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Abstract

In this paper we study the asymptotic tail probabilities of sums of subexponential,
nonnegative random variables, which are dependent according to certain general
structures with tail independence. The results show that the subexponentiality of the
summands eliminates the impact of the dependence on the tail behavior of the sums.
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1. Introduction

We are interested in the tail probabilities of sums of dependent and heavy-tailed random
variables. Throughout this paper, by saying that a distribution F is concentrated on [0, ∞), we
mean that F(0−) = 0 and F(x) = 1 − F(x) > 0 for all x > 0. One of the most important
classes of heavy-tailed distributions is the subexponential class, written as S. By definition, a
distribution F concentrated on [0, ∞) belongs to the class S if the relation

lim
x→∞

F ∗n(x)

F (x)
= n (1.1)

holds for some (or, equivalently, for all) n = 2, 3, . . . , where F ∗n denotes the n-fold convolution
of F . Hence, if X1, X2, . . . are independent and identically distributed (i.i.d.) random variables
with common distribution F ∈ S then, for every n = 2, 3, . . . ,

P(Sn > x) ∼ P(X(n) > x) ∼ nF(x). (1.2)

Here and henceforth, Sn = X1 + · · · + Xn, X(n) = max{X1, . . . , Xn}, all limit relationships
are for x tending to ∞ unless stated otherwise, and a(x) ∼ b(x) stands for lim a(x)/b(x) = 1.

We also need two other classes of heavy-tailed distributions. A distribution F is said to be
long tailed, written as F ∈ L, if the relation

lim
x→∞

F(x − t)

F (x)
= 1

holds for some (or, equivalently, for all) t > 0, and F is said to be dominatedly varying tailed,
written as F ∈ D , if the relation

lim sup
x→∞

F(tx)

F (x)
< ∞
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holds for some (or, equivalently, for all) 0 < t < 1. It is well known that D ∩ L ⊂ S ⊂ L;
see, e.g. Embrechts et al. (1997, Section 1.4).

Because the class S enjoys the nice asymptotic property in (1.2), it has been extensively
applied to modeling heavy-tailed distributions appearing in insurance and finance. However,
owing to the very definition (1.1), the mainstream study of subexponentiality has been restricted
to the i.i.d. case. This seriously limits the usefulness of the beautiful theory of subexponentiality
in practice. The purpose of this paper is to find out to what extent X1, . . . , Xn can be dependent
while relations (1.2) remain, or, in other words, how insensitive the tail behavior of the sum Sn

is on the dependence among its subexponential summands.
The insensitivity of subexponentiality has recently been observed by different researchers.

For F ∈ D ∩ L, Geluk and Ng (2006) proved relations (1.2) under the assumption that
the random variables X1, . . . , Xn are negatively associated, meaning that, for every pair of
disjoint subsets I and J of {1, . . . , n}, the inequality cov{f (Xi, i ∈ I ), g(Xj , j ∈ J )} ≤ 0
holds for all coordinatewise increasing functions f and g for which the covariance exists.
Tang (2008) relaxed the dependence structure from negative association to pairwise negative
quadrant dependence; see Remark 2.4, below, for the definition. Albrecher et al. (2006) studied
the problem for n = 2 using copulas to describe the dependence structure of X1 and X2. Their
Lemma 2.7 showed that relations (1.2) hold if F is absolutely continuous and the copula
density of (X1, X2) exists and is uniformly bounded on [c, 1]2 for some 0 < c < 1; see
also Remark 2.3, below, for details. Tang and Tsitsiashvili (2003) observed the insensitivity
of subexponentiality from a different angle. Consider the weighted random variables X1 =
ω1Y1, . . . , Xn = ωnYn, where the primary random variables Y1, . . . , Yn are i.i.d. with common
subexponential distribution while the random weights ω1, . . . , ωn, independent of the primary
random variables, are dependent with common distribution concentrated on [a, b] for some
0 < a < b < ∞. For this case, relations (1.2) still hold by Theorem 3.1 of Tang and Tsitsiashvili
(2003). All these works reveal a phenomenon that, when deriving the tail asymptotics for the
sum of dependent random variables, the subexponentiality assumption eliminates the impact
of certain dependence structures among the summands.

In this paper we shall propose another general dependence structure, which does not require
the existence of probability densities or copula densities and which allows both positive and
negative dependence to a certain extent. Our discussions in Section 2.1, below, show that our
assumption is satisfied by many commonly used dependence structures.

The rest of this paper consists of two sections. Section 2 is devoted to the bivariate case
under our basic assumption on the dependence between X1 and X2, while Section 3 extends
the scenario to the multivariate case under a modified version of the dependence assumption.

2. The bivariate case

2.1. Our assumption on the dependence

In this section we study the case in which n = 2 with X1 and X2 distributed by F1 and F2
concentrated on [0, ∞), respectively. Our basic assumption is as follows.

Assumption 2.1. For (i, j) = (1, 2) or (2, 1), the relation

P(Xj > x − t | Xi = t)

P(Xj > x − t)
= O(1)

holds uniformly for all t ∈ [x0, x] for some large x0 > 0.
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Here the uniformity means that

lim sup
x→∞

sup
x0≤t≤x

P(Xj > x − t | Xi = t)

P(Xj > x − t)
< ∞. (2.1)

When t is not a possible value of Xi , i.e. P(Xi ∈ �) = 0 for some open interval � containing t ,
the conditional probability in Assumption 2.1 is simply understood as 0. Since

sup
x−x0<t≤x

P(Xj > x − t | Xi = t)

P(Xj > x − t)
≤ 1

Fj (x0)
,

relation (2.1) is equivalent to

lim sup
x→∞

sup
x0≤t≤x−x0

P(Xj > x − t | Xi = t)

P(Xj > x − t)
< ∞. (2.2)

Intuitively, Assumption 2.1 requires that the dependence structure between X1 and X2 should
not be too positive. Hence, it excludes extremely positive dependence structures such as
comonotonicity. However, Assumption 2.1 can still be satisfied by most of the extremely
negative dependence structures such as countermonotonicity. As an example, if X1X2 = 1
then relation (2.2) holds with x0 = 1.

In the following remarks we show that Assumption 2.1 indeed allows a wide range of
dependence structures. We only consider Assumption 2.1 with (i, j) = (1, 2).

Remark 2.1. We show that Assumption 2.1 is satisfied if X2 is stochastically decreasing in X1,
written as SD(X2 | X1), meaning that, for each fixed x2, the conditional probability P(X2 >

x2 | X1 = x1) is decreasing (not necessarily strictly) in x1. Actually, in this case, for every
fixed x0 ≥ 0 for which F1(x0) > 0, it holds uniformly, for all t ≥ x0, that

P(X2 > x − t | X1 = t) =
∫ x0

0− P(X2 > x − t | X1 = t) dF1(u)

F1(x0)

≤
∫ x0

0− P(X2 > x − t | X1 = u) dF1(u)

F1(x0)

≤ F2(x − t)

F1(x0)
.

Hence, Assumption 2.1 is satisfied. We comment that SD(X2 | X1) reveals a flavor of negative
dependence. In the literature this dependence structure is also called negative regression
dependence; see, e.g. Lehmann (1966).

Remark 2.2. For simplicity, let F1 and F2 be absolutely continuous, and let X1 and X2 be
dependent according to a copula C(u1, u2) for (u1, u2) ∈ [0, 1]2. Thus, the joint distribution
of X1 and X2 is given by

H(x1, x2) = C(F1(x1), F2(x2));
see, e.g. Nelsen (2006, p. 15). Let U1 = F1(X1) and U2 = F2(X2), so that they are two
uniform random variables following the joint distribution C(u1, u2). Under Assumption 2.1,
it is not difficult to verify that X1 and X2 are tail independent in the sense that the (upper) tail
dependence measure, defined by

χ = lim
u→1

P(U2 > u | U1 > u),
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is equal to 0. Indeed, for all u close to 1 such that F−1
1 (u) ≥ x0 and F−1

2 (u) ≥ x0,

P(U2 > u | U1 > u) =
∫ ∞

F−1
1 (u)

P(X2 > F−1
2 (u) | X1 = t)

1 − u
dF1(t)

≤ (1 − u) sup
F−1

1 (u)<t<∞

P(X2 > F−1
2 (u) | X1 = t)

1 − u

≤ (1 − u) sup
x0≤t≤F−1

2 (u)+t

P(X2 > F−1
2 (u) + t − t | X1 = t)

P(X2 > F−1
2 (u) + t − t)

.

Using the change of variables x̃ = F−1
2 (u) + t , we find that, as u → 1,

P(U2 > u | U1 > u) ≤ (1 − u) sup
x0≤t≤x̃

P(X2 > x̃ − t | X1 = t)

P(X2 > x̃ − t)
= O(1 − u). (2.3)

Hence, χ = 0 as claimed.
To overcome some limitations of the tail dependence measure χ , Coles et al. (1999) defined

another tail dependence measure as

χ̄ = lim
u→1

2 log P(U1 > u)

log P(U1 > u, U2 > u)
− 1.

By (2.3), it is clear that χ̄ ≤ 0 if it exists.

Remark 2.3. Now we examine Assumption 2.1 from the perspective of copulas. Following
the notation of Remark 2.2, further assume that the first-order partial derivative

C1(u1, u2) = ∂

∂u1
C(u1, u2)

exists. Then, by the copula representation of the conditional distribution, Assumption 2.1 with
(i, j) = (1, 2) can be restated as the relation

1 − C1(F1(t), F2(x − t))

F2(x − t)
= O(1),

which holds uniformly for all t ∈ [x0, x] (or, equivalently, for all t ∈ [x0, x − x0]) for some
large x0 > 0. Furthermore, if the second-order mixed partial derivative, usually called the
copula density,

C12(u1, u2) = ∂2

∂u1∂u2
C(u1, u2)

exists and is uniformly bounded by some constant M > 0 for all (u1, u2) ∈ [c, 1]2 for some
0 < c < 1, then Assumption 2.1 is satisfied. To see this, let us choose some x0 > 0 such that
F1(x0) ≥ c and F2(x0) ≥ c. It holds, for all t ∈ [x0, x − x0], that

P(X2 > x − t | X1 = t)

P(X2 > x − t)
=

∫ ∞
x−t

C12(F1(t), F2(z)) dF2(z)

P(X2 > x − t)
≤ M.

Hence, relation (2.2) holds. This boundedness assumption on the copula density C12(u1, u2)

was proposed in Albrecher et al. (2006, Lemma 2.7). Restricting to Archimedean copulas, the
verification of Assumption 2.1 becomes even easier by looking at the generator and its first two
derivatives, as done in Albrecher et al. (2006, Lemma 3.5).
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Remark 2.4. Recall that the random variables X1 and X2 are called positively quadrant
dependent if

P(X1 ≤ x1, X2 ≤ x2) ≥ P(X1 ≤ x1) P(X2 ≤ x2)

or, equivalently,
P(X1 > x1, X2 > x2) ≥ P(X1 > x1) P(X2 > x2)

for all x1 and x2. They are called negatively quadrant dependent if both inequalities above are in
the reverse direction. Assumption 2.1 allows both positive and negative quadrant dependence
structures to a certain extent. As an example, consider the Ali–Mikhail–Haq copula,

C(u1, u2; θ) = u1u2

1 − θ(1 − u1)(1 − u2)
, θ ∈ [−1, 1),

which is a kind of Archimedean copula with generator ϕ(z; θ) = ln(1 − θ(1 − z))/z. This
copula can generate both positive and negative quadrant dependence structures depending on
the sign of θ . It is easy to verify that Assumption 2.1 is satisfied by this copula.

2.2. The first main result and its proof

Now we state our first main result.

Theorem 2.1. Let X1 and X2 be two random variables with distributions F1 and F2 concen-
trated on [0, ∞), respectively, such that Assumption 2.1 holds. Then, the relations

P(S2 > x) ∼ P(X(2) > x) ∼ F1(x) + F2(x) (2.4)

hold for each of the following two cases:

(i) F1 ∈ S, F2 ∈ L, and F2(x) = O(F1(x));

(ii) Fi ∈ D ∩ L for i = 1, 2.

A by-product of this theorem is that the distribution of S2 belongs to S for case (i) and
belongs to D ∩ L for case (ii). The key ingredient of our proof of Theorem 2.1 is to bound the
probability of (X1, X2) falling into a trapezoid in the first quadrant above the line x1 + x2 = x.
This is motivated by the proof of Lemma 2.7 of Albrecher et al. (2006).

Trivially, the relation a(x) ∼ b(x) amounts to the conjunction of lim sup a(x)/b(x) ≤ 1 and
lim inf a(x)/b(x) ≥ 1, which are denoted by a(x) � b(x) and a(x) � b(x), respectively. By
this and the fact that S2 ≥ X(2), we see that relations (2.4) follow immediately from Lemmas 2.1
and 2.2, below.

Lemma 2.1. Under the conditions of Theorem 2.1, it holds that

P(S2 > x) � F1(x) + F2(x). (2.5)

Proof. We prove Lemma 2.1 under Assumption 2.1 only with (i, j) = (1, 2), and we remark
that the proof for (i, j) = (2, 1) is the same. For arbitrarily fixed l ≥ x0, we have

P(S2 > x) ≤ P(X1 > x) + P(X2 ≥ x − l) + P(S2 > x, l < X1 ≤ x). (2.6)

Since F2 is long tailed, P(X2 ≥ x − l) ∼ F2(x). By Assumption 2.1, there exists some
0 < C < ∞, which does not depend on l or x, such that, for all x ≥ l ≥ x0,

sup
l<t≤x

P(X2 > x − t | X1 = t)

F2(x − t)
≤ C.
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It follows that

P(S2 > x, l < X1 ≤ x) =
∫ x

l

P(X2 > x − t | X1 = t) dF1(t)

≤ C

∫ x

l

F2(x − t) dF1(t)

= C

(∫ ∞

0−
F2(x − t) dF1(t) −

∫ l

0−
F2(x − t) dF1(t) − F1(x)

)
.

The first integral in the bracket is asymptotically equal to F1(x) + F2(x); for case (i), see
Corollary 1 of Cline (1986) while, for case (ii), see Theorem 2.1 of Cai and Tang (2004).
Hence, for every 0 < ε < 1 and for all large x,

P(S2 > x, l < X1 ≤ x) ≤ C((1 + ε)(F1(x) + F2(x)) − (1 − ε)F1(l)F2(x) − F1(x))

= C(εF1(x) + (F1(l) + ε + εF1(l))F2(x)).

Substituting all these estimates into (2.6) yields, for all large x,

P(S2 > x) ≤ F1(x) + (1 + ε)F2(x) + C(εF1(x) + (F1(l) + ε + εF1(l))F2(x))

≤ (1 + ε + C(F1(l) + ε + εF1(l)))(F1(x) + F2(x)).

Relation (2.5) follows because ε can be arbitrarily small while l can be arbitrarily large.

Lemma 2.2. Let X1 and X2 be two random variables with distributions F1 and F2 concentrated
on [0, ∞), respectively. Under Assumption 2.1, it holds that

P(X(2) > x) ∼ F1(x) + F2(x). (2.7)

Proof. Clearly,

P(X(2) > x) = F1(x) + F2(x) − P(X1 > x, X2 > x).

Following the steps used to derive (2.3), we obtain

P(X1 > x, X2 > x) =
∫ ∞

x

P(X2 > x | X1 = t)

P(X2 > x)
P(X2 > x) dF1(t)

≤ F1(x)F2(x) sup
x<t<∞

P(X2 > x + t − t | X1 = t)

P(X2 > x + t − t)

= O(1)F1(x)F2(x). (2.8)

This proves relation (2.7).

3. The multivariate case

We are going to extend Theorem 2.1 to the multivariate case. For recent references on
this topic, we refer the reader to Alink et al. (2004), Barbe et al. (2006), and Kortschak and
Albrecher (2008), among others. They all used multivariate copula functions to model the
underlying dependence structures.

Let X1, . . . , Xn be n random variables with distributions F1, . . . , Fn concentrated on [0, ∞),
respectively, n ≥ 2. In this case Assumption 2.1 has to be modified to the following.
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Assumption 3.1. There exists some large x0 > 0 such that, for every j = 2, . . . , n, the relation

P(Sj−1 > x − t | Xj = t)

P(Sj−1 > x − t)
= O(1)

holds uniformly for all t ∈ [x0, x].
Our second main result is given as follows.

Theorem 3.1. Let X1, . . . , Xn be n random variables with distributions F1, . . . , Fn concen-
trated on [0, ∞), respectively, such that Assumption 3.1 holds for all j = 2, . . . , n. Then the
relations

P(Sn > x) ∼ P(X(n) > x) ∼
n∑

k=1

Fk(x) (3.1)

hold for each of the following two cases:

(i) Fk ∈ S for all k = 1, . . . , n, and either Fi(x) = O(Fj (x)) or Fj (x) = O(Fi(x)) for all
i, j = 1, . . . , n;

(ii) Fk ∈ D ∩ L for all k = 1, . . . , n.

Proof. Clearly,

P(X(n) > x) ≥
n∑

k=1

Fk(x) −
∑

1≤i<j≤n

P(Xi > x, Xj > x).

Under Assumption 3.1, we follow the proof of (2.8) to obtain, for all 1 ≤ i < j ≤ n,

P(Xi > x, Xj > x) ≤ P(Sj−1 > x, Xj > x) = o(Fj (x)).

Therefore,

P(X(n) > x) �
n∑

k=1

Fk(x).

Since Sn ≥ X(n), for proving (3.1) it remains to show that

P(Sn > x) �
n∑

k=1

Fk(x). (3.2)

We use mathematical induction on n. By Lemma 2.1, relation (3.2) holds for n = 2. Suppose
that relation (3.2) holds for n−1 ≥ 2. Hence, relations (3.1) hold for n−1 and the distribution
of Sn−1 belongs to S for case (i) and belongs to D ∩ L for case (ii). Furthermore, under
the conditions of case (i), either P(Sn−1 > x) = O(Fn(x)) or Fn(x) = O(P(Sn−1 > x)) holds.
Then, by Lemma 2.1 again, it immediately follows that

P(Sn > x) � P(Sn−1 > x) + Fn(x) ∼
n∑

k=1

Fk(x).

Thus, relation (3.2) holds for n.
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We give two special cases of Theorem 3.1 to show thatAssumption 3.1 is verifiable. Similarly
to Remarks 2.2 and 2.3, let the random variables X1, . . . , Xn be dependent according to a
multivariate copula function C(u1, . . . , un) and let their distributions F1, . . . , Fn be absolutely
continuous and satisfy the conditions of cases (i) or (ii) of Theorem 3.1. Assume that the copula
density exists:

C1···n(u1, . . . , un) = ∂n

∂u1 · · · ∂un

C(u1, . . . , un).

Corollary 3.1. Under the above conditions, if, for every nonempty subset I of {1, . . . , n}, the
marginal copula density CI (ui : i ∈ I ) is bounded in a neighborhood of the ultimate vertex
(whose coordinates are all 1), then Assumption 3.1 is fulfilled. Hence, by Theorem 3.1, relations
(3.1) hold.

Proof. Let c ∈ (0, 1), and let M > 0 be constants such that the inequality

CI (ui : i ∈ I ) ≤ M

holds for every nonempty subset I of {1, . . . , n} and all ui ∈ [c, 1] with i ∈ I . Let x̃ > 0 be
such that Fk(x̃) ≥ c for all k = 1, . . . , n and write x0 = nx̃.

With j = 2, . . . , n temporarily fixed, let I be a nonempty subset of {1, . . . , j − 1} and
write I c = {1, . . . , j − 1} \ I . Note that CI∪{j}(ui : i ∈ I ∪ {j}) represents the copula density
corresponding to the random variables Xi for i ∈ I ∪ {j}. We have, for all large x and all
x0 ≤ t ≤ x − x0,

P(Sj−1 > x − t, Xi > x̃ for all i ∈ I and Xic ≤ x̃ for all ic ∈ I c | Xj = t)

≤ P

(∑
i∈I

Xi > x − t − x0, Xi > x̃ for all i ∈ I

∣∣∣∣ Xj = t

)
.

With xj = t , the right-hand side of the above equation is equal to

∫
· · ·

∫
(
∑

i∈I xi>x−t−x0, xi>x̃ for all i∈I )

CI∪{j}(Fi(xi) : i ∈ I ∪ {j})
∏
i∈I

dFi(xi),

which is further bounded by M P(
∑

i∈I X∗
i > x − t − x0), where (X∗

1, . . . , X∗
n) is an indepen-

dent copy of (X1, . . . , Xn). Therefore, uniformly for all t ∈ [x0, x − x0],
P(Sj−1 > x − t, Xi > x̃ for all i ∈ I and Xic ≤ x̃ for all ic ∈ I c | Xj = t)

P(Sj−1 > x − t)

≤ M P(
∑

i∈I X∗
i > x − t − x0)

P(Sj−1 > x − t)

= O(1)
∑
i∈I

P(Xi > x − t − x0)

P(Xi > x − t)

= O(1).

Summing both sides of the above equation over all nonempty subsets I of {1, . . . , j −1} shows
that the relation in Assumption 3.1 holds uniformly for all t ∈ [x0, x − x0] or, equivalently,
uniformly for all t ∈ [x0, x].
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Remark 3.1. Clearly, a copula whose joint copula density C1···n(u1, . . . , un) is uniformly
bounded in the whole domain satisfies the requirements in Corollary 3.1. For example, copulas
in the Frank family of the form

C(u1, . . . , un; θ) = −1

θ

(
1 + (exp(−θu1) − 1) · · · (exp(−θun) − 1)

(e−θ − 1)n−1

)
, θ > 0,

as well as copulas in the Clayton family of the form

C(u1, . . . , un; θ) = (u−θ
1 + · · · + u−θ

n − n + 1)−1/θ , θ > 0,

belong to this category.

Remark 3.2. It might be tempting to generalize the boundedness assumption in Remark 2.3 to
the assumption that the joint copula density C1···n(u1, . . . , un) is uniformly bounded on [c, 1]n
for some 0 < c < 1. In fact, this is not sufficient. As kindly pointed out to us by a referee, the
Gaussian copula C(u1, u2, u3) with the mean vector µ and covariance matrix � given by

µ =
⎡
⎣0

0
0

⎤
⎦ , � =

⎡
⎢⎣

1 1
3 − 2

3
1
3 1 − 2

3

− 2
3 − 2

3 1

⎤
⎥⎦ ,

forms such an example. Indeed, we may verify that its joint copula density C123(u1, u2, u3)

is bounded on [ 1
2 , 1]3, but its marginal copula density C12(u1, u2) is unbounded along the

diagonal u1 = u2 of [ 1
2 , 1]2.

For case (ii) of Theorem 3.1, Assumption 3.1 can be simplified to the following pairwise
version.

Assumption 3.2. For each pair (i, j), 1 ≤ i < j ≤ n, and each constant c > 0, there exists
some large xij = xij (c) > 0 such that the relation

P(cXi > x − t | Xj = t)

P(cXi > x − t)
= O(1)

holds uniformly for all t ∈ [xij , x].
Corollary 3.2. For case (ii) of Theorem 3.1, Assumption 3.2 implies Assumption 3.1. Hence,
by Theorem 3.1, relations (3.1) hold under Assumption 3.2.

Proof. With x0 > 0 sufficiently large, it holds, for every j = 2, . . . , n, that

sup
x0≤t≤x

P(Sj−1 > x − t | Xj = t)

P(Sj−1 > x − t)

≤ sup
x0≤t≤x

j−1∑
i=1

P(Xi > (x − t)/(j − 1) | Xj = t)

P(Xi > x − t)

≤
j−1∑
i=1

sup
x0≤t≤x

P(Xi > (x − t)/(j − 1) | Xj = t)

Fi((x − t)/(j − 1))

Fi((x − t)/(j − 1))

Fi(x − t)

= O(1),

where in the last step we used both Assumption 3.2 and Fi ∈ D . This proves the relation in
Assumption 3.1.
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