Radiocarbon

1977

BRITISH MUSEUM NATURAL RADIOCARBON MEASUREMENTS IX

RICHARD BURLEIGH, ANDREW HEWSON, and NIGEL MEEKS

Research Laboratory, The British Museum, London WC1B 3DG

The following list consists of dates for archaeologic samples from countries other than the British Isles measured with a few exceptions over the period of mid-1970 to June 1974.* The dates were obtained by liquid scintillation counting of benzene using a Model 3315 Packard Tricarb Liquid Scintillation Spectrometer. The laboratory procedures used were those outlined in the previous date list (R, 1976, v 18, p 16). As before, the dates, relative to AD 1950, are based on the Libby half-life for 14C of 5570 years, are corrected for isotopic fractionation (relative to the PDB standard) and are expressed in radiocarbon years uncorrected for natural 14C variations. NBS oxalic acid is used as the modern reference standard.

Descriptions, comments, and references to publications are based on information supplied by the persons who submitted the samples.

ACKNOWLEDGMENTS

We wish to thank H Barker for helpful criticism and advice.

SAMPLE DESCRIPTIONS

ARCHAEOLOGIC SAMPLES

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>559 ± 40</td>
<td>AD 1391</td>
</tr>
<tr>
<td>BM-760. Lake Varna boat, Bulgaria</td>
<td>Wood (Quercus frainetto Ten) from structure of boat taken from L Varna, Stalin, Black Sea coast, Bulgaria (43° 20' N, 27° 75' E). Coll 1970 and subm by A Michailov, Natl Inst Cult Properties, Sofia, Bulgaria. Comment: when 1st recovered boat considered prehistoric; actual date is clearly much more recent.</td>
</tr>
<tr>
<td>12,984 ± 76</td>
<td>11,034 BC</td>
</tr>
<tr>
<td>BM-728. Mylodon Cave, Chile</td>
<td>Collagen from femur of mylodon (giant sloth, Grypotherium listai) from Cueva del Milodon Grande, Puerto Consuelo, Ultima Esperanza, Chile (51° 36' S, 72° 36' W). Coll ca 1900 from cave floor deposits beneath fallen roof debris (British Mus [Nat Hist] ref M8748; purchased from G A Milward, 1904). Subm by A J Sutcliffe, British Mus (Nat Hist) to</td>
</tr>
</tbody>
</table>

* Dates obtained over the same period for samples from the British Isles formed the previous list, British Museum VIII.
Richard Burleigh, Andrew Hewson, and Nigel Meeks

date these animal remains (Hauthal et al, 1899) long the subject of controversy because of surviving flesh and hair. Comment: date confirms Pleistocene age of remains and agrees with C-484: 10,832 ± 400, for giant sloth droppings from same site (Libby, 1952, p 94).

Carrizal series, Colombia
Charcoal from protohist Carrizal phase occupation levels overlying Antigua levels at Carrizal, Municipio Barichava, Santander, Colombia (6° 40' N, 73° 14' W). Coll 1970 and subm by W Bray, Inst Archaeol, Univ London.

BM-802. Carrizal AD 1347
Carrizal stratigraphic trench, Levels 4 and 5, 30 to 50 cm below surface. Dates middle part of Carrizal phase occupation.

BM-803. Carrizal AD 1268
Carrizal stratigraphic trench, Level 7, 60 to 70 cm below surface. Comment: samples should date transition from underlying Antigua phase (see BM-804-806, below) but appear contemporaneous with BM-802 from middle of Carrizal phase.

Cueva la Antigua series, Colombia
Charcoal from Antigua phase levels at Cueva la Antigua, Municipio of San Gil, Santander, Colombia (6° 35' N, 73° 10' W). Coll 1970 and subm by W Bray. Samples date newly defined Antigua phase pottery styles, earliest so far discovered in northern part of highland Colombia.

BM-804. Cueva la Antigua AD 582
Trench 1/2, Spit 1 of Antigua phase. Dates transition from Antigua phase to subsequent protohist Carrizal phase.

BM-805. Cueva la Antigua 38 BC
Trench 1/2, Unit 2, 1.68m below surface. Sample from near base of deposit containing Antigua style pottery.

BM-806. Cueva la Antigua AD 280
Trench 1/2, Unit 2, Spit 6. Sample from just above base of deposit containing Antigua style pottery.

BM-807. Muisca figurine, Colombia AD 1055
Charcoal from clay and charcoal core of copper figurine cast by lost wax process. No exact provenance or archaeol assoc but figurine is in Muisca (Chibcha) style of area around Bogota, Colombia (4° 40' N, 74° 10' W). Subm by W Bray, from colln of Cambridge Univ Mus Archaeol & Ethnog (ref 46.22). Comment: figurine is well-known type assoc with protohist Muisca but not yet found in controlled excavation.
Knossos series, Crete

<table>
<thead>
<tr>
<th>Sample</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM-575</td>
<td>Knossos</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>BM-577</td>
<td>Knossos</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>BM-578</td>
<td>Knossos</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>BM-579</td>
<td>Knossos</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>BM-580</td>
<td>Knossos</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>BM-581</td>
<td>Knossos</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BM-690. Skouriotissa, Cyprus

Wood (Pinus sp) from pit prop from 60m below ground level in ancient mine exposed by modern open-cast commercial excavation at Skouriotissa, Morphou, N Cyprus (35° 10' N, 33° 0' E). Coll 1970 and subm by Michael Ayrton. Comment: mines in Cyprus have been worked for copper from Bronze age until Roman times (see Forbes, 1950). Sample dates from later part of mining activity; cf dates for wood from Apliki Mine, Cyprus, Bonn-677: 2380 ± 60 BP; Bonn-678: 2280 ± 60 BP (R, 1970, v 12, p 37-38); Birm-107: 2330 ± 90 BP (R, 1970, v 12, p 398).
Ayios Epiktitos Vrysi series, Cyprus

Charcoal from sealed deposits in a Neolithic settlement at Ayios Epiktitos Vrysi, 10km E Kyrenia, Cyprus (35° 20' N, 33° 26' E). Coll 1973 and subm by E J Peltenburg, Univ Glasgow. Samples date early and middle phases of settlement (Peltenburg, 1972).

BM-843. Vrysi
Sample Ref H2A.4
5355 ± 67
3405 BC

BM-844. Vrysi
Sample Ref H2B.8
5275 ± 47
3325 BC

BM-845. Vrysi
Sample Ref H4A.5
5360 ± 57
3410 BC

BM-846. Vrysi
Sample Ref H4B.8
5372 ± 92
3422 BC

BM-847. Vrysi
Sample ref Passage B East. 3, 4
5224 ± 78
3274 BC

BM-848. Vrysi
Sample ref Area VD.7
5330 ± 57
3380 BC

BM-849. Vrysi
Sample ref Area VD.7
5224 ± 78
3274 BC

General Comment (EJP): dates are consistent with proposed phasing of settlement (Peltenburg, 1974): Early phase, BM-846, 847; transitional, BM-845; Middle phase, BM-843, -844, -848; transitional-Late, BM-849. GU-522: 5420 ± 80, 3470 BC; GU-523: 5340 ± 95, 3390 BC; GU-524: 5255 ± 120 BC (Peltenburg, 1975) are also statistically acceptable within same framework but Birm-182: 5825 ± 145 BC (R, 1971, v 13, p 155) and Birm-337: 5740 ± 140 (R, 1973, v 15, p 468) appear too old for Middle phase. Dates show site flourished for much shorter period than expected and indicate that evolution of Cypriot Neolithic painted pottery styles was rapid and regionally based (GU-dates reported by Peltenburg, 1975, as 453-455 and with slightly different ages; lab nos and dates quoted here are those subsequently amended by issuing lab; Peltenburg, pers commun).

Khirokitia series, Cyprus

Charcoal from aceramic levels at settlement of Khirokitia, S Cyprus (34° 48' N, 33° 21' E). Coll 1972 and subm by N P Stanley Price for Dept Antiquities, Cyprus Mus, Nicosia. Samples date aceramic Neolithic phase
in Cyprus and length of occupation of one structure, Tholos XLVI (Dikaios, 1973).

BM-852. Khirokitia
Tholos XLVI (I), roof collapse.

7294 ± 78
5344 BC

BM-853. Khirokitia
Tholos XLVI (I), Floors I, II, and III.

7451 ± 81
5501 BC

BM-854. Khirokitia
Tholos XLVI (II), Floors V and VI.

7442 ± 61
5492 BC

BM-855. Khirokitia
Tholos XLVI (II), Floor VII and pre-Floor VII deposit.

General Comment (NPSP): samples coll from sounding at site previously excavated by Dikaios (1953) and belong to successive floor levels of a single structure (Stanley Price & Christou, 1973; Stanley Price, 1975). Results compare well with 3 previous dates: St-414-416 (Östlund and Engstrand, 1960).

Bylany series, Czechoslovakia
Charcoal from levels and pits at site of Bylany, 3 km SW Kutna Hora, Stredocesky region, Bohemia, W Czechoslovakia (49° 55’ N, 15° 20’ E). Coll ca 1958-1966 by B Soudsky, Archaeol Inst Czechoslovak Acad Sci, Prague; subm by Ruth Tringham, Dept Archaeol, Univ Harvard. Samples date early Neolithic, Linear Pottery culture, and middle Neolithic, Lengyel culture, occupations.

BM-561. Bylany
Feature 921 (Level 1 in oven).

6038 ± 87
4088 BC

BM-562. Bylany
Feature 2214 (Level 0-1 of bldg pit; 3rd phase of Period I).

6184 ± 89
4234 BC

BM-563. Bylany
Feature 378 (bldg pit; “violet” settlement phase pre-optimal part of Period II).

6686 ± 53
4736 BC

BM-564. Bylany
Feature 806 (Level 2 of bldg pit; “dark green” phase post-optimal part of Period II).

5756 ± 51
3806 BC

BM-565. Bylany
Feature 2101 (Level 3 of bldg pit: “red-yellow” phase—end of Period II).
Richard Burleigh, Andrew Hewson, and Nigel Meeks

BM-566. Bylany
Feature 11 (bldg pit; “yellow” phase—1st part of Period III).

 BM-567. Bylany
Feature 913 (Level 4 of bldg pit; “blue II” phase—transition Periods III-IV).

 BM-568. Bylany
Feature 1230 (Level 3 of bldg pit “middle—dark brown” phase—middle of Period IV—Sarka).

 BM-569. Bylany
Feature 900 (Level 1-6 of bldg pit; “dark brown” phase—end of Period IV—Sarka).

 BM-570. Bylany
Feature 1728 (Level 1 of bldg pit; early period of stroke-ornamented ware immediately following final Sarka pottery).

 BM-571. Bylany
Feature 1217 (bldg pit; Lengyel).

 BM-572. Bylany
Feature 1901 (bldg pit; Lengyel).

General Comment (RT): dates fall generally in range of other dates for Linear Pottery culture sites of Central and W Europe, 4500 to 3800 BC, but there are some detailed differences between dates obtained and those expected from archaeol evidence (Soudsky, 1966; Tringham, 1971). Compared with expected dates BM-569, -563, -571 and -572 are too early; -562, -565, -568, -564, -567, and -570 are too late (-567 and -570 appear invalidated by misassoc). Cf GrN-4752 (with BM-563): 6170 ± 45; GrN-4754 (with BM-564); 6270 ± 65; GrN-4755 (with BM-568, -569): 6180 ± 45; GrN-4751 (with BM-570): 5810 ± 65; GrN-4753 which should compare on archaeol evidence with BM-571, -572 gave anomalously high age of 9470 ± 55 (GrN dates: R, 1967, v 9, p 131).

Southern Sierra region series, Ecuador
Charcoal samples from sites in Southern Sierra region, Ecuador (ca 3° S, 80° W). Coll 1972 and subm by Elizabeth Carmichael, Mus Mankind, London. Sites yielded fine pottery expected earlier than pottery from coastal region, itself among earliest in S America. Dates help determine relationship between coast and Sierra.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Location</th>
<th>Date (BC)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM-897</td>
<td>Chaullabamba</td>
<td>959</td>
<td>2909 ± 55, Ref 14B1.</td>
</tr>
<tr>
<td>BM-898</td>
<td>El Carmen</td>
<td>133</td>
<td>1817 ± 56, AD, Ref 1B3, 5, 6, 7.</td>
</tr>
<tr>
<td>BM-899</td>
<td>Uchucay</td>
<td>292</td>
<td>2242 ± 48, Ref 2.</td>
</tr>
<tr>
<td>BM-900</td>
<td>Pirincay</td>
<td>631</td>
<td>2581 ± 66, Ref 9E3.</td>
</tr>
<tr>
<td>BM-901</td>
<td>Pirincay</td>
<td>747</td>
<td>2697 ± 49, Ref 9C3.</td>
</tr>
<tr>
<td>BM-902</td>
<td>Pirincay</td>
<td>221</td>
<td>1729 ± 49, AD, Ref 9B6a.</td>
</tr>
<tr>
<td>BM-903</td>
<td>Pirincay</td>
<td>685</td>
<td>2635 ± 77, Ref 9C4.</td>
</tr>
<tr>
<td>BM-904</td>
<td>El Carmen</td>
<td>384</td>
<td>2334 ± 61, Ref 8C3.</td>
</tr>
<tr>
<td>BM-967</td>
<td>Sakkara</td>
<td>1151</td>
<td>3101 ± 52, Ref 967a.</td>
</tr>
<tr>
<td>BM-736b</td>
<td>Asasif, Egypt</td>
<td></td>
<td>2136 ± 54, Small tree roots from tree pits of Tuthmosis III causeway at Asasif, Luxor, Egypt (25° 41’ N, 32° 24’ E). Coll 1970 and subm by M Bietak, Vienna. Comment: date corrected for natural 14C variations (Damon et al, 1972; Ralph et al, 1973) is ca 1450 BC. This agrees with archaeol evidence that causeway dates to last year of reign of Tuthmosis III, 1504-1450 BC.</td>
</tr>
</tbody>
</table>

Sakkara series

<table>
<thead>
<tr>
<th>Reference</th>
<th>Location</th>
<th>Date (BC)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM-967</td>
<td>Sakkara</td>
<td>186</td>
<td>2136 ± 54, Charcoal from Block 5 (9), Sec 7, floor, occupation level (Sample 16).</td>
</tr>
</tbody>
</table>
Richard Burleigh, Andrew Hewson, and Nigel Meeks

BM-968. Sakkara
Charcoal from Block 5 (9), Sec 7, fuel bin on N side, occupation level (Sample 17).

BM-969. Sakkara
Reeds used as bonding between mud-brick courses, Block 1, Sec 7, N wall (Sample 80). Reign of Nectanebo II.

BM-1098. Sakkara
Charcoal from Block 5 (D), Sec 7, hearth (Sample 60).

BM-1099. Sakkara
Reeds used as bonding between mud-brick courses, Sec 3 (Nectanebo II temple), E wall (Sample 135).

BM-1100. Sakkara
Reeds used as bonding between mud-brick courses, main N-S cross wall (S end), Block 7, Sec 7.

General Comment: dates accord well with archaeol evidence (Martin, 1973; 1974), particularly in light of further excavations since these samples were coll (H S Smith, in press) and agree with hist evidence when allowance is made for natural 14C variations.

Sitagroi series, Greece
Charcoal from prehistoric settlement mound at Sitagroi, Plain of Drama, Macedonia, Greece (41° 05' N, 24° 01' E). Coll 1968 to 1969 and subm by A C Renfrew, Dept Archaeol, Univ Southampton. Samples date occupation phases revealed by stratigraphy of mound (Renfrew, 1970; 1971).

BM-648. Sitagroi
Wood charcoal, Phase I, Level ZA67.

BM-649. Sitagroi
Wood charcoal from flotation, Phase II, Level ZA50.

BM-650a. Sitagroi
Wood charcoal from flotation, Phase IV, Level ZB112.

BM-650b. Sitagroi
Wood charcoal, Phase III, Level ML118.

BM-651. Sitagroi
Acorns from flotation, Phase IV, Level ZB108.
BM-652. Sitagroi
Wood charcoal from post-hole, Phase Va, Level PO162.

BM-653. Sitagroi
Vetch seeds, Phase Vb, Level QO8.

General Comment: sequence of dates for Sitagroi fits well with stratigraphy and harmonizes adequately with Bln series for the site; BM-648 and Bln-779: 6625 ± 170 BP, 4675 BC, and BM-650a and Bln-880: 4510 ± 100 BP, 2560 BC date same samples (Renfrew 1970; 1971).

Baba Jan series, Iran
Charcoal from stratigraphic series from Baba Jan, between Kermanshah and Khorramabad, Luristan, Iran (34° 24' N, 46° 59' E). Coll 1966 to 1969 and subm by Clare Goff, Inst Archaeol, Univ London. Samples were intended to date 4 major building levels and assoc pottery styles, and to provide dates for major phase of Luristan bronze industry (Goff, 1969; 1970; Goff-Meade, 1968).

BM-586. Baba Jan
Burnt roof beam, lowest floor (Stratum 8a, Level III), Central Hall (Rm 4) of Fort on E Mound (Sample 1).

BM-587. Baba Jan
Burnt roof beam, lowest floor (Stratum 9, Level III), Rm 5 of Fort on E Mound (Sample 2).

BM-589. Baba Jan
Burnt material from floor of Groom's Kitchen, reoccupation level of Fort (Stratum 6, Level II); assoc with imported pottery and elbow fibulae (Sample 4).

BM-597. Baba Jan
Burnt beam on floor, Level III, Painted Chamber (Sample 12).
General Comment: dates are very much later than those expected (1500 to 600 BC) and cannot be reconciled with archaeol evidence.

BM-483. Choga Mami, Iraq
Charcoal (Sample 6) from prehistoric site of Choga Mami, nr Mandali, Diyala Liwa, Iraq (33° 45' N, 45° 33' E). Coll 1967 to 1968 and subm by Joan Oates, British School Archaeol in Iraq. Sample dates transitional Samarra/Hajji Muhammad level (Oates, 1969; see Oates, 1972 for discussion of this and related dates).
BM-764. Nahal Oren, Israel

BM-1073. Punic ship, Italy
Small branches of wood from dunnage in wreck of Punic ship, 200m off N shore of Isola Lunga, Marsala, W Sicily (37° 48' N, 12° 27' E). Coll 1973 and subm by Honor Frost, Punic Ship Excavation, British School in Rome. Sample dates closed group of Punic Greek and Roman pottery carried on ship (Frost, 1972-1974; Culican & Curtis, 1974). *Comment:* chemically separated cellulose fraction only used for dating; *cf* HAR-499: 2050 ± 60 BP, 100 BC, date for portion of same sample pretreated with acid and alkali only.

Jericho series, Jordan
Charcoal from Early Bronze age levels at Jericho, Jordan (31° 53' N, 35° 27' E). Coll ca 1960 and subm by Kathleen Kenyon.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Date (BP)</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM-548. Jericho</td>
<td>4175 ± 48</td>
<td>2225 BC</td>
</tr>
<tr>
<td>BM-549. Jericho</td>
<td>4204 ± 49</td>
<td>2254 BC</td>
</tr>
<tr>
<td>BM-552. Jericho</td>
<td>4115 ± 39</td>
<td>2165 BC</td>
</tr>
<tr>
<td>BM-553. Jericho</td>
<td>3922 ± 78</td>
<td>1972 BC</td>
</tr>
</tbody>
</table>
BM-554. Jericho

Phase XBB, Stage XIX. lxxvi. Penultimate Early Bronze age phase.

General Comment: samples were from levels belonging to later part of Early Bronze age and probably mostly to EB II; main stages represent complete changes in plan, subsidiary divisions represent important structural changes. Expected calendar dates ca 2700 to 2350 bc; when corrected for natural 14C variations these dates appear too old. (See R, 1963, v 5, p 106 and R, 1969, v 11, p 290 for other BM dates for earlier levels at Jericho.)

BM-946. Gua Cha, Malaysia

Human bone (collagen) from Burial 2 at Gua Cha, Kelantan, W Malaysia (5° N, 101° 45' E). Coll 1954 and subm by G de G Sieveking, British Mus. Deposits at site contain extended burials assoc with Cord-Impressed Neolithic pottery and polished stone axes, and contracted burials in levels containing an earlier Hoabinhian industry (Sieveking, 1956a). *Comment* (GdeGS): dates Neolithic burial; other burials contained insufficient collagen for dating purposes and date is surprisingly late compared to that of BM-43: 3450 ± 150 BP, 1500 BC (Am Jour Sci R Supp, 1960, v 2, p 29) found with fully comparable pottery types.

BM-958. Pontian boat

Wood from ancient boat found ca 1925 at Pontian, Pahang, W Malaysia (3° 30' N, 102° 30' E). Subm by G de G Sieveking. Sample dates characteristic style of assoc earthenware storage vessel termed Pontian jar (Sieveking, 1956c) also found as sherds at Tanjong Rawa (see BM-959, below).

BM-959. Selinsing boat

Wood from boat (canoe burial) at Tanjong Rawa, Selinsing estuary, Perak, W Malaysia (4° 30' N, 100° 30' E). Coll 1955 and subm by G de G Sieveking. Sample dates primary burial and Kalumpang ware (Sieveking, 1956b, c); Pontian ware found in later levels on this site (see BM-958, above).

Tarxien series, Malta

BM-710. Tarxien
Carbonized 6-row barley (*Hordeum vulgare* L) and horse beans (*Vicia faba* L) from Glass Jar 1 in Natl Mus colln, originally from cinerary urn from Tarxien Cemetery and belonging to Cemetery phase.

3286 ± 72
1336 BC

BM-711. Tarxien
Carbonized horse beans (*Vicia faba* L) from Glass Jar 5 in Natl Mus colln. Same provenance as BM-710 above.

General Comment: BM-710 and -711 fit much more satisfactorily with emerging radiocarbon chronology for Malta and confirm that BM-101 does not date Cemetery phase (see Renfrew, C, 1972 for full interpretation and discussion of dates).

4478 ± 56
2528 BC

BM-712. Skorba

3912 ± 64
1962 BC

BM-808. Qala Pellegrin
Animal bone (collagen) from Neolithic site at Qala Pellegrin, Ras il-Pellegrin, between Gnejna Bay and Fomm ir-Rih Bay, NW coast Malta (35° 56' N, 14° 23' E). Coll 1970 by R Virzi and subm by E Coleiro, Royal Univ, Msida, Malta.

Taruga series, Nigeria

2042 ± 126
92 BC

BM-532. Taruga
Furnace 4, charcoal from within and below slag horizon (TA3, Sample 3).

2269 ± 143
319 BC

BM-533. Taruga
Sq 015a3, Layer 3, NW quarter, -55 to -90cm (TA2, Sample 8).

2121 ± 116
171 BC

BM-534. Taruga
Sq 015a3, Layer 3, NW quarter, -90 to -107cm (TA2, Sample 9).
British Museum Natural Radiocarbon Measurements IX

BM-938. Taruga
Furnace 1 (Sample J13d1).

BM-939. Taruga
Furnace 12 (Sample K14a2, K14a3).

BM-940. Taruga
Furnace 7 (Sample K13a1).

BM-941. Taruga
Loto D (Sample N15d4).

BM-942. Taruga
Furnace 4 (cf BM-532, above).

General Comment: except for BM-939 which appears to be intrusive, samples provide dates for early iron smelting in W Africa and indirectly for terra-cotta sculpture of Nok (Fagg & Fleming, in press); cf I-1459: 2230 ± 120 BP, 280 BC (Taruga Lf, layer 3); I-2960: 2390 ± 140 BP, 440 BC (TA2, 015a3); I-3400: 2250 ± 100 BP, 300 BC (TA3, Furnace 2).

BM-924. Choqepuqio
Wood.

BM-925. Canarraccay

BM-926. Cuzco
Charred bone (collagen), Sample Q11AC3.

BM-927. Keannbamba
Grass and wood.

2541 ± 74
591 BC

222 ± 40
AD 1728

2488 ± 84
538 BC

2541 ± 104
591 BC

2291 ± 133
341 BC

384 ± 45
AD 1566

341 BC

217 ± 67
AD 1733

AD 1276

AD 1537

AD 1721

AD 1733
BM-928. Urco
Grass and wood, Sample I.

BM-929. Urco
Wood, Sample J.

BM-930. Cuzco
Charcoal, Sample 1676L.

BM-931. Cuzco
Wood, Sample 1676P.

Comment: dates agree reasonably well with those expected when allowance is made for secular 14C variations.

BM-936. Castelo do Giraldo, Portugal
Charcoal from Late Neolithic settlement at Castelo do Giraldo nr Valverde, Evora, Portugal (38° 32' N, 8° 00' W). Coll 1972 and subm by J M Arnaud, Nat Mus Archaeol & Ethnol, Lisbon. Sample intended to date Neolithic settlement related to megaliths of Alentejo. Comment (JMA): sample coll from supposed undisturbed Neolithic or Chalcolithic level but date indicates area, like other parts of same site, was occupied during transition Bronze—Iron age, attested by burnished ware and bronze tools. TL dates for sherds from same layer were ca 3000 BC and ca 1150 BC, confirming disturbance.

Parpalló series, Spain
Bone and antler (collagen) from stratified early Upper Palaeolithic levels in cave of Parpalló, Valencia Prov, Spain (38° 55' N, 0° 20' W). Coll 1930 by L Pericot Garcia; subm by I Davidson, Dept Archaeol, Univ Cambridge.

BM-858. Parpalló
Pre-Solutrean level, depth ca 7.5m; vertebrae of Cervus ibex and C elaphus.

BM-859. Parpalló
Lower Solutrean level, depth 6.5 to 7m; bone and antler fragments (C elaphus).

BM-861. Parpalló
Upper Solutrean level, depth 4.75 to 5m; antler fragments (C elaphus).
General Comment: date of > 40,000 is older than expected for Parpalló sequence where earliest remains were described as Gravettian (Pericot Garcia, 1942) but BM-859 agrees well with date for Lower Solutrean of Laugerie-Haute Est, France, GrN-1888: 20,890 ± 300 BP, 18,940 BC (R, 1963, v 5, p 167); although BM-861 suggests Solutrean lasted longer in Valencia than in Dordogne, dates for Parpalló appear to show remarkable similarity in age with Solutrean industries of SW France (Davidson, 1974).

Spirit Cave series, Thailand

Charcoal from Hoabinhian levels (Gorman, 1969) at Spirit Cave, Mae Hongson, Thailand (19° 40’ N, 98° E). Coll 1966 by C F Gorman, Dept Anthropol, Univ Hawaii; subm by G de G Sieveking.

BM-501. Spirit Cave
Site 19, A2-B2 (2); Sample 1. 7907 ± 198 5957 BC

BM-502. Spirit Cave
Site 19, C2-N wall (3); Sample 2. 9073 ± 112 7123 BC

BM-503. Spirit Cave
Site 19, B2-NW corner (5); Sample 3. 9510 ± 160 7560 BC

BM-504. Spirit Cave
Fire pit, B2-C2 (5); Sample 4. 9202 ± 106 7252 BC

Amerindian palaeopathology series, United States

Five bone (collagen) samples from skeletons showing evidence of pathologic lesions. Samples came from various mus collns and form part of program for study of early history of disease in the New World (Brothwell & Burleigh, 1975). Subm by D R Brothwell, Inst of Archaeol, Univ London.

BM-462. Californian Amerindian AD 1093
Californian Amerindian (ca 35° N, 120° W) of Late Horizon period from Berkeley colln (Ref Scr. I. 83. 4434) showing evidence of treponemal infection. 857 ± 52

BM-463. Californian Amerindian AD 1328
Californian Amerindian (ca 35° N, 120° W) of Late Horizon period from Berkeley colln (Ref Cco. 138. 6091) showing evidence of spinal osteitis probably indicating tuberculosis. 622 ± 63
BM-464. "Prehistoric" Amerindian
AD 1387
Amerindian from May's Lick, Kentucky (ca 37° N, 85° W). From Am Mus Nat Hist colln, New York (Ref 20/915). One of nine individuals showing vault changes suggestive of treponematoses.

BM-465. Horr’s Island Amerindian
AD 1215
“Late prehistoric” Amerindian from Horr’s Is, Florida (ca 28° N, 82° W). From Smithsonian colln, Washington, DC (Ref 352156). Assoc with individuals showing osteitic changes suggestive of treponematoses.

BM-466. Horr’s Island Amerindian
AD 1098
“Late prehistoric” Amerindian from Horr’s Is, Florida (ca 28° N, 82° W). From Smithsonian colln, Washington, DC (Ref 352162). Assoc with individuals showing osteitic changes suggestive of treponematoses.

General Comment: dates support view that treponemal diseases were established in the New World before Columbian contact (see Brothwell and Burleigh, 1975 for a fuller discussion of dates).

Divostin series, Yugoslavia

BM-573. Divostin
4985 BC
Feature 120 E, 105cm below surface; Starcevo level.

BM-574. Divostin
3297 BC
Feature 121 (sample from various depths in undisturbed storage pit below floor of Vinca Plocnik “D” house).

General Comment (AMcP and RT): BM-573 agrees with Bln-896: 6945 ± 100 BP, 4985 BC, date for portion of same sample; dates for Starcevo occupation at Divostin fall within range of dates for other early Neolithic settlements of SE and Central Europe (Azmak, Gornja Tuzla, Vrsnik); similarities suggest Starcevo layers at Lepenski Vir (undated) and Divostin were contemporaneous. BM-574 is consideraly later than expected and differs from Bln-898, 5860 ± 100 BP, 3910 BC for same sample but agrees with Bln-867, 5250 ± 100 BP, 3300 BC and fits with ceramic chronology of Divostin and with dates for Eneolithic (Bodrogkerestur culture) settlements of SE Europe.

References

Goff-Meade, C, 1968, Luristan in the first half of the first millennium BC: Iran, v 6, p 105-134.

McPherron, A and Srejović, D, 1971, Early farming cultures in central Serbia: Kragujevac, Natl Mus.

——— 1972, A radiocarbon date from Choga Mami: Iraq, v 34, p 49-53.

Pericot Garcia, L, 1942, La Cueva del Parpalló: Madrid.

Ralph, E K, Michael, H N, and Han, M C, 1973, Radiocarbon dates and reality: MASCA Newsletter, v 9, pt 1, p 1-20, Philadelphia, Univ Mus.

——— 1972, Malta and the calibrated radiocarbon chronology: Antiquity, v 46, p 141-144.