ = (id , λv → if v ≡ v ′ then nil else fail)

pair p q = (currypq , λv → matchp (fst v) # matchq (snd v))

where (curryp ,matchp) = p

(curryq ,matchq) = q

currypq = curryp · curryq

4.2 Matching

Before we continue, let us introduce a more realistic main function. To this end, we

introduce clauses (pairs of patterns and right-hand sides) using the infix operator →→
and we separate two such clauses by ||. It is →→ that curries continuations properly.

These operations are defined as follows:

1 Our use of the term “uncurried” is unconventional: Rather than taking n-tuples as arguments, our
uncurried functions take nested pairs of depth n as arguments.

https://doi.org/10.1017/S0956796808007089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007089

152 Morten Rhiger

p →→ k = λv kf → matchp v (curryp zero k) kf ()

where (curryp ,matchp) = p

c1 || c2 = λv kf → c1 v (λ() → c2 v kf)

The following main operation then matches a given value against a group of

clauses:2

match v cs = cs v (λ() → error "match")

Example 6. With the correct precedences, these definitions allow us to write expres-

sions such as the following. (Here $ is an infix apply operator of low precedence

commonly used as an alternative to parenthesising a function’s argument. In the

rest of this article, we read it as “with”.)

match n $

cst 0 →→ "zero"

|| cst 1 →→ "one"

|| var →→ λi → error ("not a binary digit: " ++ show i)

Since patterns are first-class values, pattern abstraction (Fähndrich & Boyland,

1997) is at our hands to extend the library of patterns. As the first example, we can

introduce anonymous pattern-matching functions as follows, using the infix operator

�→:

p �→ k = λv → match v $ p →→ k

Example 7. The following expression sums each pair of numbers in a list:

map (pair var var �→ λx y → x + y) :: [(Int , Int)] → [Int]

4.3 Disjunctions

The disjunctive aspect is represented by the pattern combinators none and ∨, defined

below. The pattern none does not match any value.

none = (id , λv → fail)

p ∨ q = (currypq , λv → matchp v ‘catch ‘ matchq v)

where (curryp ,matchp) = p

(curryq ,matchq) = q

currypq = if True then curryp else curryq

The combinators ∨ and none form a monoid over patterns. The conditional in the

implementation of disjunction serves to unify the types of the currying component

associated with the two patterns. As a result, the two branches are required to

produce bindings of equal type.

2 To give it a stronger resemblance with Haskell’s case–of– construct, this final version of match takes
the value to match against as its first argument.

https://doi.org/10.1017/S0956796808007089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007089

Functional pearl 153

Example 8. The pattern given below matches pairs whose first or second component

is 1. For successful matches, it binds a variable to the other component:

pair (cst 1) var ∨ pair var (cst 1)

4.4 Conjunctions

The conjunctive aspect is represented by the pattern combinators any and ∧, as

shown below. The pattern any matches any value. It corresponds to the wildcard

in Haskell.

Conjunctions are implemented as follows:

any = (id , λv → nil)

p ∧ q = (curryp · curryq , λv → matchp v # matchq v)

where (curryp ,matchp) = p

(curryq ,matchq) = q

These combinators also form a monoid over patterns. Conjunction generalises

layered patterns: A pattern like var ∧p matches any value that p matches and binds

the value to a variable.

The infix operator ? matches a ground pattern against a value and yields a boolean

value representing the status of the match:

p ? v = match v $ p →→ True || any →→ False

Example 9. The following expression removes from a list all pairs whose first

component is non-zero:

filter (pair (cst 0) any ?) :: [(Int , α)] → [(Int , α)]

4.5 Predicates

It is sometimes useful to employ a predicate during matching. The following

operation yields a pattern that matches only the values for which a given predicate

p returns True:

is p = (id , λv → if p v then nil else fail)

Example 10. The following function implements integer exponentiation, using the

Russian peasant algorithm:

power x n =

match n $

cst 0 →→ 1

|| is even →→ square (power x (n ‘div ‘ 2))

|| is odd →→ x × power x (n − 1)

where square x = x × x

https://doi.org/10.1017/S0956796808007089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007089

154 Morten Rhiger

Example 11. The following expression removes from a list all those pairs whose first

component is odd:

filter (pair (is even) any ?) :: [(Int , α)] → [(Int , α)]

It is tempting to write

filter (is even ?) :: [Int] → [Int]

but one can prove that the “left section”

(is p ?)

(which is a partial application of the infix operator ? to its first argument is p) is

equivalent to p, for any function p of type α → Bool .

4.6 Sets

It may also be useful to view a list as if it were a set of values. The pattern has p

scans a list for the first element matched by the pattern p. If no element matches,

then the entire pattern fails:

has p = (curryp , foldr catch fail · map matchp)

where (curryp ,matchp) = p

Example 12. The function fetch , of type String → [(String , α)] → α, implements a

look-up function:

fetch v = has (pair (cst v) var) �→ λx → x

Example 13. The function first , of type (α → Bool) → [α] → α, implements a

function that takes a list and returns the first element of the list that satisfies the

predicate f :

first f = has (var ∧ is f) �→ λx → x

We can take Example 12 a step further by implementing look-up as a pattern

rather than as a function. The resulting pattern binds a variable:

get v = has (pair (cst v) var)

Example 14. We can not only implement fetch using the pattern combinator get , but

also more complex matches. The code snippet below produces the value associated

with either "a" or "A" in the list of pairs env . It complains if either both or none of

the bindings exist (but not if two occurrences of "a" exists in the list):

match env $

get "a" ∧ get "A" →→ (λ → error "ambiguity")

|| get "a" ∨ get "A" →→ (λa → a)

|| any →→ error "unbound"

https://doi.org/10.1017/S0956796808007089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007089

Functional pearl 155

4.7 Data abstraction

Since pattern combinators are first-class values, an abstract data type can be

associated with a set of patterns without exposing its implementation. In the sense

of Wadler (1987), we can define patterns that provide a concrete view of an abstract

data type. For example the function below uses pattern matching to define fn, the

n-times composition of a function f with itself. However, rather than fixing the

representation of the integer n, it allows any representation that can be viewed

as natural numbers built using a zero and a successor. This is accomplished by

parameterising the implementation over two patterns combinators, zero and succ:

makeCompose zero succ = iterate

where iterate n f x =

match n $

zero →→ x

|| succ var →→ λn ′ → iterate n ′ f (f x)

As witnessed by the following definitions of actual pattern combinators, we can

view both built-in integers and lists as natural numbers:

zeroint = (id , λv → if v ≡ 0 then nil else fail)

succint p = (curryp , λv → if v ≡ 0 then fail else matchp (v − 1))

where (curryp ,matchp) = p

zerolist = (id , λv → if null v then nil else fail)

succlist p = (curryp , λv → if null v then fail else matchp (tail v))

where (curryp ,matchp) = p

We instantiate the general function as follows:

composeint = makeCompose zeroint succint

composelist = makeCompose zerolist succlist

Using these specialised functions, both of the following expressions yield 8:

composeint 3 (×2) 1

composelist [10, 20, 30] (×2) 1

4.8 On type safety

The type safety of the pattern combinators thus implemented follows by construc-

tion: There are no dynamic type checks in their implementation, and they are well

typed according to Haskell’s type checker.

4.9 On efficiency

Matching is linear in the size of patterns that do not involve the combinator has .

(Matching the pattern has p against a list amounts to matching p against each

element in the list.) Experiments performed using Hugs suggest that matching of

pattern combinators require two to four times as many reductions as matching using

https://doi.org/10.1017/S0956796808007089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007089

156 Morten Rhiger

Haskell’s built-in patterns. This overhead is primarily induced by managing contin-

uations and by currying. Standard partial-evaluation techniques (β reduction and

η expansion) can completely compile away both the manipulation of continuations

and currying, hence eliminating the overhead.

5 Conclusion

New languages are often constructed by piling new features on top of an existing

language’s definition and by integrating these features in the existing language’s

implementation. However, it is a sign of expressiveness if new features can be

implemented within an existing language without changing its definition.

Short of macros, functional languages such as Haskell and Standard ML require

new features to be expressed in terms of typed higher-order functions. We have

demonstrated how to extend—or, in Guy Steele’s terminology, to “grow” (Steele, Jr.,

1999)—Haskell with our own statically typed implementation of pattern matching,

and we have shown how to extend this framework with patterns not currently

supported by Haskell.

References

Danvy, O. (1998) Functional unparsing. J. Funct. Prog. 8(6), 621–625.

Fähndrich, M. & Boyland, J. (1997) Statically checkable pattern abstractions. Pages 75–84

of: Tofte, Mads (ed), Proceedings of the 1997 ACM SIGPLAN international conference on

functional programming (ICFP 1997). Amsterdam, The Netherlands: ACM Press.

Filinski, A. (1999) A semantic account of type-directed partial evaluation. In: International

conference on principles and practice of declarative programming (PPDP 1999), Nadathur,

G. (ed). Lecture Notes in Computer Science, vol. 1702. Paris, France: Springer-Verlag,

pp. 378–395.

Fridlender, D. & Indrika, M. (2000) Do we need dependent types? J. Funct. Prog. 10(4),

409–415.

Rhiger, M. (1999) Deriving a statically typed type-directed partial evaluator. In: Proceedings

of the ACM SIGPLAN workshop on partial evaluation and semantics-based program

manipulation (PEPM 1999), Danvy, O. (ed). BRICS Note Series, no. NS–99–1, Department

of Computer Science, University of Aarhus, Denmark, pp. 25–29.

Steele, Jr., G. L. (1999) Growing a language. Higher-Order Symb. Comput. 12(3), 221–236.

Wadler, P. (1987) Views: A way for pattern matching to cohabit with data abstraction. In:

Proceedings of the fourteenth annual ACM symposium on principles of programming languages

(POPL 1987), O’Donnell, M. J. (ed). Munich, West Germany: ACM Press, pp. 307–313.

Yang, Z. (2004) Encoding types in ML-like languages. Theoret. Comput. Sci. 315(1), 151–190.

https://doi.org/10.1017/S0956796808007089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007089

