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Mixed Norm Type Hardy Inequalities

Alberto Fiorenza, Babita Gupta, and Pankaj Jain

Abstract. Higher dimensional mixed norm type inequalities involving certain integral operators are

characterized in terms of the corresponding lower dimensional inequalities.

1 Introduction

Consider the reverse mixed norm type Hardy inequality

(1.1)

(
∫ ∞

0

V1(x)

(
∫ ∞

0

V2(y) f p2 (x, y)dy

)

p1
p2

dx

)
1

p1

≤

C

(
∫ ∞

0

U1(x)

(
∫ ∞

0

U2(y)(H2 f )q2 (x, y)dy

)

q1
q2

dx

)
1

q1

,

where 0 < pi , qi < 1, i = 1, 2, and H2 is the two dimensional Hardy operator

(H2 f )(x, y) =

∫ x

0

∫ y

0

f (s, t)dt ds, x, y ∈ (0,∞), f ≥ 0.

First of all, in this paper, we characterize (1.1) in terms of two one dimensional

reverse Hardy inequalities. The precise weight conditions for these one dimensional

inequalities for various choices of indices are known, e.g., [2, 4, 12, 16, 19], and con-

sequently the conditions for (1.1) are obtained.

In [1], Appell and Kufner studied the reverse inequality of (1.1) for the case 1 <
pi < ∞, 0 < qi < ∞, i = 1, 2, i.e., they studied the inequality

(1.2)

(
∫ ∞

0

U1(x)

(
∫ ∞

0

U2(y)(H2 f )q2 (x, y)dy

)

q1
q2

dx

)
1

q1

≤

C

(
∫ ∞

0

V1(x)

(
∫ ∞

0

V2(y) f p2 (x, y)dy

)

p1
p2

dx

)
1

p1

in terms of two one dimensional Hardy inequalities. However, their result was not

a characterization. Their necessary condition differs from that of the sufficient one.

Received by the editors September 25, 2008; revised February 18, 2009.
Published electronically March 5, 2011.
The third author acknowledges with thanks the Department of Science and Technology (DST), New

Delhi for the research grant no. SR/S4/MS:213/03.
AMS subject classification: 26D10, 26D15.
Keywords: Hardy inequality, reverse Hardy inequality, mixed norm, Hardy–Steklov operator.

630

https://doi.org/10.4153/CMB-2011-022-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-022-0


Mixed Norm Type Hardy Inequalities 631

We show, using the techniques used to characterize (1.1), that the result of Appell and

Kufner can be strengthened to give a characterization for (1.2) for the case 1 < pi <
∞, 0 < qi < ∞, i = 1, 2 also. Inequalities (1.1) and (1.2) are studied in Section 2.

Next, consider the operator

(HE,F f )(x, y) =

∫

SMx

∫

SNy

f (s, t)dt ds, x ∈ E, y ∈ F

and the corresponding reverse mixed norm inequality

(1.3)

(
∫

E

v1(x)

(
∫

F

v2(y) f p2 (x, y)dy

)

p1
p2

dx

)
1

p1

≤

C

(
∫

E

u1(x)

(
∫

F

u2(y)(HE,F f )q2 (x, y)dy

)

q1
q2

dx

)
1

q1

,

where E, F are multidimensional spherical cones that, along with other symbols, are

defined in Section 3. Note that in (1.3) x and y are multidimensional vectors, whereas

in (1.1) they are real numbers, but there should be no confusion since it is clear

from the context. The other aim of this paper is to study (1.3). We show that (1.3)

holds if and only if (1.1) holds under the suitable range of parameters. In fact, this

equivalence is also new for the inequalities considered in the usual direction. These

results are collected in Section 3.

Such reductions from higher dimensional problems to the corresponding one di-

mensional situations were first considered in [5, 8–10, 17, 18]. In [17, 18], Sinna-

mon studied the boundedness of the Hardy operator (H f )(x) =
∫

Sx
f (y)dy and the

Hardy–Steklov operator (T f )(x) =
∫

b(|x|)S\a(|x|)S
f (y)dy in terms of the boundedness

of the corresponding one dimensional operators

(H f )(x) =

∫ x

0

f (y)dy and (T f )(x) =

∫ b(x)

a(x)

f (y)dy,

respectively, while the compactness property has been studied in [5, 9]. Let us men-

tion that the boundedness of T has been characterized in [6], while its compactness

was studied in [7]. We also point out in this paper (see Section 4) that the equiv-

alence of inequalities (1.1) and (1.3) is still valid if the Hardy operators in the two

inequalities are replaced by the corresponding Hardy–Steklov operators.

Throughout, primes over constants denote conjugate indices, e.g., p ′
=

p
p−1

etc..

Primes are also used over variables, e.g., x ′, y ′ etc., but these are just real numbers

(not conjugate to x, y). In fact, the usage of primes will be clear from the context.

2 Mixed Norm Type Inequalities in Two Dimensions

Let us fix some notation and terminology that will be used throughout the paper.
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The symbols w,w1,w2,U1,U2,V1,V2 will denote weight functions on (0,∞) (or,

simply, weights), i.e., Lebesgue measurable, locally integrable, not identically zero,

a.e. finite, and positive functions on (0,∞).

Let 0 < p < ∞, p 6= 0. We denote by L
p
w, the weighted Lebesgue space that

consists of all Lebesgue measurable, real functions f on (0,∞) such that

‖ f ‖L
p
w

:=

(
∫ ∞

0

w(y)| f (y)|pdy

)
1
p

< ∞.

It is known that for p ≥ 1, L
p
w is a Banach space, and for 0 < p < 1, it is only a

normed linear space. We will omit the symbol w in L
p
w in the case w ≡ 1. Moreover,

we have not used the interval (0,∞) in the notation L
p
w. We will be writing L

p
w(a, b)

only when (a, b) is an interval other than (0,∞).

Let 0 < p1, p2 < ∞. The Lebesgue space with mixed norm [L
p1
w1 , L

p2
w2 ] consists of

all Lebesgue measurable, real functions f = f (s, t) on (0,∞)2 such that

(2.1) f (x, · ) ∈ Lp2
w2

∀ x ∈ (0,∞) a.e.

and the function

(2.2) g(x) = ‖ f (x, · )‖L
p2
w2
∈ Lp1

w1

and for any such function f we set

‖ f (x, y)‖[L
p1
w1
,L

p2
w2

] = ‖‖ f (x, · )‖L
p2
w2
‖L

p1
w1

=

(
∫ ∞

0

w1(x)

(
∫ ∞

0

w2(y)| f (x, y)|p2 dy

)

p1
p2

dx

)
1

p1

.

The unweighted Lebesgue space with mixed norm was introduced by Benedek and

Panzone [3]. The general construction of mixed norm spaces built using two normed

spaces is now considered classical, we refer the reader to Maligranda [14, 15].

The next theorem deals with inequality (1.1). Before the statement, let us make

a few considerations, which will suggest some natural assumptions to be made, to

avoid trivial cases.

Remark 2.1 Let us emphasize that inequality (1.1) is interesting for those functions

f for which its right hand side is finite, i.e., when the following conditions are both

true (compare with (2.1), (2.2)):

H2 f (x, · ) ∈ L
q2

U2
∀ x ∈ (0,∞),(2.3)

‖H2 f (x, · )‖L
q2
U2

∈ L
q1

U1
.(2.4)

We stress that in (2.3) we should have considered x ∈ (0,∞) almost everywhere, but

we wrote “for all x” because inequality (1.1) has been considered for non-negative f ,

and in such case H2 f (x, y) is a non-decreasing function in x.
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The nontriviality assumptions to be made when considering inequality (1.1) will

be clear after the proof of the following two propositions.

Proposition 2.2 Assume that there exists a function f ≥ 0, not identically zero, such

that (2.3) holds. Then U2 ∈ L1(k,∞) ∀k > 0.

Proof Let λ > 0 and let E ⊂ (0,∞)2 be a bounded set of positive measure such that

f (s, t) ≥ λχE(s, t) ∀ (s, t) ∈ (0,∞)2.

Of course from (2.3) we get

(2.5) H2χE(x, y) ∈ L
q2

U2
∀ x ∈ (0,∞).

Let k1 > 0 be such that E ⊂ (0, k1)2. We have

x > k1, y > k1 ⇒ H2χE(x, y) = H2χE(k1, k1) = |E| > 0,

and therefore

(
∫ ∞

k1

U2(y)dy

)
1

q2

=

(

1

|E|q2

∫ ∞

k1

U2(y)|E|q2 dy

)
1

q2

=

1

|E|

(
∫ ∞

k1

U2(y)H2χE(x, y)q2 dy

)
1

q2

≤
1

|E|

(
∫ ∞

0

U2(y)H2χE(x, y)q2 dy

)
1

q2

=

1

|E|
‖H2χE(x, y)‖L

q2
U2

∀ x > k1.

From (2.5) we get that the last term of the previous chain must be finite, and this

implies that U2 ∈ L1(k1,∞) and obviously also that U2 ∈ L1(k,∞) ∀k > k1.

On the other hand, if 0 < k < k1, taking into account that U2 is a weight and

therefore U2 ∈ L1(k, k1), we have again U2 ∈ L1(k,∞), and the proposition is proved.

Mutatis mutandis it is possible to prove the following.

Proposition 2.3 Assume that there exists a function f ≥ 0, not identically zero, such

that (2.4) holds. Then U1 ∈ L1(k,∞) for all k > 0.

Propositions 2.2 and 2.3 make clear a basic assumption when studying inequal-

ity (1.1): the existence of a single function f for which the right-hand side is finite

implies (2.3) and (2.4), which in turn imply U1,U2 ∈ L1(k,∞) ∀k > 0.

We are now ready to prove the following result.
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Theorem 2.4 Let 0 < pi , qi < ∞, i = 1, 2, and let U1,U2,V1,V2 be weight func-

tions on (0,∞). Assume furthermore that U1,U2 ∈ L1(k,∞) for all k > 0. Then a

necessary condition for the validity of the inequality (1.1) is that the following inequali-

ties hold for all measurable functions g and h on (0,∞):

(
∫ ∞

0

V1(x)g p1 (x)dx

)
1

p1

≤ C

(
∫ ∞

0

U1(x)

(
∫ x

0

g(t)dt

) q1

dx

)
1

q1

,(2.6)

(
∫ ∞

0

V2(x)hp2 (x)dx

)
1

p2

≤ C

(
∫ ∞

0

U2(x)

(
∫ x

0

h(t)dt

) q2

dx

)
1

q2

.(2.7)

Proof Suppose (1.1) holds for all non-negative measurable functions f on (0,∞)2.

Then it also holds, in particular, for f (s, t) = g(s)h(t), where g and h are non-negative

measurable functions on (0,∞). Inequality (1.1) then reduces to

(2.8)

(
∫ ∞

0

V1(x)g p1 (x)dx

)
1

p1
(
∫ ∞

0

V2(x)hp2 (x)dx

)
1

p2

≤

C

(
∫ ∞

0

U1(x)

(
∫ x

0

g(t)dt

) q1

dx

)
1

q1
(
∫ ∞

0

U2(x)

(
∫ x

0

h(t)dt

) q2

dx

)
1

q2

.

Since U2 is a weight, let λu > 0 and let Fu ⊂ (0,∞), inf Fu > 0, be a

bounded set of positive measure such that U2(x) ≥ λuχFu
(x), so that χFu

∈ L
q2

U2

and
∫

Fu
U2(x)dx > 0. Since V2 is a weight, let λv > 0 and let Fv ⊂ (0,∞), inf Fv > 0,

be a bounded set of positive measure such that V2(x) ≥ λvχFv
(x), so that χFv

∈ L
p2

V2

and
∫

Fv
V2(x)dx > 0.

Now set k = inf Fu ∪ Fv and observe that 0 < k < ∞, and let h = h0 = χFu∪Fv
in

(2.8). Of course we have

0 <

∫

Fv

V2(x)dx ≤

∫ ∞

k

V2(x)h
p2

0 (x)dx

<

∫ max(sup Fu,sup Fv)

k

V2(x)dx ≤ ‖V2‖L1(k,∞) < ∞,

0 <

∫

Fu

U2(x)|(0, x) ∩ Fu|dx

≤

∫

Fu

U2(x)

(
∫ x

k

h0

) q2

dx <

∫ ∞

k

U2(x)

(
∫ x

k

h0

) q2

dx

<

∫ ∞

k

U2(x)|Fu ∪ Fv|
q2 dx

= |Fu ∪ Fv|
q2‖U2‖L1(k,∞) < ∞.

The previous chains of inequalities show that h0 is such that

0 <

∫ ∞

0

V2(x)h
p2

0 (x)dx =

∫ ∞

k

V2(x)h
p2

0 (x)dx < ∞
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and

0 <

∫ ∞

0

U2(x)

(
∫ x

0

h0

) q2

dx =

∫ ∞

k

U2(x)

(
∫ x

0

h0

) q2

dx < ∞.

Now, dividing both sides of (2.8) by (
∫∞

0
V2(x)h

p2

0 (x)dx)1/p2 , we get (2.6) (with a

different constant C). Similarly, choosing the corresponding g = g0 we get that (2.7)

holds as well, and the assertion follows.

Following the proof of Appell and Kufner [1] and taking into account the fact that

Minkowskii’s inequality holds in the reverse direction for index less than 1, we at once

obtain the following result giving a sufficient condition for inequality (1.1) to hold.

Theorem 2.5 Let 0 < pi , qi < 1, i = 1, 2, and let U1,U2,V1,V2 be weight functions

on (0,∞). Assume in addition that either q1 < p2 < p1 or q1 < q2 < p1. Then a

sufficient condition for the validity of (1.1) is that both (2.6) and (2.7) hold.

In view of Theorems 2.4 and 2.5, we immediately obtain the following characteri-

zation for the inequality (1.1) to hold.

Theorem 2.6 Let 0 < pi , qi < 1, i = 1, 2, and let U1,U2,V1,V2 be weight functions

on (0,∞) with U1,U2 ∈ L1(k,∞) for all k > 0 . Assume in addition that either

q1 < p2 < p1 or q1 < q2 < p1. Then inequality (1.1) holds for all measurable

functions f defined on (0,∞)2 if and only if inequalities (2.6) and (2.7) hold for all

measurable functions g and h defined on (0,∞).

Remark 2.7 For the case 1 < pi < ∞, 0 < qi < ∞, i = 1, 2, Appell and Kufner

[1] proved that a necessary condition for the validity of inequality (1.2) is that at

least one of the inequalities (2.6) and (2.7) in opposite direction holds; i.e., one of the

following inequalities hold:

(
∫ ∞

0

U1(x)

(
∫ x

0

g(t)dt

) q1

dx

)
1

q1

≤ C

(
∫ ∞

0

V1(x)g p1 (x)dx

)
1

p1

,(2.9)

(
∫ ∞

0

U2(x)

(
∫ x

0

h(t)dt

) q2

dx

)
1

q2

≤ C

(
∫ ∞

0

V2(x)hp2 (x)dx

)
1

p2

.(2.10)

However, depicting the proof of Theorem 2.4 with obvious modifications, it can be

shown that the validity of both (2.9) and (2.10) is necessary for inequality (1.2) to

hold. Already, for certain choices of indices, both (2.9) and (2.10) are sufficient for

(1.2) (see [1]). Summarizing, we have the following characterization for inequality

(1.2).

Theorem 2.8 Let 1 < pi < ∞, 0 < qi < ∞, qi 6= 1, i = 1, 2, and let

U1,U2,V1,V2 be weight functions on (0,∞) with V1,V2 ∈ L1(k,∞) for all k > 0.

Assume in addition that either p1 ≤ p2 ≤ q1 or p1 ≤ q2 ≤ q1. Then inequality (1.2)

holds for all measurable functions f defined on (0,∞)2 if and only if inequalities (2.9)

and (2.10) hold for all measurable functions g and h defined on (0,∞).
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In the literature, the one dimensional Hardy inequality

(2.11)

(
∫ ∞

0

U (x)

(
∫ x

0

f (t)dt

) q

dx

)
1
q

≤ C

(
∫ ∞

0

V (x) f p(x)dx

)
1
p

and the corresponding reverse inequality

(2.12)

(
∫ ∞

0

V (x) f p(x)dx

)
1
p

≤ C

(
∫ ∞

0

U (x)

(
∫ x

0

f (t)dt

) q

dx

)
1
q

have been studied extensively for their weight conditions. Using those conditions and

Theorem 2.6 (and also Theorem 2.8), precise weight conditions for inequality (1.1)

(and also (1.2)) can be obtained. With regard to inequality (1.2), we use the weight

characterization of (2.11) from any of the standard monographs [11–13] and apply

Theorem 2.8 to obtain the following.

Theorem 2.9 Let 1 < pi < ∞, 0 < qi < ∞, qi 6= 1, i = 1, 2, and let

U1,U2,V1,V2 be weight functions on (0,∞) with V1,V2 ∈ L1(k,∞) for all k > 0.

Assume in addition that either p1 ≤ p2 ≤ q1 or p1 ≤ q2 ≤ q1. Then a necessary and

sufficient condition for the validity of inequality (1.2) is the following:

(a) In case p2 ≤ q2

Bi := sup
0<x<∞

(
∫ ∞

x

Ui(t)dt

) 1/qi
(
∫ x

0

V
1−p ′

i

i (t)dt

) 1/p ′

i

< ∞;

(b) In case q2 ≤ p2

(
∫ ∞

0

(
∫ ∞

x

Ui(t)dt

) ri/qi
(
∫ x

0

V
1−p ′

i

i (t)dt

) ri/p ′

i

V
1−p ′

i

i (t)dt

) 1/ri

,

where 1
ri
=

1
qi
− 1

pi
.

In order to obtain weight conditions for inequality (1.1), we mention that Beesack

and Heinig [2] studied inequality (2.12) for the case 0 < p, q < 1. Applying their

results to Theorem 2.6, we can state the weight conditions for (1.1).

For i = 1, 2, denote

Bi = inf
x>0

Ji(x),

where

Ji(x) =

(
∫ ∞

x

Ui(t)dt

) 1/qi
(
∫ ∞

x

V
1−p ′

i

i (t)dt

) 1/p ′

i

.

Theorem 2.10 Let 0 < pi , qi < 1, and let Ui ,Vi be weight functions on (0,∞) with

U1,U2 ∈ L1(0,∞) and for all x > 0, 0 <
∫∞

x
Ui(t)dt < ∞,

∫∞

x
V

1−p ′

i

i (t)dt <
∞, i = 1, 2. Then a necessary condition for (1.1) to hold is that min(B1,B2) > 0.
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Theorem 2.11 Let 0 < pi , qi < 1, and let Ui ,Vi be weight functions on (0,∞) and

for all x > 0, 0 <
∫∞

x
Ui(t)dt < ∞,

∫∞

x
V

1−p ′

i

i (t)dt < ∞, i = 1, 2. Assume in

addition that either q1 < p2 < p1 or q1 < q2 < p1. Then a sufficient condition for the

validity of (1.1) is the following:

(a) In case q2 ≤ p2, we have that Ji(x) is non-increasing and Bi > 0, i = 1, 2.

(b) In case p2 < q2, we have that J1(x) is non-increasing, B1 > 0, and any of the

following equivalent conditions is satisfied:

(i)

∫ ∞

0

U2(x)

(
∫ ∞

x

U2(t)dt

)−r2/p2
(
∫ ∞

x

V
1−p ′

2

2 (t)dt

)−r2/p ′

2

dx < ∞

and, in addition,
∫∞

0
V

1−p ′

2

2 (t)dt < ∞ if
∫∞

0
U2 < ∞.

(ii)

∫ ∞

0

V
1−p ′

2

2 (x)

(
∫ ∞

x

V
1−p ′

2

2 (t)dt

)−r2/q ′

2
(
∫ ∞

x

U2(t)dt

)−r2/q2

dx < ∞,

(iii)

∫ ∞

0

U2(x)

(
∫ x

0

V
1−p ′

2

2 (t)

(
∫ ∞

t

U2(s)ds

) p ′

2−1

dt

)−r2/p ′

2

dx < ∞,

where 1
r2
=

1
p2
− 1

q2
.

Remark 2.12 In [4], Bennett studied inequality (2.12) for the case 0 < p < 1, p <
q < ∞. One can use his results in Theorem 2.6 to obtain a different set of weight

conditions for inequality (1.1).

Remark 2.13 It would also be of interest to study Theorems 2.4, 2.5, and 2.6 for

negative indices. Also one could consider these theorems as well as Theorem 2.8

for general measures. The one dimensional inequalities for negative indices have

been studied by Prokhorov [16] and for all range of indices with general measure by

Sinnamon [19]. Using their results, the precise weight conditions for (1.1) and (1.2)

can be obtained.

3 Higher Dimensional Inequalities

In this section, we will study inequality (1.3) and its variants in terms of inequality

(1.1) and its corresponding variants. We first give some notation and terminology.

Let
∑

M be the unit ball in R
M , i.e.,

∑

M = {x ∈ R
M : |x| = 1}. Let BM be a

measurable subset of
∑

M and let E ⊂ R
M be the corresponding spherical cone, i.e.,

E = {x ∈ R
M : x = sσ, 0 ≤ s < ∞, σ ∈ BM}.

Let SMx
, x ∈ E denote the part of E with ‘radius’ ≤ |x|, i.e.,

SMx
= {y ∈ R

M : y = sσ, 0 ≤ s ≤ |x|, σ ∈ BM}.
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Further, we denote by αSM , α > 0, the part of E with radius ≤ α. Note that

E =

⋃

α>0 αSM . For x ∈ E \ {0}, we denote by |SMx
| the volume of SMx

. The symbols

BN , F, SNy
, and |SNy

| are defined similarly for an N-dimensional setting.

Now, we give a characterization of inequality (1.3) in terms of (1.1).

Theorem 3.1 Let 0 < pi , qi < ∞, i = 1, 2, let u1, v1 be weight functions on E and

let u2, v2 be weight functions on F. Then inequality (1.3) holds for all f ≥ 0 if and only

if the inequality

(3.1)

(
∫ ∞

0

V1(x0)

(
∫ ∞

0

V2(y0)g p2 (x0, y0)dy0

)

p1
p2

dx0

)
1

p1

≤

C

(
∫ ∞

0

U1(x0)

(
∫ ∞

0

U2(y0)(H2g)q2 (x0, y0)dy0

)

q1
q2

dx0

)
1

q1

holds for all g ≥ 0 with

U1(x0) =

∫

BM

u1(x0x ′)xM−1
0 dx ′, x0 > 0(3.2)

U2(y0) =

∫

BN

u2(y0 y ′)yN−1
0 dy ′, y0 > 0(3.3)

V1(x0) =

(
∫

BM

v
1−p ′

1

1 (x0x ′)xM−1
0 dx ′

) 1−p1

, x0 > 0(3.4)

V2(y0) =

(
∫

BN

v
1−p ′

2

2 (y0 y ′)yN−1
0 dy ′

) 1−p2

, y0 > 0.(3.5)

Moreover, the constants in (1.3) and (3.1) are the same.

Proof Suppose (3.1) holds. Let x ′ ∈ BM and y ′ ∈ BN . Fix a locally integrable

function f : E × F → R. Define

(3.6) g(x0, y0) =

∫

BM

∫

BN

f (x0x ′, y0 y ′)xM−1
0 yN−1

0 dy ′dx ′ , x0, y0 > 0.

For x ∈ E, we use polar coordinates x = x0x ′, x0 ∈ (0,∞), x ′ ∈ BM so that

x0 = |x|. Similarly, we use y = y0 y ′, s = s0s ′, t = t0t ′. Thus, we have

(HE,F f )(x, y) =

∫ x0

0

∫ y0

0

∫

BM

∫

BN

f (s0s ′, t0t ′)sM−1
0 tN−1

0 dt ′ds ′dt0ds0

=

∫ x0

0

∫ y0

0

g(s0, t0)dt0ds0 = (H2g)(x0, y0).

(3.7)
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Therefore, using (3.4), Hölder’s inequality, Minkowskii’s integral inequality, (3.5),

again applying Hölder’s inequality to the inner integral and using (3.6), we get

(
∫

E

v1(x)

(
∫

F

v2(y) f p2 (x, y)dy

)

p1
p2

dx

)
1

p1

=

(
∫ ∞

0

∫

BM

(
∫

F

f p2 (x0x ′, y)v2(y)dy

)

p1
p2

v1(x0x ′)xM−1
0 dx ′dx0

)
1

p1

=

(
∫ ∞

0

V1(x0)

∫

BM

(
∫

F

f p2 (x0x ′, y)v2(y)dy

)

p1
p2

v1(x0x ′)xM−1
0 dx ′

×

(
∫

BM

v
1−p ′

1

1 (x0x ′)xM−1
0 dx ′

) p1−1

dx0

)
1

p1

≤

(
∫ ∞

0

V1(x0)

(
∫

BM

(
∫

F

f p2 (x0x ′, y)v2(y)dy

)
1

p2

xM−1
0 dx ′

) p1

dx0

)
1

p1

=

(
∫ ∞

0

V1(x0)

(
∫

BM

(
∫ ∞

0

∫

BN

f p2 (x0x ′, y0 y ′)v2(y0 y ′)

× yN−1
0 dy ′(xM−1

0 )p2 dy0

)
1

p2

dx ′

) p1

dx0

)
1

p1

≤

(
∫ ∞

0

V1(x0)

(
∫ ∞

0

(
∫

BM

(
∫

BN

f p2 (x0x ′, y0 y ′)v2(y0 y ′)yN−1
0 dy ′

)
1

p2

× xM−1
0 dx ′

) p2

dy0

)

p1
p2

dx0

)
1

p1

=

(
∫ ∞

0

V1(x0)

(
∫ ∞

0

V2(y0)

(
∫

BM

(
∫

BN

f p2 (x0x ′, y0 y ′)v2(y0 y ′)yN−1
0 dy ′

)
1

p2

×

(
∫

BN

v
1−p ′

2

2 (y0 y ′)yN−1
0 dy ′

)
1

p ′
2

xM−1
0 dx ′

) p2

dy0

)

p1
p2

dx0

)
1

p1

≤

(
∫ ∞

0

V1(x0)

(
∫ ∞

0

V2(y0)

(
∫

BM

∫

BN

f (x0x ′, y0 y ′)

× yN−1
0 dy ′xM−1

0 dx ′

) p2

dy0

)

p1
p2

dx0

)
1

p1

=

(
∫ ∞

0

V1(x0)

(
∫ ∞

0

V2(y0)g p2 (x0, y0)dy0

)

p1
p2

dx0

)
1

p1

.
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Next, we use (3.1), (3.2), (3.3) and (3.7) to get

(
∫

E

v1(x)

(
∫

F

v2(y) f
p2 (x, y)dy

)

p1
p2

dx

) 1
p1

≤ C

(
∫

∞

0

U1(x0)

(
∫

∞

0

U2(y0)(H2g)
q2 (x0, y0)dy0

)

q1
q2

dx0

) 1
q1

= C

(
∫

∞

0

∫

BM

u1(x0x
′

)

(
∫

∞

0

∫

BN

u2(y0 y
′

)(H2g)
q2 (x0, y0)

× y
N−1
0 dy

′

dy0

)

q1
q2

x
M−1
0 dx

′

dx0

) 1
q1

= C

(
∫

E

u1(x)

(
∫

F

u2(y)(HE,F f )
q2 (x, y)dy

)

q1
q2

dx

) 1
q1

.

Conversely, now assume that (1.3) holds. Fix a locally integrable function

g : (0,∞) × (0,∞) → R and define f : E × F → R by

f (x0x ′, y0 y ′) = g(x0, y0)V
p ′

2−1
2 (y0)v

1−p ′

2

2 (y0 y ′)V
p ′

1−1
1 (x0)v

1−p ′

1

1 (x0x ′),

where x0, y0 > 0, x ′ ∈ BM , y ′ ∈ BN .
Then (3.4) and (3.5) give

∫

BM

∫

BN

f (x0x ′, y0 y ′)xM−1
0 yN−1

0 dy ′dx ′
= g(x0, y0)

and consequently, we get

(
∫ ∞

0

V1(x0)

(
∫ ∞

0

V2(y0)g p2 (x0, y0)dy0

)

p1
p2

dx0

)
1

p1

=

(
∫ ∞

0

V
p ′

1

1 (x0)

(
∫

BM

v
1−p ′

1

1 (x0x ′)xM−1
0 dx ′

)

×

(
∫ ∞

0

g p2 (x0, y0)V2(y0)dy0

)

p1
p2

dx0

)
1

p1

=

(
∫ ∞

0

∫

BM

v1(x0x ′)

(
∫ ∞

0

g p2 (x0, y0)V
p ′

2

2 (y0)

×

∫

BN

v
1−p ′

2

2 (y0 y ′)yN−1
0 dy ′dy0

)

p1
p2

V
p ′

1

1 (x0)v
−p ′

1

1 (x0x ′)xM−1
0 dx ′dx0

)
1

p1

=

(
∫ ∞

0

∫

BM

v1(x0x ′)

(
∫ ∞

0

∫

BN

v2(y0 y ′) f p2 (x0x ′, y0 y ′)yN−1
0 dy ′dy0

)

p1
p2

× xM−1
0 dx ′dx0

)
1

p1
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=

(
∫

E

v1(x)

(
∫

F

v2(y) f p2 (x, y)dy

)

p1
p2

dx

)
1

p1

≤ C

(
∫

E

u1(x)

(
∫

F

u2(y)(HE,F f )q2 (x, y)dy

)

q1
q2

dx

)
1

q1

= C

(
∫ ∞

0

U1(x0)

(
∫ ∞

0

U2(y0)(H2g)q2 (x0, y0)dy0

)

q1
q2

dx0

)
1

q1

,

and we are done.

Using Theorems 2.10, 2.11, and 3.1, precise weight conditions can be given for

inequality (1.3) to hold. We state the results.

Denote

J1(x) =

(
∫

E\SMx

u1(y)dy

) 1/q1
(
∫

E\SMx

v
1−p ′

1

1 (y)dy

) 1/p ′

1

, x ∈ E

J2(x) =

(
∫

F\SNy

u2(y)dy

) 1/q2
(
∫

F\SNy

v
1−p ′

2

2 (y)dy

) 1/p ′

2

, y ∈ F

B1 = inf
x∈E

J1(x), B2 = inf
y∈F

J2(y).

Theorem 3.2 Let 0 < pi , qi < 1, pi , qi 6= 0, i = 1, 2, let u1, v1 be weight functions

on E, and let u2, v2 be weight functions on F, u1 ∈ L1(E), u2 ∈ L1(F)

0 <

∫

E\SMx

u1(z)dz < ∞, 0 <

∫

E\SMx

v
1−p ′

1

1 (z)dz < ∞ x ∈ E,(3.8)

and

0 <

∫

F\SNy

u2(z)dz < ∞, 0 <

∫

F\SNy

v
1−p ′

2

2 (z)dz < ∞ y ∈ F.(3.9)

Then a necessary condition for inequality (1.3) to hold is that min(B1,B2) > 0.

Theorem 3.3 Let 0 < pi , qi < 1, i = 1, 2, let u1, v1 be weight functions on E, let

u2, v2 be weight functions on F, and let (3.8), (3.9) be satisfied . Assume, in addition,

that either q1 < p2 < p1 or q1 < q2 < p1. Then a sufficient condition for the validity

of (1.3) is:

(a) In case q2 ≤ p2, we have that Ji(x) is non-increasing in |x| and Bi > 0, i = 1, 2.

(b) In case p2 < q2, we have that J1(x) is non-increasing in |x|, B1 > 0, and any of the

following equivalent conditions is satisfied:

(i)

∫

F

u2(y)

(
∫

F\SNy

u2(z)dz

)−r2/p2
(
∫

F\SNy

v
1−p ′

2

2 (z)dz

)−r2/p ′

2

dy < ∞,

and, in addition,
∫

F
v

1−p ′

2

2 (z)dz < ∞ if
∫

F
u2(z)dz < ∞;
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(ii)

∫

F

v
1−p ′

2

2 (y)

(
∫

F\SNy

v
1−p ′

2

2 (z)dz

)−r2/q ′

2
(
∫

F\SNy

u2(z)dz

)−r2/q2

dy < ∞;

(iii)

∫

F

u2(y)

(
∫

SNy

v
1−p ′

2

2 (z)

(
∫

F\SNz

u2

) p ′

2−1

dz

)−r2/p ′

2

dy < ∞,

where 1
r2
=

1
p2
− 1

q2
.

Remark 3.4 A result similar to Theorem 3.1 can be obtained for the range 1 <
pi < ∞, 0 < qi < ∞, i = 1, 2. The proof is identical to that of Theorem 3.1 with

the obvious change in the direction of the inequalities where Hölder and Minkowskii

inequalities are used. We state the result below.

Theorem 3.5 Let 0 < q1, q2 < ∞, 1 < p1, p2 < ∞, let u1, v1 be weight functions

on E, and let u2, v2 be weight functions on F. Then the inequality

(3.10)

(
∫

E

u1(x)

(
∫

F

u2(y)(HE,F f )q2 (x, y)dy

)

q1
q2

dx

)
1

q1

≤

C

(
∫

E

v1(x)

(
∫

F

v2(y) f p2 (x, y)dy

)

p1
p2

dx

)
1

p1

holds for all f ≥ 0 if and only if the inequality

(3.11)

(
∫ ∞

0

U1(x0)

(
∫ ∞

0

U2(y0)(H2g)q2 (x0, y0)dy0

)

q1
q2

dx0

)
1

q1

≤

C

(
∫ ∞

0

V1(x0)

(
∫ ∞

0

V2(y0)g p2 (x0, y0)dy0

)

p1
p2

dx0

)
1

p1

holds for all g ≥ 0 with Ui ,Vi as given in Theorem 3.1. Moreover, the constants in the

two inequalities are the same.

Remark 3.6 Inequality (3.11) is the one characterized in Theorem 2.9 in terms of

two one dimensional standard Hardy inequalities. Consequently, the precise weight

conditions for (3.10) can be written accordingly.

4 Final Result and Remarks

If we consider 1 < q1, q2 < ∞ in Theorem 3.5, then both the sides of inequalities

(3.10) and (3.11) can be regarded as norms in certain mixed normed spaces. Conse-

quently, we immediately obtain the following deduction from Theorem 3.5.
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Corollary 4.1 Let 1 < p1, p2, q1, q2 < ∞, u1, v1 be weight functions on E, u2, v2 be

weight functions on F. Then the operator HE,F is bounded between the mixed normed

spaces [Lp1 (E, v1), Lp2 (F, v2)] and [Lq1 (E, u1), Lq2 (F, u2)] if and only if the operator H2

is bounded between the mixed normed spaces [Lp1 ((0,∞),V1), Lp2 ((0,∞),V2)] and

[Lq1 ((0,∞),U1), Lq2 ((0,∞),U2)] with the weights U1,U2,V1,V2 as given in Theo-

rem 3.1.

Throughout the paper, we have considered the operators HE,F and H2. As a matter

of fact, we can consider more general operators

(TE,F f )(x, y) =

∫

b(|x|)SM\a(|x|)SM

∫

d(|y|)SN\c(|y|)SN

f (s, t)dt ds, x ∈ E, y ∈ F

and

(T2 f )(x, y) =

∫ b(x)

a(x)

∫ d(y)

c(y)

f (s, t)dtds, x, y ∈ (0,∞),

where a, b, c, d are strictly increasing differentiable functions on [0,∞] satisfying

a(0) = b(0) = 0, a(x) < b(x) for 0 < x < ∞, a(∞) = b(∞) = ∞

and

c(0) = d(0) = 0, c(x) < d(x) for 0 < x < ∞, c(∞) = d(∞) = ∞.

Remarks 4.2 (i) Theorem 2.6 is still valid if the operator H2 is replaced by T2.

In that case inequalities (2.6) and (2.7) will be replaced by the ones involving the

Hardy–Steklov operator (T f )(x) =

∫ b(x)

a(x)
f (t)dt . But the corresponding inequalities

have not been studied in the literature to our knowledge (Heinig and Sinnamon [5]

studied these inequalities for pi > 1, qi > 0). Once these inequalities are studied,

one can write the results corresponding to Theorems 2.9, 2.10, and 2.11.

(ii) In Theorem 3.1, HE,F and H2 can be replaced respectively by TE,F and T2.

However, in view of the above remark, the precise weight conditions for the operator

TE,F cannot be written unless we know the corresponding conditions for T2.

(iii) Finally, in Theorem 3.5 as well, the operators HE,F and H2 can be replaced

respectively by TE,F and T2. The corresponding inequality has already been studied,

see [8, Corollary 3], [9, Proposition 2.5], and thus the precise weight conditions for

the two inequalities are already known. This result shows that the two inequalities

can be studied in terms of each other.
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matematica, universidade Estadual de Campinas, Brazil, 1989.
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