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SUMMARY

We report an objective examination of nosocomial transmission events derived from long-term

(10-year) data from a single medical centre. Cluster analysis, based on the temporal proximity of

genetically identical isolates of the respiratory pathogen Moraxella catarrhalis, identified 40

transmission events involving 33 of the 52 genotypes represented by multiple isolates. There was

no evidence of highly transmissible or outbreak-prone genotypes. Although most clusters were

small (mean size 3.6 isolates) and of short duration (median duration 25 days), clustering

accounted for 38.7% of all isolates. Significant risk factors for clustering were multi-bed wards,

and winter and spring season, but bacterial antibiotic resistance, manifested as the ability to

produce a b-lactamase was not a risk factor. The use of cluster analysis to identify transmission

events and its application to long-term data demonstrate an approach to pathogen transmission

that should find wide application beyond hospital populations.
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INTRODUCTION

Infection control programmes use a multi-pronged

approach to the prevention and detection of

healthcare-acquired infections. Reducing pathogen

transmission is a key programme element [1] but

transmission pathways may be complex. Therefore,

in addition to transmission estimates derived from

infection prevalence [2], active surveillance for colon-

ized patients and pathogen typing may be used to

drive both empirical infection control practices and

the mathematical models intended to inform and

guide those practices [1, 3–8].

Mathematical models of pathogen dynamics in

hospitals have examined the relationship between

rates of exogenous transmission and other factors

underlying pathogen prevalence, such as the presence

of asymptomatic carriers, antibiotic selection on en-

dogenous flora and stochastic events [4, 9, 10]. These

models show that small changes in transmissibility

can have a major impact on pathogen prevalence

[11, 12]. Since transmission plays a central role

in prevalence, estimates of transmission parameters

are critical to model-based formulation of infection

control interventions, but the required combination

of surveillance and genotyping to acquire such

data has been considered economically and techni-

cally prohibitive [10]. Further, the lack of empirical

transmission estimates represented a major limitation

to model-based inference [2, 11]. More recently,
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detection of nosocomial transmissions has been

strengthened by analyses based on Markov models

and cluster detection methods while estimates and

predictions from those models have gained accuracy

with more suitable and diverse empirical data

[5–8, 13].

The ability to detect growing transmission clusters

and potential impending outbreaks based on as few as

two genetically identical isolates can be an invaluable

prospective tool for infection control [14]. The goal of

this study was to use genetic identity to quantify the

magnitude of pathogen transmission throughout a

medical centre and to evaluate potential risk factors

associated with transmission. Our approach was

based on identification of temporal clusters of gen-

etically identical pathogen isolates. Because hospital

populations are relatively small and undergo frequent

turnover, random effects can have a major impact on

pathogen prevalence [15]. To minimize the influence

of such stochastic processes, accurate estimation of

transmission parameters should be based on long-

term longitudinal data [15, 16]. We illustrate the

utility of our approach through analysis of a long-

term, single species collection from a medical centre.

The analysis was conducted on Moraxella catar-

rhalis, a respiratory tract commensal and pathogen

in adults. M. catarrhalis is considered an emerging

pathogen because in the 1980s, the species exper-

ienced a remarkably rapid global acquisition of a

chromosomally encoded b-lactamase [17–20]. Global

and regional genetic diversity have been assessed in

M. catarrhalis [21, 22] while genotype clusters have

been used to infer outbreaks [23, 24] and intrafamiliar

transmission [25]. More recent studies have docu-

mented the dissemination of serum-resistant taxo-

nomic clades [26, 27]. The availability of a long-term,

genotypically characterized collection of a respiratory

pathogen provided the raw material for a powerful

retrospective analysis of pathogen transmission in a

comprehensive medical centre and as such, represents

an extension of studies based on single wards or acute

care units.

METHODS

Study population and facility

Our approach was based on the tenet that pathogen

transmissions between patients within a hospital

will give rise to temporally delineated clusters of

genetically identical isolates [14, 28]. Temporally

defined clusters were chosen as the standard because

they are free of a priori spatial restrictions that often

limit analyses to single units within a hospital.

A highly discriminating genotyping system was used

to distinguish identical from non-identical isolates

[21, 29]. Considering the extensive genetic diversity

in the study population, genetic identity of isolates

is particularly appropriate for transmission inference

because it eliminates dependence on unknown

mutation/evolutionary rate parameters that may arise

from using measures of relatedness. Our definition of

patient–patient transmission includes transmission

pathways through unidentified intermediaries, e.g.

patient–caregiver–patient, and patient–surface–patient.

We analysed a sample from a long-term (1984–

1994) collection of M. catarrhalis comprised of all

patient isolates from the James H. Quillen Veterans

Affairs Medical Center (VAMC) at Mountain Home,

Tennessee, USA. The VAMC encompasses an acute-

care hospital, a nursing home, domiciliary, and

several outpatient clinics. Samples from the collection

have been well characterized phenotypically (anti-

biotic resistance phenotypes), genetically (three-locus

PCR–RFLP genotypes) and epidemiologically (col-

lection date and patient location) [21, 29–31]. The

sample of 367 isolates was derived from 347 unique

patients. More than one isolate from the same patient

were included if those isolates differed in genotype

(16 patients) or, when the isolates carried identical

genotypes, if the isolation dates were separated by

more than 100 days (one patient). Isolates were

selected randomly within years with proportional

representation across years to generate a sample

representative of the population. All isolates were

typable using three-locus PCR–RFLP. Details of the

sample and identity of the genomic regions used in

typing, PCR primers and cycling parameters, and

RFLP procedures are given in Walker & Levy [21].

The typing system distinguished 148 three-locus

genotypes in the 367 isolates. Only 10 genotypes were

represented by 10 or more isolates ; the most common

genotype was found in 23 isolates, representing 6%

of the total. The sample and typing system were par-

ticularly amenable to cluster analysis to infer trans-

missions because virtually all genotypes would be

considered rare by the criterion of occurrence in

<5% of the population. Moreover, the collection

spans the transition to b-lactamase production, the

primary antibiotic resistance factor in the species, and

it encompasses a time when there was major reno-

vation and new construction for the medical centre.
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Hence, the current analysis afforded an opportunity

to assess the impacts of antibiotic resistance and

facility configuration on pathogen transmission.

Cluster analyses

Temporal clusters

Temporal clusters of isolates were identified using

the scan statistic based on a Poisson model as

implemented by SatScan software version 7.02 [32].

Significance was assessed with 999 Monte Carlo ran-

domization replications. P values f0.05 were con-

sidered significant. The scanning window was set at

3% of the total time (approximately equivalent to a

3-month season) because M. catarrhalis is a seasonal

pathogen, but results were largely insensitive to a

range of scanning windows. In addition, a 50%

scanning window was used to search for long-running

clusters. Analysis was first conducted on the entire

sample to identify genotype-independent clusters

followed by separate cluster analyses for each of the

52 genotypes represented by two or more isolates.

Spatial clusters

To evaluate the relative importance of spatial location

in regard to bacterial transmission, the 36 facility

locations from which isolates were derived were

assigned x,y map coordinates. Vertical distance was

specified through a z coordinate that corresponded to

building floor. The scan statistic was used to identify

spatial clusters regardless of isolate genotypes.

Epidemiological associations

Seasonal effects

Respiratory infections caused by M. catarrhalis and

other bacterial pathogens tend to undergo seasonal

fluctuations characterized by a winter peak [33].

Similarly, infectious transmissions may also occur

with seasonal peaks. Logistic regression was used to

test for seasonal differences in the proportion of iso-

lates in clusters. To analyse the impact of seasonality

on isolate recovery and clustering, fractional compo-

nents of clusters that spanned seasons were assigned

to seasons based on the number of clustered isolates

within each season.

Antibiotic resistance

For each of the 40 significant temporal genotype

clusters, we determined whether the clustered isolates

were more or less likely to be b-lactamase producers

relative to: (i) isolates of the same genotype whose

occurrence was outside of that temporal cluster, and

(ii) isolates of any genotype in temporal proximity to

the cluster. For the latter, we chose as the reference

isolates within ¡50 days of the clustered isolates,

a period of sufficient duration to ensure adequate

samples sizes but not long enough to encompass sig-

nificant genotype turnover or seasonal fluctuations.

Differences in the frequency of b-lactamase producers

between cluster and non-cluster isolates were assessed

using Fisher’s exact test.

Facility configuration

Patients in acute care were housed in multi-bed wards

prior to completion of a major hospital renovation at

the end of 1990, after which patients were assigned to

rooms with 1–4 beds. The bed capacity for the hospi-

tal dropped from an average of 446 beds to 353 beds.

A new nursing home was opened in 1992 at which

time capacity more than doubled, from 58 to 120

beds. In 1993, domiciliary residents were transferred

from several smaller buildings to a new single domi-

ciliary but domiciliary beds remained stable at 540

beds. A gradual decline in clusters or cluster charac-

teristics could be misinterpreted as a beneficial

consequence of the hospital renovation if the time of

the decline encompassed the renovation. Therefore,

linear regression included variables to test for trends

in clustering over the entire time, for a trend in patient

days, and for a difference between the older and newer

configuration eras.

Outbreak-prone genotypes

If a genotype was particularly prone to outbreaks, the

number of isolates of that genotype should constitute

a greater proportion of the clustered isolates relative

to the entire sample. Similarity of genotypic preva-

lence in the sample and cluster subset of isolates was

tested using a x2 goodness-of-fit statistic. The expec-

tation for each genotype was calculated as the product

of the number of isolates clusteredrthe proportion a

genotype represented in the sample of genotypes re-

presented by four or more isolates.

Statistical methods

Logistic regression was used to test whether epi-

demiologically relevant potential risk factors were
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associated with clusters. The dichotomous response

variable was whether or not an isolate was included

in any cluster. Independent variables were season

[winter (January–March), spring (April–June), sum-

mer (July–September), autumn (October-December)],

b-lactamase status (producer or non-producer), and

hospital configuration (pre- or post-alteration). Fur-

ther analyses were conducted to dissect the relation-

ship between each of the potential risk factors and

the cluster attributes; number of clusters, cluster size,

cluster duration, and the proportion of clustered iso-

lates. ANOVAs were used to test for differences

in cluster size and duration. The Mann–Whitney U

statistic was used to compare durations between

b-lactamase producers and non-producers. Fre-

quency variables were analysed using Fisher’s exact

test for 2r2 contingency tables or heterogeneity x2

for larger tables.

RESULTS

Genotype-independent clusters

Six genotype-independent, non-overlapping temporal

clusters were identified (all P<0.003), four of which

were comprised of relatively high numbers of isolates

(27–39) (Figure 1a, d ). Each of these four clusters was

characterized by long persistence (107–152 days),

winter occurrence and representation of diverse gen-

otypes (17–24 different genotypes). These large winter

season clusters accounted for 38% of the isolates but

only 14% of the total time. Moreover, while 40%

of the isolates were recovered in winter, winter ac-

counted for 67% of the isolates in the four temporal

clusters.

Only one significant spatial cluster was identified, a

cluster of 30 isolates that encompassed all isolates

from the only two wards in a building separate from

the main hospital. This cluster spanned 5 years and

included 20 different genotypes. These spatially separ-

ated wards were closed after the facility renovation.

Temporal genotype clusters

There were 40 significant temporal genotype clusters

involving 33 different genotypes (Fig. 1b, c). Isolates

in these clusters accounted for 142 (38.7%) of the 367

isolates. The mean prevalence was one cluster per

92 days or approximately four events per year and

per 137 474 patient-days. The mean cluster size and

duration was 3.55 days and 64.7 days, respectively,

with size and duration medians of 3 days and 24.5

days, respectively. Thirty-eight percent of the clusters

were comprised of two isolates and for eight of these,
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Fig. 1. (a) Number of isolates by year and season. The arrow on the x-axis points to the date of transition to the reconfigured
facility. Timelines of : (b) genotype clusters of o100 days, (c) genotype clusters of durations <100 days, (d) genotype-

independent temporal clusters. Timescales as in (a). In panels (b) and (d), each arrow points to a cluster duration midpoint
within a box whose width is scaled to duration. Number above the bar or arrow is the number of isolates in the cluster. For
clusters <100 days, width of the bar corresponds to cluster durations of : =0–10 days ; =11–30 days ; =31–60 days ;
=61–99 days. A, Autumn; W, winter ; Sp, spring, S, summer.
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the two isolates were the sole occurrences of that

genotype (Table 1). There was a positive relationship

between cluster size and duration (r=0.49, P=0.001).

For example, the four largest clusters were comprised

of 7–10 isolates and these had a median duration of

129.5 days compared to a median duration of 15 days

for two-isolate clusters.

Outbreak-prone genotypes

Of the 52 genotypes with more than one isolate in

the sample, 33 had isolates in clusters. Genotypic

frequencies were similar in the entire sample and

the subset of clustered isolates, i.e. there was no evi-

dence of particularly transmissible or outbreak-prone

genotypes (goodness-of-fit for 19 genotypes rep-

resented by four or more isolates: x2=21.49, D.F.=18,

P=0.26).

Epidemiological associations

Isolates were more likely to be in a cluster if they

were isolated in winter or spring, isolated prior to the

hospital reconfiguration, and were not b-lactamase

producers (Table 2).

Seasonal effects

Whereas recovery of isolates from patients showed

a marked seasonality (logistic regression, likelihood

ratio=38.30, P<0.0001) there were no significant

seasonal differences in cluster size (ANOVA: F=0.46,

D.F.=3, 57, P=0.71) or cluster duration (ANOVA:

F=0.60, D.F.=3, 57, P=0.62). Moreover, patient

bed-days of care were similar across seasons (Table 3).

However, significantly higher proportions of isolates

were found within clusters in winter (43%) and spring

(50%) compared to summer (13%) and autumn

(28%) (Table 3). If the product of the total number

of clusters and the mean seasonal proportion of iso-

lates can be considered a seasonal expectation, the

numbers of clusters per season were not significantly

different from the expectations (x2=4.08, D.F.=3,

P=0.25).

b-lactamase association

A higher proportion of b-lactamase non-producers

(54.9%) were found in clusters compared to pro-

ducers (34.4%) (P<0.001) but the b-lactamase status

of isolates was not associated with either cluster size

Table 1. Characteristics of temporal genotype clusters

Cluster
size (no.

isolates)

No. of

clusters

Genotype
sole

occurrences

Duration (days)

Mean

(median) Range

2 15 8 36 (15) 0–255
3 11 6 30 (15) 6–159

4–6 10 2 92 (34.5) 15–450
7–10 4 2 202 (129.5) 34–513

Table 2. Risk factors for variables associated with

temporal genotype clusters

Risk factors OR 95% CI P

b-lactamase production 0.54 0.32–0.91 0.02

Older facility configuration 3.36 1.85–6.11 <0.0001

Season <0.01
Winter vs. summer 5.21 1.70–15.75
Spring vs. summer 7.22 2.30–22.68

Autumn vs. summer 2.69 0.84–8.63

OR, Odds ratio ; CI, confidence interval.

Table 3. Seasonal characteristics of the sample and temporal genotype clusters

Season

Winter Spring Summer Autumn

No. isolates (%) 148 (40.3%) 98 (26.7%) 31 (8.4%) 90 (24.5%)

No. isolates in clusters 64 49 4 25

(% of cluster total) (45.1) (34.5) (2.8) (17.6)
(% of seasonal total) (43.2) (50.0) (12.9) (27.8)

No. clusters (%) 26 18 3 12
Mean cluster size (S.E.M.) 2.77 (0.19) 4.28 (0.55) 3.00 (0.58) 4.45 (0.73)
Mean patient bed-days 28 023 26 624 27 110 28 096
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(means: producers 3.29, non-producers 3.50; P=
0.75) or cluster duration (means: producers 107.5

days, non-producers 38.4 days; P=0.52). Of the 11

clusters for which it was possible to test for a differ-

ence in the frequency of b-lactamase producers in

cluster isolates compared to non-cluster isolates of

identical genotype, one cluster showed a significant

difference. In that cluster, all four cluster isolates

were non-b-lactamase producers while the remaining

10 isolates of identical genotype were producers. The

isolates of four clusters were significantly different (all

P<0.01) in the frequency of b-lactamase producers

relative to isolates in the proximal temporal window.

In all four cases, the clustered isolates were non-b-

lactamase producers embedded in a temporal back-

ground of higher proportions of producers.

Facility configuration

For the cluster attributes of: clusters per year, pro-

portion of isolates in clusters, and isolates per cluster,

there were no significant temporal trends over the

10-year study period, no significant trends in patient

bed-days of care, and no significant interactions, but

for each cluster attribute there was a significant

facility configuration effect (for each attribute, ad-

justed r2=0.71–0.77, P<0.01). With the change in

configuration, the number of isolates declined signifi-

cantly from 44 to 23 per year (t=2.39, P=0.05). Un-

der both configurations, cluster durations were similar

(means 62–65 days for both older and newer) but there

was a 65% reduction from 5.67 to 2.00 clusters per

year, a 43% reduction from 3.71 to 2.11 isolates per

cluster, and the proportionof clustered isolates showed

a 70% reduction from 47.5% to 17.2% (Fig. 2).

DISCUSSION

Genotype clusters and transmission

Identification of temporally delineated bacterial geno-

typic clusters represents a pathogen-centred approach

to inferring pathogen transmission. Elucidation of

pathogen transmission pathways and empirical esti-

mates of transmission parameters garnered from long-

term data are critical components of model-based

prediction and resultant model-derived infection con-

trol recommendations [15, 34]. However, estimates of

hospital transmission parameters often rely on cluster

or outbreak criteria that are subjective [35, 36] with

pre-defined spatial and/or temporal restrictions [28,

37, 38]. Restricting analyses to particular wards or

hospital units can minimize the rate of false positives,

i.e. the incorrect determinations of transmission

events, but spatial restrictions may incur the cost of

missing transmission events mediated by transient

contacts or patient transfers. These a priori constraints

can be relaxed by application of a highly discriminat-

ing genotyping system to a population that harbours

high genetic diversity. In such populations, identical

genotypes shared between isolates (particularly when

the genotype is rare) within a clinically relevant time-

frame should, in itself, constitute strong epidemiolo-

gical evidence of transmission.

Our ability to detect genotype clusters was influ-

enced by several sample-related factors. While all

patient isolates of M. catarrhalis were collected, only

367 or one-third were included in the analysis, a pro-

portion expected to underestimate the proportion

of clustered isolates and cluster sizes [39, 40]. The

analysis was conducted on a sample from a veterans’

hospital population, a group that tends to be older

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10

Year

C
lu

st
er

s/
is

ol
at

es
 

0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
cl

us
te

re
d 

Clusters/year

Isolates/cluster

Proportion clustered

Fig. 2. Trends in cluster attributes. The arrow on the x-axis corresponds to the time of the transition to the newer hospital
configuration.
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than the general population, and predominantly male.

Confining the analysis to a somewhat closed and

homogenous host population of a pathogen species

with no apparent geographic population substructure

[19] minimized the potential confounding factor of

immigration of pathogen genotypes that may be

common elsewhere, but rare locally.

It should be noted that most of the statistical

analyses presented in this study formally require the

use of independent samples. In the case of infectious

disease transmission, the isolates, of course, exhibit

some level of dependence. In recent times, modern

approaches, most commonly using Markov models,

have explicitly modelled the dependencies in the data

[5, 6, 8, 13]. While we believe that some of the ap-

proaches would prove valuable in a further investi-

gation of our data, it can also be shown that when the

infectious transmission rate is small, then statistical

methods requiring independence are approximately

correct. However, in cases where there is an epidemic

level of disease transmission, then modelling the

dependencies in the data is critical. A preliminary

analysis of the data showed the transmission rate to

be low, so the statistical analyses presented here are

considered reliable.

A pathogen genotype approach to inferring noso-

comial transmission events can provide insight

into the relative importance of the more traditional

host-based transmission criterion of shared patient

location. The following conclusions must be tempered

by the knowledge that our spatial data were restricted

to the location of the patient at the time the pathogen

was isolated. Nevertheless, in only 20% (7/35) of the

clusters were the clustered isolates all derived from

patients in the same or adjacent locations (Table 4).

Moreover, in 40% of the clusters there was a

complete absence of spatial overlap in clustered iso-

lates, and in no case involving clusters of a size above

the minimum of two, were all clustered isolates from

the same or adjacent locations. Similarly, clustered

isolates were derived from patients in different wards

in a shorter-term study of M. catarrhalis [41], and in

more than half of the MRSA clusters identified in a

German hospital [14]. Further, for the VAMC, a

genotype-independent spatial analysis was relatively

uninformative in regard to transmission, in part be-

cause it appeared biased towards highlighting a clus-

ter in a patient location somewhat distant from all

others, but also because it failed to cluster genetically

identical isolates.

Risk factors

Genotype-independent temporal clusters, during a

period when patient bed-days of care remained rela-

tively stable across seasons (Fig. 1d) support prior

observations of seasonal peaks in prevalence [33, 41,

42]. The finding of several large, seasonal, multi-

genotype clusters showed our sample exhibited the

population dynamics expected of this pathogen and

thereby served to validate the cluster-based approach.

During the winter and spring, genotype cluster sizes

were larger and a higher proportion of isolates were

found in clusters, but cluster durations were not

longer and given the higher numbers of isolates, the

frequency of clusters was no more than expected. Of

particular relevance, the high proportion of isolates

within genotype clusters during winter and spring

suggests infectious transmission rather than indepen-

dent acquisition as the major contributor to spread.

The emerging picture from the spatio-temporal

analyses, i.e. the identification of many clusters for

Table 4. Spatial relationships in isolates within temporal genotype clusters. Table entries represent numbers

of clusters

Cluster size

2 3 4 5–10

Spatial relationship
All isolates from same location 4 0 0 0

All isolates from adjacent locations 3 0 0 0
Some isolates from either same or adjacent locations n.a. 5 2 7
No spatial overlap in isolates 6 5 1 2

Complete or partial spatial overlap 54% 50% 67% 78%

All clusters, some spatial overlap 60%

n.a., Not applicable.
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which chart data failed to show a shared patient

location, suggests that evidence of direct patient con-

tact in transmission is often lacking, perhaps particu-

larly so in a retrospective study. Thus, a finding of

identical genotypes in temporal proximity, especially

if those genotypes are rare or absent overall (as in

approximately half of the clusters at the VAMC),

provides greater ability to infer transmission events

than physical location of the patients. A similar ap-

proach was used to uncover tuberculosis transmission

routes that would have been undetected in the absence

of genotyping [43]. Thus, it is not surprising that

recent guidelines for infection control implicitly

(or explicitly) acknowledge transmission pathways in

addition to those of spatially defined outbreaks.

Under the older facility configuration, the associ-

ation of more frequent recovery ofM. catarrhalis with

larger and more frequent cluster events suggests

a hospital-specific source rather than a reflection of

community prevalence. The VAMC hospital recon-

figuration was accompanied by a 12.7% decline in

patient bed-days of care. This decline was subse-

quently offset by an increase in nursing-home capacity

and occupancy so that the combined number of

hospital and nursing-home patient-days declined only

3.2%with pre- and post-reconfiguration yearly means

of 140 242 and 135838, respectively. Facility bed

capacity remained relatively stable throughout the

study period (yearly mean 1026, range 969–1138).

After the facility transition, the mean number of iso-

lates was approximately halved, the numbers of iso-

lates in clusters was reduced by a factor of 6, and the

proportion of isolates in clusters also was halved.

Declines in these cluster parameters did not occur

until after 1990, which coincided with the transfer to

the new facilities. Thus, the timing and the precipitous

nature of reductions in the number and severity

of cluster events support a role for improved facility

design in curtailing transmissions.

b-lactamase non-producers were 1.9 times more

likely to be involved in genotype clusters (Table 2),

but differences in b-lactamase status were not associ-

ated with other cluster parameters. This difference

may arise from the fact that while only 22% of the

sample were b-lactamase-negative isolates, they ac-

counted for 31% of the clustered isolates. Non-

producers comprised a much higher proportion of

the sample prior to facility reconfiguration (26% vs.

13%), so the apparent higher risk for non-producers

may instead be an effect of the facility renovation.

This is also a probable explanation for the four

clusters in which non-b-lactamase producers were

more common in clusters relative to isolates in the

proximal temporal window. Nevertheless, these clus-

ters suggest that in this case, antibiotic resistance was

not an essential determinant in pathogen trans-

mission.

Although the number of pathogen transmission

studies based on long-term longitudinal data is

limited, certain characteristics related to transmission

cluster size, duration and spatial location of hosts

begin to emerge. Most transmission events are small,

comprised of 2–3 isolates. This was observed for

M. catarrhalis at the VAMC (65% small clusters),

for MRSA in a German hospital (77%) [14], for

vancomycin-resistant enterococci (VRE) in a Chicago

hospital (60%) [44], and for meningococcal disease

across Germany (88%) [38]. Moreover, most clusters

are not long-running but have median durations of

<2 weeks [VAMC, 14, 38]. In those studies for

which clusters were identified using genetic methods

and no spatial constraints, in approximately half of

the small clusters, patient hosts were located in dif-

ferent hospital units [VAMC, 14] or for meningo-

coccal disease, in different states or counties in

Germany [38].

Surveillance for increases in pathogen incidence

will have the least success in early detection of small

events, especially when the primary locations of

patient hosts are spatially dispersed. For example, a

numerical, genotype-independent algorithm had par-

ticular difficulty identifying small clonal transmission

events in a Chicago hospital [45]. Perhaps the pre-

ponderance of small transmission events is a testa-

ment to current infection control efforts, and the gains

realized from infection control measures present the

appearance that most transmission events are self-

limiting. In the Chicago hospital, infection control,

primarily hand washing and staff cohorting, reduced

the prevalence of VRE by half and reduced the

transmission parameter so that hospital transmission

alone would not sustain outbreaks [2]. Stringent

infection control measures will probably remain the

primary defence against the short-lived, but relatively

abundant small transmission events.
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