
J. Aust. Math. Soc. 100 (2016), 252–271
doi:10.1017/S1446788715000452

CONVERGENCE OF SOLUTIONS TO SOME ELLIPTIC
EQUATIONS IN BOUNDED NEUMANN THIN DOMAINS
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Abstract

Consider the (elliptic) stationary nonlinear reaction–diffusion equation in a sequence of bounded
Neumann tubes in a space that is squeezed to a reference curve. It is supposed that the forcing term
is square integrable and that the nonlinear one satisfies some growth and dissipative conditions. A norm
convergence of the resolvents of the operators associated with the linear terms of such equations is proven,
and this fact is used to provide new and simpler proofs of the asymptotic behaviour of the solutions to the
full nonlinear equations (previously known in similar singular problems).
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1. Introduction

The possible effects of domain squeezing and dimensional reduction have been of great
interest, particularly questions about effective operators, spectral behaviour and the
dynamics of reaction–diffusion equations. Roughly, as some directions are squeezed,
the first task is to find possible remaining subspaces of the Hilbert space on which
the operator acts; the next is to investigate the behaviour of the systems restricted
to such subspaces and also the possible contribution from the process of discarding
dimensions. Usually it is not an easy task to carry out all the estimates needed,
since they involve extremely singular limits, and effective operators and dynamics are
sensitive to the boundary conditions on the border of the regions of interest [2, 3, 5–
9, 12, 13, 15–17].

Here we concentrate on solutions to (elliptic, linear and nonlinear) stationary
reaction–diffusion equations in some bounded domains (of plane and space) with
Neumann boundary conditions. Our main goals are twofold: by considering certain
domains, we will rigorously reinforce the choice of the remaining subspace after
dimensional reduction, as is commonly done in the literature, and then we will present
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simpler proofs of the limit of the sequence of solutions to such equations in the
squeezing process. Our techniques are mainly based on [2, 8] and previous works
by the present authors [11, 13].

Let s ∈ I denote the arc length parameter of the curve r(s) in R3 of class C3,
with I ⊂ R being an open and bounded interval, and let k(s) and τ(s) be its curvature
and torsion at the point r(s), respectively. Pick S , ∅: an open, bounded, smooth
and connected subset of R2. Build a tube (waveguide) in R3 by properly moving
the region S along r(s); at each point r(s) the cross-section region S may present a
(continuously differentiable) rotation angle α(s) (see details in Section 2). For each
small enough ε > 0, one can realize this same construction with the region εS and so
obtain a sequence of tubes Ωε in R3 that is squeezed to the reference curve r as ε→ 0.

Let −∆ be the (negative) Laplacian in Ωε with Neumann condition at the boundary
∂Ωε. Pick g̃ε ∈ L2(Ωε), and consider the stationary reaction–diffusion equation

−∆u + u + f (u) = g̃ε in Ωε,
∂u
∂ηε

= 0 on ∂Ωε,
(1.1)

where ηε denotes the outward unit normal vector field to ∂Ωε, and f : R→ R is either
the null function or a C2-function satisfying some growth and dissipative conditions
(see Section 5). We are interested in the limiting behaviour of one sequence of
solutions to (1.1) as ε→ 0. This subject has received the attention of several authors
(see [1, 4, 9, 16, 18]).

We note that Equation (1.1) is elliptic and actually involves no diffusion, since there
is no time dependence. Before we present the main focus of this paper, we will briefly
recall some results that motivated our questions and studies.

Let Λ be an arbitrary smooth bounded domain in Rm × Rn. Write (x, y) for a
generic point of Rm × Rn and, for each ε > 0, put Λε = {(x, εy) : (x, y) ∈ Λ}. Prizzi
and Rybakowski [16] considered the reaction–diffusion equation

ut − ∆u + f (u) = 0 in Λε,

∂u
∂ηε

= 0 on ∂Λε,
(1.2)

where, as before, ηε denotes the outward unit vector field to ∂Λε and f : R→ R is
a nonlinearity satisfying some growth and dissipative conditions ensuring that (1.2)
generates a semiflow on the Sobolev space H1(Λε).

By considering the stationary linear equation associated with (1.2) (that is, f ≡ 0)
and performing a dilation of the domain Λε by a factor ε in the y-direction, one gets

−∆xu −
1
ε2 ∆yu = 0 in Λ,

〈∇xu, ηx〉 +
1
ε2 〈∇yu, ηy〉 = 0 on ∂Λ,

(1.3)
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with (ηx, ηy) denoting the components of the outward unitary normal vector field to ∂Λ.
Consider the associated quadratic form

bε(u) =

∫
Λ

(
|∇xu|2 +

|∇yu|2

ε2

)
dx dy, u ∈ H1(Λ),

and the subspace

K := {u ∈ H1(Λ) : ∇yu = 0 almost everywhere in Λ}. (1.4)

By direct inspection, as ε→ 0, one gets

bε(u)→


∫

Λ

|∇xu|2 dx dy if u ∈ K ,

∞ if u ∈ H1(Λ)\K .

Thus, in order to establish a limit for bε(u) [16, 18] one just restricts study to the
subspace K . Note that K is directly related to the fact that the first eigenvalue
of the Neumann Laplacian in a bounded region is zero (so there is no need for
a renormalization: see ahead), and the constant functions are the corresponding
eigenfunctions.

By studying Equation (1.3), Prizzi and Rybakowski have proven that, in some
strong sense, (1.2) has a limiting equation

ut + Au + f (u) = 0,

as ε→ 0, where A is the self-adjoint operator associated with the quadratic form∫
Λ

|∇xu|2dx, u ∈ K .

By using the same notation as above, given a bounded sequence (hε)ε in L2(Λ),
Silva [18] performed a similar analysis of the stationary linear problem

−∆xu −
1
ε2 ∆yu = hε in Λ,

〈∇xu, ηx〉 +
1
ε2 〈∇yu, ηy〉 = 0 on ∂Λ,

(1.5)

and studied the limiting behaviour of its solutions as ε→ 0. In comparison to [16],
Silva presented a simpler and more direct proof of the operator convergence of
resolvents.

We draw attention to the fact that this strategy to select the correct action of the
limiting quadratic form may not be convenient in some settings. A simple example
of dimensional reduction involving the Laplacian with Dirichlet boundary condition
illustrates our point. Consider the sequence of tubes Ωε, as defined at the beginning
of this Introduction, and the particular case in which r(s) is a piece of a circumference
with radius a > 0 (and α ≡ 0); the quadratic form associated with the problem
is

∫
Ωε
|∇u|2 ds dy with domain H1

0(Ωε). In this case it is necessary to perform a
renormalization. More exactly, since the first eigenvalue λ0 of the Dirichlet Laplacian

https://doi.org/10.1017/S1446788715000452 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000452


[4] Convergence of solutions to some elliptic equations in bounded Neumann thin domains 255

in H1
0(S ) is greater than zero, one considers∫

Ωε

(
|∇u|2 −

λ0

ε2 |u|
2
)

ds dy,

and after a natural change of variables it is transformed into∫
I×S

[ 1
γε
|u′|2 +

γε

ε2 (|∇yu|2 − λ0|u|2)
]

ds dy, u ∈ H1
0(I × S ), (1.6)

where u′ denotes the derivative with respect to variable s, γε(s, y) = 1 − εy1/a (here
(s, y1, y2) = (s, y) denotes points of I × S ).

If u0 = u0(y) is the positive and normalized eigenfunction associated with λ0, the
subspace corresponding to K (see Equation (1.4)) in this setting is

J := {wu0 : w ∈ H1
0(I)} ⊂ L2(I × S ). (1.7)

Restricted to J , in the limit as ε→ 0, the quadratic form (1.6) becomes (see the
Appendix for details of this convergence)∫

I
|w′|2 ds, w ∈ H1

0(I), (1.8)

and one could naively guess that (1.8) would be the correct limiting form. However, by
some careful considerations, in [2, 11, 14] it was proven that, although (1.7) is really
the correct remaining subspace, the curvature k = 1/a explicitly appears in the action
of the limiting quadratic form, which is actually given by∫

I

(
|w′|2 −

|w|2

4a2

)
ds, w ∈ H1

0(I). (1.9)

Further, this limit is also obtained in the sense of norm resolvent convergence of the
associated self-adjoint operators [11]. Such an additional (curvature) term with respect
to (1.8) may be interpreted as a contribution from the discarded dimensions in the
process of squeezing, so that special caution must be exercised in the selection of the
action of the limiting quadratic forms.

In view of the example just mentioned, one purpose of this work is to present a more
complete justification—through an important norm resolvent convergence—such that,
for some regions (that is, particular cases of (1.2) and (1.5)), under dimensional
reduction with Neumann boundary conditions, one may actually restrict the analysis
to suitable ‘remaining’ subspaces (for example, (1.4)) and with no net contribution
from the discarded dimensions in the process of squeezing (in contrast to the Dirichlet
case (1.9)). This is the main content of Theorem 1.1 below.

Now we return to Equation (1.1) in tubes. To study the limiting behaviour of a
sequence of its solutions as ε→ 0, we perform a change of variables which takes Ωε

onto the fixed domain Ω := I × S (we keep the notation (s, y1, y2) for a point of Ω).
Thus, we obtain the equivalent equations

Aεu + f (u) = gε in Ω,

∂u
∂ν

= 〈Bεu, ν〉 on ∂Ω,
(1.10)
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where gε(s, y) = g̃ε(Fε(s, y)) (for the definitions of Bε and Fε and details of this change
of variables, see Section 2), ν it the unit outward normal to ∂Ω and Aε is the self-adjoint
operator associated with the quadratic form

aε(u) =

∫
Ω

(
|u′ + 〈∇yu,Ry〉(τ + α′)|2 +

βε

ε2 |∇yu|2 + |u|2
)

ds dy, u ∈ H1(Ω).

The definition of βε(s, y) also appears in Section 2. We denote by Eε the set of solutions
to Equation (1.10).

If 1 = 1(y) denotes the constant function on the cross-section S , let

L := {w1 : w ∈ L2(I)},

with the decomposition L2(Ω) = L ⊕ L⊥ and denote by P the orthogonal projection
onto the subspace L. In the Hilbert space L2(I), let A0 be the self-adjoint operator
associated with the quadratic form

a0(w) :=
∫

I
(|w′|2 + |w|2) ds, w ∈ H1(I). (1.11)

Theorem 1.1. There are two positive numbers C and ε0, so that, for 0 < ε < ε0,

‖A−1
ε − A−1

0 P‖L2(Ω) ≤ Cε.

To compare this theorem with the results of [2, 11, 14] mentioned above, we
note that, in the Neumann case, some geometric characteristics of the tube (such
as curvature, torsion and rotation angle) have no influence on effective operators.
Further, at least for the regions we consider here, this norm resolvent convergence
of Theorem 1.1 supports the idea that one may just restrict the initial problem to the
subspace L for small ε, since it is the subspace that ‘remains’ in the process, and the
quadratic form (1.11) is the restriction of the form aε to L; no contribution from the
discarded dimensions shows up.

Now we move on to convergence of solutions to the stationary problem (1.10).
We begin with the null function f . Theorem 1.1 allows us to weaken the condition
that (gε)ε is a bounded sequence in L2(Ω), as done in [18], and still obtain a similar
result, that is, the following theorem.

Theorem 1.2. In the problem (1.10) with null function f , let (gε)ε be a sequence in
L2(Ω) such that ‖Pgε‖L2(Ω) < c, for all small enough ε > 0 and some constant c > 0.
Consider a sequence (uε)ε, uε ∈ Eε. Then there exist g0 ∈ L, u0 := A−1

0 g0 ∈ dom A0,
and a subsequence of (uε)ε, denoted by the same symbol (uε)ε, such that

lim
ε→0
‖uε − u0‖L2(Ω) = 0. (1.12)

However, if ‖gε‖L2(Ω) ≤ c, for all small enough ε > 0, then more can be said, that is,

lim
ε→0
‖uε − u0‖H1(Ω) = 0. (1.13)
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In the general case, that is, with nonzero f , we have two possibilities, which are
discussed in Theorems 1.3 and 1.4.

Theorem 1.3. Let f : R→ R be a nonlinear C2-function satisfying

f (0) = 0, − f ′(x) ≤ K1, ∀x ∈ R, (1.14)

lim sup
|x|→∞

− f (x)
x
≤ 0, (1.15)

| f ′(x)| ≤ K2(1 + |x|γ), ∀x ∈ R, (1.16)

with some 0 ≤ γ ≤ 2; assume also that it is bounded and Lipschitz. Let (gε)ε be
a sequence in L2(Ω) such that ‖Pgε‖L2(Ω) < c, for all ε > 0 small enough and for
some constant c. Consider a sequence (uε)ε, uε ∈ Eε. Then there exist g0 ∈ L2(I),
u0 ∈ dom A0 ⊂ L2(I) so that u0 = A−1

0 P(− f (u0) + g0), and a subsequence of (uε)ε,
denoted by the same symbol (uε)ε, such that

lim
ε→0
‖uε − u0‖L2(Ω) = 0.

Note that, since f is a nonlinear function, the control on the term P f (u), u ∈ H1(Ω),
can be far from trivial. Thus, if f is neither bounded nor Lipschitz, we will impose
the condition ‖gε‖L2(Ω) < c on the forcing terms. In this case, we have the following
theorem.

Theorem 1.4. Let f : R → R be a nonlinear, bounded and Lipschitz C2-function
satisfying conditions (1.14)–(1.16), and (gε)ε a sequence in L2(Ω) such that ‖gε‖L2(Ω) <
c, for all small enough ε > 0. Consider a sequence (uε)ε, uε ∈ Eε. Then, there exist
g0 ∈ L2(Ω), u0 ∈ dom A0 ⊂ L2(I) so that u0 = A−1

0 P(− f (u0) + g0), and a subsequence
of (uε)ε, denoted by the same symbol (uε)ε, such that

lim
ε→0
‖uε − u0‖H1(Ω) = 0. (1.17)

Although the settings in Theorems 1.3 and 1.4 have been previously considered,
here, due to Theorem 1.1, we have simpler proofs on top of additional justification of
the choice of remaining subspaces and the action of limiting forms. Further, in the case
of Theorem 1.3, we were able to weaken the condition on gε with respect to [16, 18],
by only requiring that the projection ‖Pgε‖ is uniformly bounded.

The above results have similar versions to strips in the plane, again built along
differentiable curves r but with cross sections given by bounded intervals. The proofs
are even simpler than in the case of tubes, and we do not explicitly discuss them here.

In addition, we are able to say something about the asymptotic behaviour of some
semilinear equations in thin planar domains as in particular cases studied by Hale and
Raugel [9]. Let g : [a, b]→ R, −∞ < a < b < +∞, be a C3-function delimiting a planar
region, that is, for each ε > 0, let

Qε := {(s, y) ∈ J × R : 0 < y < εg(s)}, J := (a, b).
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Consider the problem
ut − ∆u + f (u) = 0 in Qε,

∂u
∂νε

= 0 on ∂Qε,
(1.18)

where νε is the exterior unit normal vector field to ∂Qε, and f is a nonlinearity such
that this equation generates a semiflow on H1(Qε). In [9] it was proven that the
limiting semiflow, as ε→ 0, is the one generated by the one-dimensional boundary
value problem

ut − (1/g)(gu′)′ − f (u) = 0 in J,
u′(a) = u′(b) = 0.

In what follows, we shall present a simpler proof, with respect to [9], of the
convergence of the solutions to the stationary equation associated with (1.18), namely,

−∆u + f (u) = 0 in Qε,
∂u
∂νε

= 0 on ∂Qε.
(1.19)

The first step in the study of Equation (1.19) is an analysis of its linear term, which
is reduced, after an appropriate change of variables (see Section 6 for details), to

mε(u) =

∫
Q

[(
u′ −

g′

2g
u
)2

+
1

ε2g2 u2
y

]
ds dy,

where dom mε = H1(Q) and Q := J × (0,1). We denote by Mε the self-adjoint operator
associated with mε(u). Thus, we pass to the equation

Mεu + f (u) = 0 in Q,
∂u
∂ν

= 0 on ∂Q.
(1.20)

Denote by Eg
ε the set of solutions to (1.20). As before, we consider the subspace

J̃ = {w1 : w ∈ L2(J)} and the decomposition L2(Q) = J̃ ⊕ J̃⊥. Denote by P̃ the
orthogonal projection onto the subspace J̃ . Define the quadratic form

m(w) :=
∫

J

(
w′ −

g′

2g
w
)2

ds, dom m = H1(J), (1.21)

and denote by M the associated self-adjoint operator. In this case, we have a similar
result to Theorem 1.1 (see Theorem 6.1) and, as a consequence, we shall prove the
following theorem.

Theorem 1.5. Let f : R→ R, as in Theorem 1.4, and take a sequence (uε)ε, uε ∈ E
g
ε,

ε→ 0. Then there exist u0 ∈ dom M, so that u0 = M−1P̃(− f (u0)), and a subsequence
of (uε)ε, denoted by the same symbol (uε)ε, such that

lim
ε→0
‖uε − u0‖H1(Q) = 0.
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The rest of this paper is organized as follows. In Section 2, we present details of
the construction of the tubular region Ωε and we study the quadratic form associated
with the Neumann Laplacian in this tube. Section 3 is dedicated to the proof
of Theorem 1.1. In Section 4, we prove Theorem 1.2, whereas the proofs of
Theorems 1.3 and 1.4 appear in Section 5 and, finally, Section 6 is reserved for the
proof of Theorem 1.5.

2. Quadratic forms

In this section we are going to construct the region in which the Neumann Laplacian
is considered, along with its associated quadratic form.

Let I be an open and bounded interval. We suppose that r : I → R3 is a simple
C3 curve in R3 parametrized by its arc length parameter s. The curvature of r at the
position s is k(s) := ‖r′′(s)‖. We choose the usual orthonormal triad of vector fields
{T (s),N(s), B(s)}, the so-called Frenet frame, given the tangent, normal and binormal
vectors, respectively, moving along the curve and defined by

T = r′; N = k−1T ′; B = T × N. (2.1)

To justify the construction (2.1), it is assumed that k > 0, but if r has a piece of
a straight line (that is, k = 0 identically in this piece), usually one can choose a
constant Frenet frame instead. It is possible to combine constant Frenet frames with
the Frenet frame (2.1) to include other types of curves, for instance, curves with
k(s) > 0 only on a compact interval of values of s (and so obtaining a global C2 Frenet
frame (see [10, Theorem 1.3.6]). In each situation we assume that a global Frenet
frame exists and that the Frenet equations are satisfied, that is,T ′

N′

B′

 =

 0 k 0
−k 0 τ
0 −τ 0


T
N
B

 , (2.2)

where τ(s) is the torsion of r(s), actually defined by (2.2). Let α : I → R be a
bounded C1 function so that α(s0) = 0 (s0 is a fixed point of I), and S an open,
bounded, connected and smooth (nonempty) subset of R2. For small enough ε > 0
and y = (y1, y2) ∈ S , write

~x(s, y) = r(s) + εy1N(s) + εy2B(s)

and consider the domain

Ωε = {~x(s, y) ∈ R3 : s ∈ I, y = (y1, y2) ∈ S },

where

Nα(s) := cosα(s)N(s) + sinα(s)B(s),
Bα(s) := −sinα(s)N(s) + cosα(s)B(s).
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Hence, this tube Ωε is obtained by putting the region εS along the curve r(s), which
is simultaneously rotated by an angle α(s) with respect to the cross section at the
position s = s0. We suppose that k, τ + α′ ∈ L∞(I).

In order to study the Neumann Laplacian −∆ in Ωε we initially consider the
corresponding family of quadratic forms

âε(ψ) :=
∫

Ωε

(|∇ψ|2 + |ψ|2) d~x, ψ ∈ dom âε = H1(Ωε). (2.3)

Consider the mapping

Fε : I × S → Ωε

(s, y) 7→ r(s) + εy1Nα(s) + εy2Bα(s),

that will be used to perform an important change of variables. The condition k ∈ L∞(I),
is to guarantee that Fε will be a (global) diffeomorphism for small ε. With this change
of variables we work with a fixed region I × S for all ε > 0: more precisely, in the
new variables the domain of the quadratic form (2.3) turns out to be H1(I × S ). On
the other hand, the price to be paid is a nontrivial Riemannian metric G = Gε which is
induced by Fε, that is,

G = (Gi j), Gi j = 〈ei, e j〉 = G ji, 1 ≤ i, j ≤ 3,

where
e1 =

∂Fε

∂s
, e2 =

∂Fε

∂y1
, e3 =

∂Fε

∂y2
.

Some calculations show that, in the Frenet frame,

W =

e1
e2
e3

 =

βε −ε(τ + α′)〈z⊥α , y〉 ε(τ + α′)〈zα, y〉
0 ε cosα ε sinα
0 −ε sinα ε cosα

 ,
where

βε(s, y) = 1 − εk(s)〈zα, y〉, zα = (cosα,−sinα) and z⊥α = (sinα, cosα).

The inverse matrix of W is given by

W−1 =

1/βε (τ + α′)y2/βε −(τ + α′)y1/βε
0 (1/ε) cosα −(1/ε) sinα
0 (1/ε) sinα (1/ε) cosα

 .
Note that WW t = G and det W = | det G|1/2 = ε2βε. Since k is a bounded function,

for small enough ε, Fε does not vanish in I × S . Thus βε > 0, and Fε is a local
diffeomorphism. In the case where Fε is injective (again by requiring that ε > 0 is
small), a global diffeomorphism is obtained.

Introducing the notation

‖u‖2G =

∫
I×S
|u|2βε ds dy,
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and the unitary transformation

Uε : L2(Ωε)→ L2(I × S , βε)
u 7→ εu ◦ Fε,

we obtain, from (2.3), the sequence of quadratic forms

ãε(Uεu) := ‖W−1∇(Uεu)‖2G + ‖Uεu‖2G.

Again, since k ∈ L∞(I), βε → 1 uniformly in I × S , as ε→ 0. Therefore, the spaces
L2(I × S , βε) and L2(I × S ) are topologically equivalent and the strong convergence in
L2(I × S , βε) is equivalent to the convergence in the fixed space L2(I × S ). Thus, we
move on to work in L2(I × S ).

After the norms are written out, and using the same notation u for Uεu, we obtain

ãε(u) =

∫
I×S

( 1
βε
|u′ + 〈∇yu,Ry〉(τ + α′)|2 +

βε

ε2 |∇yu|2 + βε|u|2
)

ds dy,

dom ãε = H1(I × S ).
Now, for technical reasons, we define the quadratic form

aε(u) :=
∫

I×S

(
|u′ + 〈∇yu,Ry〉(τ + α′)|2 +

βε

ε2 |∇yu|2 + |u|2
)

ds dy,

dom aε = H1(I × S ), which is very similar to the quadratic form ãε(u). We denote
by Ãε and Aε the self-adjoint operators associated with ãε and aε, respectively. Since
βε → 1 uniformly in I × S , as ε→ 0, we have the following theorem, the proof of
which is very similar to the proof of [13, Theorem 3.1] and for this reason will be
omitted here.

Theorem 2.1. There exist numbers D > 0 and ε1 > 0 so that

‖Ã−1
ε − A−1

ε ‖L2(Ω) ≤ Dε, 0 < ε < ε1.

Recall that Ω = I × S . Due to the changes of variables presented above and
Theorem 2.1, instead of studying Equation (1.5) we move on to work with

Aεuε + f (uε) = gε in Ω,
∂u
∂ν

= 〈Bεu, ν〉 on ∂Ω,

where ν is the unit outward normal to ∂Ω and Bεu = βεG−1∇u.
Again, for technical reasons, we define the space H1

ε (Ω) := {u ∈ L2(Ω) : ‖u‖H1
ε (Ω) <

∞}, where

‖u‖H1
ε (Ω) :=

(∫
Ω

(|u′ + 〈∇yu,Ry〉(τ + α′)|2 + βε|∇yu|2 + |u|2) ds dy
)1/2

.

Since k, τ + α′ ∈ L∞(I), we can observe that ‖u‖H1(Ω) and ‖u‖H1
ε (Ω) are equivalent norms

in H1(Ω).
Another property that we are going to use throughout this text is that, since

k ∈ L∞(I), there exist E1, E2 > 0 and ε2 > 0, so that

E1 < βε(s, y) < E2, ∀(s, y) ∈ I × S , 0 < ε < ε2. (2.4)
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3. Reduction of dimension

As already mentioned in the Introduction, we consider the subspace L = {w1 : w ∈
L2(I)} and the orthogonal decomposition

L2(Ω) = L ⊕ L⊥.

For u ∈ L2(Ω), we can write

u(s, y) = w(s) + v(s, y),

with w ∈ L2(I) and v ∈ L⊥. Observe that v ∈ L⊥ implies∫
S

v(s, y) dy = 0 a.e. [s]. (3.1)

Note that w ∈ H1(Ω) if w ∈ H1(I). For u ∈ H1(Ω), write u = w + v with w ∈ H1(I) and
v ∈ H1(Ω) ∩ L⊥.

For w ∈ H1(I), we may identify aε(w) with the ‘one-dimensional’ quadratic
form (1.11), that is,

a0(w) =

∫
I
(|w′|2 + |w|2) ds,

and recall that A0 is the associated self-adjoint operator.
The method of the proof of Theorem 1.1 is as follows. First one identifies suitable

subspaces of the Hilbert space on which the operator acts and, second, one applies the
powerful functional analytic technique of Friedlander and Solomyak [8]. The essence
of the proof is an application of such a technique; however, showing that it can be
applied, by demonstrating the required estimates, is in itself not trivial.

Proof of Theorem 1.1. For u ∈ H1(Ω) write, as above,

u(s, y) = w(s) + v(s, y),

with w ∈ H1(I) and v ∈ H1(Ω) ∩ L⊥. Thus, the quadratic form aε(u) can be rewritten
as

aε(w + v) = a0(w) + 2aε(w, v) + aε(v).

Here, aε(u1, u2) denotes the bilinear form associated with the quadratic form aε(u).
We are going to show that a0(w), aε(v) and aε(w, v) satisfy conditions (3.2), (3.3),

(3.4) and (3.5) in [8, Section 3], and so the theorem will follow.
Firstly, we observe that

a0(w) ≥ ‖w‖2L2(I), ∀w ∈ H1(I),

and then condition (3.2) holds true.
Now, let λ1 > 0 be the second eigenvalue of the Neumann Laplacian in H1(I). For

v ∈ H1(Ω) ∩ L⊥,

aε(v) ≥
λ1

ε2 ‖v‖
2
L2(Ω),

and (3.3) and (3.4) are satisfied.
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Finally, we assert that there exist C1 > 0 and ε0 > 0, so that, for 0 < ε < ε0,

aε(w, v) ≤ C1ε(a0(w))1/2(aε(v))1/2.

In fact, due to property (3.1),

aε(w, v) =

∫
Ω

w′〈∇yv,Ry〉(τ + α′) ds dy.

By (2.4), we also note that

E1

ε2

∫
Ω

|∇yv|2 ds dy ≤ aε(v).

Let C2 := sup(s,y)∈Ω{‖Ry‖(τ + α′)(s)}. Thus,∣∣∣∣∣∫
Ω

w′〈∇yv,Ry〉(τ + α′) ds dy
∣∣∣∣∣ ≤ C2

(∫
I
|w′|2 ds

)1/2(∫
Ω

|∇yv|2 ds dy
)1/2

≤ ε(C2/
√

E1)(aε(w))1/2(aε(v))1/2,

and the condition (3.5) in [8] is also satisfied. �

4. The linear problem

In this section we study the problem (1.10) and prove Theorem 1.2 presented in the
Introduction. Lemma 5.2 in the next section will be used; note that it also holds in case
of the (nonlinear) null function f .

Proof of Theorem 1.2. First we prove (1.12). Let εn → 0, n ∈ N (n→∞), An := Aεn ,
gn := gεn and un := uεn a sequence so that un ∈ Eεn , that is, Anun = gn. Theorem 1.1
ensures that

‖A−1
n gn − A−1

0 Pgn‖L2(Ω) → 0 as n→∞.

Since (Pgn)n is a bounded sequence and A−1
0 is a compact operator, the sequence

(A−1
0 Pgn)n has a convergent subsequence. Thus, there exist u0 ∈ L2(I) and an infinite

subset N1 of N so that

A−1
0 Pgn → u0 in L2(I), n ∈ N1.

On the other hand, there exist g0 ∈ L2(I) and an infinite subset N2 of N1 so that
Pgn ⇀ g0 in L2(I), n ∈ N2. Thus, A−1

0 Pgn ⇀ A−1
0 g0, n ∈ N2, and we conclude that

A−1
0 Pg0 = u0 and un → u0 in L2(I × S ), n ∈ N2.

To prove (1.13), we are going to show that, up to a subsequence,

‖un − u0‖H1
εn (Ω) → 0. (4.1)

Thus, since the norms ‖u‖H1(Ω) and ‖u‖H1
εn (Ω) are equivalent, this implies

Theorem 1.2. �
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Suppose that ‖gε‖ ≤ c, for all small enough ε > 0. There exist g̃0 ∈ L2(Ω) and an
infinite subset N3 of N2 so that gεn ⇀ g̃0, n ∈ N3. Write g̃0 = Pg̃0 + P⊥g̃0. In this case,
Pg̃0 = g0. Now, by Lemma 5.2 and since the immersion H1(Ω)→ L2(Ω) is compact,
we have un ⇀ u0 in H1(Ω), n ∈ N3 (this convergence also holds in H1

εn
(Ω)). To

conclude (4.1), it is enough to show that ‖uε‖H1
ε (Ω) → ‖u0‖H1(Ω) : for this, just observe

that

‖u0‖
2
H1(Ω) ≤ lim inf

n∈N3

∫
Ω

(|u′n + 〈∇yun,Ry〉(τ + α′)|2 + βεn |∇yun|
2 + |un|

2) ds dy

≤ lim sup
n∈N3

∫
Ω

(|u′n + 〈∇yun,Ry〉(τ + α′)|2 + βεn |∇yun|
2 + |un|

2) ds dy

≤ lim sup
n∈N3

∫
Ω

(
|u′n + 〈∇yun,Ry〉(τ + α′)|2 +

βεn

ε2
n
|∇yun|

2 + |un|
2
)

ds dy

= lim sup
n∈N3

∫
Ω

(Anun)un ds dy

= lim sup
n∈N3

∫
Ω

gnun ds dy

=

∫
Ω

(Pg̃0 + P⊥g̃0)u0 ds dy

=

∫
Ω

g0u0 ds dy

=

∫
Ω

(A0u0)u0 ds dy

= ‖u0‖
2
H1(Ω).

5. The nonlinear problem

In this section we present the required conditions for the function f in
Equation (1.10). We assume that f : R→ R is a nonlinear C2-function satisfying
conditions conditions (1.14)–(1.16), as in the statement of Theorem 1.3. The following
related result is well known and its proof can be found in [15].

Lemma 5.1. Under conditions (1.14)–(1.16), the assignment u 7→ f ◦ u defines a map
f : H1(Ω)→ L2(Ω), which is Lipschitz continuous on every bounded set in H1(Ω).
Moreover, wherever u, u1, u2 ∈ H1(Ω) and ‖u1‖H1(Ω), ‖u2‖H1(Ω) ≤ L1 the following
estimates hold.

‖ f (u)‖L2(Ω) ≤ L2(‖u‖L2(Ω) + L̃2‖u‖
γ+1
H1(Ω)),

‖ f (u1) − f (u2)‖L2(Ω) ≤ L̃1(1 + 2L2γ
1 )‖u1 − u2‖H1(Ω).

Here, L2, L̃2 and L̃1 are positive constants.
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Note that, due to condition (1.15), for any η > 0 there exists a positive constant Cη

such that,

− f (x)x ≤ ηx2 + Cη, ∀x ∈ R. (5.1)

This inequality will be useful later on.

Proof of Theorem 1.3. Let εn → 0, n ∈ N (n→∞), An := Aεn , gn := gεn and un := uεn

be a sequence so that un ∈ Eεn . Since f is a bounded function, ( f (un))n is a bounded
sequence in L2(Ω). Thus, there exist f0 ∈ L2(Ω) and an infinite subset N4 ⊂ N so that

f (un) ⇀ f0 in L2(Ω), n ∈ N4.

On the other hand, since (Pgn)n is a bounded sequence, there exist g0 ∈ L2(Ω) and an
infinite subset N5 ⊂ N4 so that

Pgn ⇀ g0 in L2(Ω), n ∈ N5.

By Theorem 1.1,

‖A−1
n (− f (un) + gn) − A−1

0 P(− f (un) + gn)‖L2(Ω) → 0, n ∈ N5.

Also note that

A−1
0 P(− f (un) + gn) ⇀ A−1

0 P(− f0 + g0) in L2(Ω), n ∈ N5.

Now, since A−1
0 is a compact operator, us

n := A−1
0 P(− f (un) + gn) has a convergent

subsequence. Thus, there exists u0 ∈ L2(I), so that

us
n → u0 in L2(Ω), n ∈ N6,

where N6 is an infinite subset of N5. Consequently,

un → u0 in L2(Ω), n ∈ N6,

and u0 = A−1
0 P(− f0 + g0). To finish the proof, since f is a Lipschitz function, f (un)→

f (u0), in L2(Ω), n ∈ N6, and so we conclude that f0 = f (u0).

Observe that Lemma 5.1 was not necessary to prove Theorem 1.3. To prove
Theorem 1.4, besides Lemma 5.1, we will need the following result.

Lemma 5.2. Suppose that there exists c > 0 so that ‖gε‖ < c, for all small enough ε > 0.
Then, there are two positive constants ε3 and M, such that

‖uε‖H1(Ω) ≤ M, ∀uε ∈ Eε, 0 < ε < ε3.
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Proof. Due to (5.1), given η > 0, there exists Cη > 0 so that∫
Ω

(
|u′ε + 〈∇yuε,Ry〉(τ + α′)|2 +

βε

ε2 |∇yuε|2 + |uε|2
)

ds dy

=

∫
Ω

(Aεuε)uε ds dy

=

∫
Ω

(− f (uε) + gε)uε ds dy

=

∫
Ω

− f (uε)uε ds dy +

∫
Ω

gεuε ds dy

≤

∫
Ω

(ηu2
ε + Cη) ds dy +

1
2η

∫
Ω

g2
ε ds dy +

η

2

∫
Ω

u2
ε ds dy

≤
3
2
η‖uε‖2H1(Ω) + S̃ ,

where S̃ := Cηmes (Ω) + c2/(2η). Recalling (2.4), we also have

E1

∫
Ω

|∇yuε|2 ds dy ≤
∫

Ω

βε

ε2 |∇yuε|2 ds dy ≤
3
2
η‖uε‖2H1(Ω) + S̃ .

With the above inequalities, we obtain

E1‖uε‖2H1(Ω) = E1

∫
Ω

(|u′ε|
2 + |∇yuε|2 + |uε|2) ds dy

≤ E1

[(∫
Ω

|u′ε + 〈∇yuε,Ry〉(τ + α′)|2 ds dy
)1/2

+

(∫
Ω

|〈∇yuε,Ry〉(τ + α′)|2 ds dy
)1/2]2

+ E1

∫
Ω

(|∇yuε|2 + |uε|2) ds dy

≤ E1

[(∫
Ω

|u′ε + 〈∇yuε,Ry〉(τ + α′)|2 ds dy
)1/2

+ C2

(∫
Ω

|∇yuε|2 ds dy
)1/2]2

+ E1

∫
Ω

(|∇yuε|2 + |uε|2) ds dy

≤ (3E1 + 2E1C2 + E1C2
2)
(3
2
η‖uε‖2H1(Ω) + S̃

)
.

Recall that C2 = sup(s,y)∈Ω{‖Ry‖(τ + α′)(s)}. Now it is sufficient to take η > 0 so that

3
2η(3E1 + 2E1C2 + E1C2

2) < E1,

and the proof is complete. �
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Proof of Theorem 1.4. Let εn → 0, n ∈ N (n→∞), gn := gεn , An := Aεn and un := uεn

be a sequence so that un ∈ Eεn . Lemmas 5.1 and 5.2 ensure that ( f (un))n is a bounded
sequence in L2(Ω). Thus, there exist f0 ∈ L2(Ω) and an infinite subset N7 ⊂ N with

f (un) ⇀ f0 in L2(Ω), n ∈ N7.

Further, since (gn)n is a bounded sequence, there exist g0 ∈ L2(Ω) and an infinite subset
N8 ⊂ N7 so that

gn ⇀ g0 in L2(Ω), n ∈ N8.

By Theorem 1.1,

‖A−1
n (− f (un) + gn) − A−1

0 P(− f (un) + gn)‖L2(Ω) → 0, n ∈ N8.

Also note that

A−1
0 (− f (un) + gn) ⇀ A−1

0 P(− f0 + g0) in L2(Ω), n ∈ N8.

Since A−1
0 is a compact operator, us

n := A−1
0 P(− f (un) + gn) has a convergent

subsequence. Thus, there exists u0 ∈ L2(I) so that

us
n → u0 in L2(Ω), n ∈ N9,

where N9 is an infinite subset of N8. Consequently,

un → u0 in L2(Ω), n ∈ N9,

and u0 = A−1
0 P(− f0 + g0). Lemma 5.2 also ensures that

u′n ⇀ u′0 and ∇yun ⇀ 0 in L2(Ω), n ∈ N9.

Now, since the norms ‖u‖H1(Ω) and ‖u‖H1
ε (Ω) are equivalent, to prove the convergence

in (1.17) it is enough to check that ‖uε‖H1
ε (Ω) → ‖u0‖H1(Ω), which follows from the

following estimates.

‖u0‖
2
H1(Ω) ≤ lim inf

n∈N9

∫
Ω

(|u′n + 〈∇yun,Ry〉(τ + α′)|2 + βεn |∇yun|
2 + |un|

2) ds dy

≤ lim sup
n∈N9

∫
Ω

(|u′n + 〈∇yun,Ry〉(τ + α′)|2 + βεn |∇yun|
2 + |un|

2) ds dy

≤ lim sup
n∈N9

∫
Ω

(
|u′n + 〈∇yun,Ry〉(τ + α′)|2 +

βεn

ε2
n
|∇yun|

2 + |un|
2
)

ds dy

= lim sup
n∈N9

∫
Ω

(Anun)un ds dy

= lim sup
n∈N9

∫
Ω

(− f (un) + gn) un ds dy

=

∫
Ω

(− f0 + g0)u0 ds dy

=

∫
Ω

(A0u0)u0 ds

= ‖u0‖
2
H1(Ω).
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Thus, ‖un − u0‖H1(Ω) → 0. This limit, combined with Lemma 5.1, implies that f (un)→
f (u0), n ∈ N9. Therefore, u0 = A−1

0 P(− f (u0) + g0). �

6. Regions bounded by a smooth function

Let g : [a, b]→ R, −∞ < a < b < +∞, be a function of class C3 satisfying,∣∣∣∣∣g′(s)
g(s)

∣∣∣∣∣ ≤ X1, X2 ≤ g(s) ≤ X1,
1

g2(s)
−

(g′(s)
g(s)

)2
≥

1
2X2

1

, ∀s ∈ [a, b],

where X1, X2 are positive numbers.
Recall that we use the notation J = (a, b). As mentioned in the Introduction, we

consider the domain

Qε = {(s, y) ∈ J × R : 0 < y < εg(s)}

and the Equation (1.19), that is,

−∆u + f (u) = 0 in Qε,

∂u
∂νε

= 0 on ∂Qε,

where f : R→ R is a nonlinear C2-function satisfying the conditions (1.14)–(1.16).
The linear term in Equation (1.19) is described by the quadratic form

m̂ε(u) =

∫
Qε

|∇u|2 dx, u ∈ H1(Qε). (6.1)

By performing the change of variables

F̃ε : J × (0, 1)→ Qε

(s, y) 7→ (s, εyg(s)),

(6.1) becomes

m̃ε(u) =

∫
Q

[1
g

(gu′ − yg′uy)2 +
1
ε2g

u2
y

]
ds dy, (6.2)

where dom m̃ε = H1(Q) and Q = J × (0, 1). Further, dom m̃ε is a subspace of the
Hilbert space L2(Q, g). The details of this change of variables can be found in [9].

Now, we propose an additional change of variables in order to work in the Hilbert
space L2(Q): that is, consider the unitary operator

Vε : L2(Q, g)→ L2(Q)
v 7→ g1/2v,

so that the quadratic form (6.2) becomes

mε(u) =

∫
Q

[(
u′ −

g′

2g
u
)2

+
1

ε2g2 u2
y

]
ds dy, (6.3)

and now dom mε = H1(Q) as a subspace of L2(Q).
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Recall that Mε is the self-adjoint operator associated with the quadratic form (6.3)
and consider Equation (1.20), whose set of solutions is Eg

ε. Recall that J̃ = {w1 : w ∈
L2(J)} and that M is the self-adjoint operator associated with the quadratic form m
given by (1.21).

The proof of the next theorem follows the same strategy employed in the proof of
Theorem 1.1: that is, one must identify the correct subspaces and demonstrate the
required estimates for the application of the technique of [8].

Theorem 6.1. There are two positive numbers N and ε4, so that, for 0 < ε < ε4,

‖M−1
ε − M−1P̃‖L2(Q) ≤ Nε,

where P̃ denotes the orthogonal projection onto the subspace J̃ .

Proof. If u ∈ dom mε, write u(s, y) = w(s) + v(s, y), where w ∈ H1(J) and v ∈ J̃⊥ ∩
H1(Q). Thus,

mε(u) = mε(w) + 2mε(w, v) + mε(v),

where mε(u1, u2) is the bilinear form associated with quadratic form mε(u).
Again, we are going to show that the conditions (3.2), (3.3), (3.4) and (3.5) of [8,

Section 3] are satisfied, and so the theorem follows. For this, just note that

mε(w) = m(w), ∀w ∈ H1(J),
mε(w, v) = 0, ∀w ∈ H1(J) and v ∈ J̃⊥ ∩ H1(Q),

mε(v) ≥
π2

ε2X2
1

∫
Q
|v|2 ds dy, ∀v ∈ J̃⊥ ∩ H1(Q),

and the proof is complete. �

The following lemma follows from [9, Theorem 2.4].

Lemma 6.2. There are two positive numbers T and ε5 > 0, so that, for 0 < ε < ε5,

‖uε‖H2(Q) ≤ T ∀uε ∈ E
g
ε.

Proof of Theorem 1.5. Let εn → 0, n ∈ N (n→ ∞), Mn := Mεn and un := uεn be a
sequence so that un ∈ E

g
εn . Lemmas 6.2 and 5.1 (see Section 5 for Lemma 5.1) ensure

that ( f (un))n is a bounded sequence in L2(Q). Thus, there exist f0 ∈ L2(Q) and an
infinite subset N10 ⊂ N so that

f (un) ⇀ f0 in L2(Q), n ∈ N10.

By Theorem 6.1,

‖M−1
n (− f (un)) − M−1P̃(− f (un))‖L2(Q) → 0, n ∈ N10,

and also note that

M−1
0 (− f (un)) ⇀ M−1P̃(− f0) in L2(Q), n ∈ N10.
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Since M−1 is a compact operator (in fact, M−1 is a norm limit of compact operators),
us

n := M−1P̃(− f (un)) has a convergent subsequence. Thus, there exists u0 ∈ L2(J) so
that

‖us
n − u0‖L2(Q) → 0, n ∈ N11,

where N11 is an infinite subset of N10. Consequently, u0 = M−1P̃(− f0). Since the
immersion H2(Q)→ L2(Q) is compact, Lemma 6.2 ensures that

‖un − u0‖H1(Q) → 0, n ∈ N12,

where N12 is an infinite subset of N11. This limit, combined with Lemma 5.1, implies
that f (un)→ f (u0), n ∈ N12. Thus, u0 = M−1P̃(− f (u0)).

Appendix

In this appendix we present some details of the limiting behaviour of the quadratic
form (1.6), as ε→ 0. Recall that it is given by∫

I×S

( 1
γε
|u′|2 +

γε

ε2 (|∇yu|2 − λ0|u|2)
)

ds dy,

where γε(s, y) = 1 − (εy1)/a, λ0 is the first eigenvalue of the Dirichlet Laplacian
in H1

0(S ), and recall that u0 = u0(y) is the corresponding (positive) normalized
eigenfunction.

Consider the subspace J = {wu0 : w ∈ H1
0(I)} and the quadratic form∫

S

(
γε

ε2 (|∇yu|2 − λ0|u|2)
)

ds dy

restricted to J . For this, integration by parts shows that∫
S

(1 − (εy1)/a)
ε2 (|∇yu0|

2 − λ0u2
0) dy

=

∫
S

−y1/a
ε

(|∇yu0|
2 − λ0u2

0) dy

=

∫
S

[
∂

∂y1

( y1

aε
∂u0

∂y1

)
u0 +

∂

∂y2

( y1

aε
∂u0

∂y2

)
u0 +

y1λ0

aε
u2

0

]
dy

=

∫
S

( 1
aε
∂u0

∂y1
u0 +

y1

aε
∆yu0 +

y1

aε
λ0u2

0

)
dy

=

∫
S

( 1
aε
∂u0

∂y1
u0

)
dy = 0.

Thus, since γε(s, y)→ 1 uniformly, as ε→ 0, we have, for the full quadratic form,∫
I×S

( 1
γε
|w′u0|

2 + |w|2
γε

ε2 |∇yu0|
2 − λ0|w|2|u0|

2
)

ds dy

=

∫
I×S

1
γε
|w′u0|

2 ds dy −→
∫

I
|w′|2 ds.
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[2] G. Bouchitté, M. L. Mascarenhas and L. Trabucho, ‘On the curvatures and torsion effects in one-
dimensional waveguides’, ESAIM Control Optim. Calc. Var. 13 (2007), 793–808.
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