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Metric Spaces Admitting Low-distortion
Embeddings into All n-dimensional Banach
Spaces

Mikhail Ostrovskii and Beata Randrianantoanina

Abstract. For a ûxed K ≫ 1 and n ∈ N, n ≫ 1, we study metric spaces which admit embeddings
with distortion ≤ K into each n-dimensional Banach space. Classical examples include spaces em-
beddable into log n-dimensional Euclidean spaces, and equilateral spaces.

We prove that good embeddability properties are preserved under the operation ofmetric com-
position of metric spaces. In particular, we prove that n-point ultrametrics can be embedded with
uniformly bounded distortions into arbitrary Banach spaces of dimension log n.

_e main result of the paper is a new example of a family of ûnite metric spaces which are not
metric compositions of classical examples and which do embed with uniformly bounded distortion
into any Banach space of dimension n. _is partially answers a question of G. Schechtman.

1 Introduction

_is paper is devoted to the following problem suggested byGideon Schechtman dur-
ing theWorkshop in Analysis and Probability at Texas A&M University, College Sta-
tion, Texas, July 2013.

Problem 1.1 Fix a constant K ≫ 1 and n ∈ N satisfying n ≫ 1. Characterize all
metric spaces admitting embeddings with distortion ≤ K into each n-dimensional
Banach space.

_e distortion of an (injective) embedding f ∶X → Y of ametric space (X , dX) into
ametric space (Y , dY) is deûned by

dist( f ) = sup
x ,y∈X
x≠y

dY( f (x), f (y))
dX(x , y)

⋅ sup
x ,y∈X
x≠y

dX(x , y)
dY( f (x), f (y))

.

If dist( f ) ≤ K, we say that f is a K-embedding, and that ametric space (X , dX) is
K-embeddable into ametric space (Y , dY).

Problem 1.1 can be viewed as a part ofmodern Ramsey theory which seeks to char-
acterize types of structures which can be found inside arbitrary structures that are
suõciently large. In the category of metric spaces in relation to their embeddability
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Metric Spaces Admitting Low-distortion Embeddings 877

into Banach spaces, this work was initiated in [BFM86]. See [BLMN05,MN13], and
references therein for important Ramsey-type results in the category ofmetric spaces.

Since Problem 1.1 is vague and somewhat unrealistic, Schechtman also suggested a
more speciûcProblem1.2 (see below). Before stating itweneed to list known examples
ofmetric spaces embeddable into each n-dimensional Banach space:

(A) Metric spaces admitting low-distortion embeddings into log n-dimensional
Euclidean spaces. _is class of examples is obtained as a corollary of the fundamental
Dvoretzky theorem (see_eorem 2.1) which implies that for every M > 1 there exists
s(M) > 0 such that for each n ∈ N the space ℓk2 with k ≤ s(M) ln n can be linearly
embedded into any n-dimensional Banach space with distortion ≤ M. It follows that
anymetric spacewhich embedswith distortion ≤ K/M into such ℓk2 can be embedded
with distortion ≤ K into any n-dimensional Banach space. See Section 2.1 for more
details.

(B) Ametric space is called equilateral if the distances between all pairs of distinct
points in it are equal to the same positive number. An equilateral space is also called
an equilateral set. Equilateral spaces of size ≤ an , where a depends on K, form an-
other class ofmetric spaces satisfying the conditions of Problem 1.1. In Section 2.2we
describe the known estimates for the distortion of embeddings of equilateral spaces
and give a simple direct proof of the estimates that we will use for our results.

(C) Metric spaces from the classes mentioned in (A) and (B) can be combined
using a general construction, calledmetric composition (seeDeûnition 2.8),whichwas
introduced in [BLMN05]. In Section 2.3we present a detailed study of embeddability
properties ofmetric compositions ofmetric spaces. We prove that for a suitable choice
of parameters, themetric composition ofmetric spaceswhich embedwell into a given
Banach space E, also embedswell into E (_eorem 2.9, Corollary 2.13). Applying this
general construction to examples described in (A) and (B) we get more examples of
metric spaces satisfying the conditions of Problem 1.1. In particular ultrametrics (see
Section 2.4) can be obtained as metric compositions of equilateral sets described in
(B). _us, as a corollary of our results, we obtain that ultrametrics of exponential size
embedwith uniformly bounded distortion into any n-dimensional Banach space. We
also provide a direct proof of this fact (see Proposition 2.15 and Corollary 2.16).

Problem 1.2 (Schechtman) Can one suggest examples satisfying the condition of
Problem 1.1 which are completely diòerent from the ones mentioned in (A)–(C)?

_emain goal of this paper is to give an answer to this problem, that is, to present
an example of a family ofmetric spaces that satisfy the condition of Problem 1.1, but
do not belong to any of the classes (A)–(C).

In Section 3 we show an example of a family of graphs, that we call weighted dia-
monds Wn , which we prove do not arise from any of the discussed above examples,
and which embed with uniformly bounded distortion into any Banach space of di-
mension at least exp(c(log log ∣Wn ∣)2) for a suitably chosen c > 0. _e family {Wn}
was ûrst constructed in [Ost14], as an example of a family of topologically complicated
series-parallel graphs that embed with uniformly bounded distortion into ℓ2 (of inû-
nite dimension). In the present paper we show that Wn ’s are snow�aked versions of
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standard diamonds Dn ’s. However Dn ’s are not uniformly doubling so the embed-
dability results for Wn proved in [Ost14] and in the present paper do not follow from
Assouad’s theorem (see Remark 3.11). Our method of proof of the embeddability of
Wn ’s uses amixture of δ-net arguments and some “linear” manipulations.

In Section 4we show amore general construction of “hierarchically builtweighted
graphs” which can have topologically very complicated structures and which embed
with uniformly bounded distortion into anyBanach space of speciûed dimension (see
_eorem 4.3).

2 Low-dimensional Euclidean Subsets, Equilateral Spaces, and Their
Combinations

2.1 Low-dimensional Euclidean Subsets

We recall the following improvement of theDvoretzky theorem [Dvo61],which is due
to Milman [Mil71] (we state it in a somewhat unconventional way).

_eorem 2.1 For eachM ∈ (1,∞) there exists s(M) ∈ (0,∞) such that any n-dimen-
sional Banach space X contains a k-dimensional subspace Xk with k ≥ s(M) ln n, such
that Xk is linearly isomorphic with ℓk2 with distortion ≤ M.

We assume that s(M) is chosen in the optimal way. Let M ≤ K. _eorem 2.1
immediately implies that anymetric spacewhich admits an embedding into ℓk2 ,where
k = ⌈s(M) ln n⌉, with distortion ≤ K

M , also admits an embedding with distortion ≤ K
into any n-dimensional Banach space.

_is relates our study with the following major open problem of the theory of
metric embeddings: Find an intrinsic characterization of those separablemetric spaces
(X , dX) that admit bilipschitz embeddings into ℓn2 for some n ∈ N. See [Sem99,LP01,
Hei03] for a discussion of this problem. One of the most important results on this
problem is the Assouad theorem, which wemention below (_eorem 3.9). However,
it should bementioned that in the present context we are interested in the version of
the problem for which the dimension is speciûed. See very interesting recent results
related to this problem in [NN12, DS13], and related comments in [Hei03, Remark
3.16].

2.2 Equilateral Spaces

It follows from standard volumetric estimates that the maximal δ-separated set for
δ > 0 contained in the unit ball of any n-dimensional Banach space has cardinality at
least δ−n . It is also easy to see that a bijection between any δ-separated set in the unit
ball and an equilateral space of the same cardinality has distortion ≤ (2/δ). _erefore
an equilateral space of size ≤ ( K

2 )
n admits an embedding with distortion ≤ K into an

arbitrary n-dimensional Banach space.
A standard volumetric estimate also gives an upper bound on the cardinality of an

equilateral space which can be embedded with distortion at most K in an n-dimen-
sional Euclidean space.
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Lemma 2.2 Let {a i}N
i=1 be an equilateral space which is K-embeddable into an

n-dimensional Banach space. _en N ≤ (2K + 1)n .

Proof Let {a i}N
i=1 be equilateral with distances equal to 1, and φ ∶ {a i}N

i=1 → X be a
K-embedding. Wemay assume that there is h > 0 such that

h ≤ ∥φ(a i) − φ(a j)∥ ≤ Kh.

_erefore N( h
2 )

n < (Kh + h
2 )

n and N ≤ (2K + 1)n .

_emost precise, known, estimates for the distortion of an embedding of exponen-
tial size equilateral spaces in any Banach space can be obtained using the following
result of Arias-de-Reyna, Ball, and Villa [ABV98] (an earlier version of this result
was proved by Bourgain, see [FL94, _eorem 4.3], using Milman’s [Mil85] quotient
of subspace theorem).

_eorem 2.3 ([ABV98]) Let ε > 0, X be an n-dimensional Banach space, B its
closed unit ball, and µ, the Lebesgue measure on B normalized so that µ(B) = 1. If
t =

√
2 (1 − ε), then

µ ⊗ µ{(x , y) ∈ B × B ∶ ∥x − y∥ ≤ t} ≤ (1 − ε2(2 − ε)2) n
2 .

_eorem 2.3 implies that the set L of points x in B for which

µ{y ∈ B ∶ ∥x − y∥ ≤ t} ≤ 2(1 − ε2(2 − ε)2) n
2 ,

satisûes µ(L) ≥ 1
2 . Choosing t-separated points in the set L, one by one, we get a

t-separated set of cardinality at least
1

4 (1 − ε2(2 − ε)2) n
2
.

_is implies the following corollary.

Corollary 2.4 For every s >
√

2 there exists C(s) (= ln(s2/2
√

s2 − 1)) so that an
equilateral set of size 1

4 exp(C(s)n) embeds in any n-dimensional Banach space X with
distortion ≤ s.

It is a long standing open problem whether
√

2 in Corollary 2.4 can be replaced
by 1.

Problem 2.5 Does there exist a function C∶ (0, 1) → (0,∞) such that for each
ε ∈ (0, 1) and each n ∈ N, an equilateral space of size exp(C(ε)n) embeds in any
n-dimensional Banach space X with distortion ≤ 1 + ε?

_e answer is known to be positive forBanach space X with a 1-subsymmetric basis
[BBK89], for uniformly convex Banach spaces [ABV98] (the function C(ε) depends
on themodulus of convexity), and in some other cases, see [BB91, BPS95].

In the sequelwewill use bilipschitz embeddings of equilateral sets into unit spheres
of ûnite-dimensionalBanach spaces. For completenesswe include a simple proofwith
the speciûc constants that we will use.
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Lemma 2.6 _ere exists a constant δ ≥ 1
16 , so that for every m ≥ 1 the unit sphere of

every m-dimensional Banach space X contains 2 ⋅ 4m−1 elements of mutual distance at
least δ.

Proof Let δ > 0 and T be the maximal δ-separated set on SX . _en (2δ)-balls
centered at T cover the set of points between the spheres of radius (1+ δ) and (1− δ).
_erefore the cardinality ∣T ∣ of T satisûes

∣T ∣ ≥ (1 + δ)m − (1 − δ)m

(2δ)m .

So we need δ such that the following inequality holds for all m ≥ 1:
1
2
(8δ)m ≤ (1 + δ)m − (1 − δ)m .

Let δ = 1
16 . Since the right-hand side is ≥ 2mδ, the conclusion follows for m ≥ 2. For

m = 1 the conclusion is obvious.

Corollary 2.7 Ifwe replace 2 ⋅4m−1 by 2m in the statement of Lemma 2.6,we can take
δ = 1/8.

2.3 Metric Compositions

_e following general construction of combining metric spaces was introduced by
Bartal, Linial, Mendel and Naor for their study of metric Ramsey-type phenomena
[BLMN05].

Deûnition 2.8 (Metric composition, [BLMN05]) Let M be a ûnite metric space.
Suppose that there is a collection of disjoint ûnite metric spaces Nx associated with
the elements x of M. Let N = {Nx}x∈M . For β ≥ 1/2, the β-composition of M and
N, denoted by Mβ[N], is a metric space on the disjoint union ⋃̇xNx . Distances in
Mβ[N] are denoted dβ and deûned as follows. Let x , y ∈ M and u ∈ Nx , v ∈ Ny . _en

dβ(u, v) =
⎧⎪⎪⎨⎪⎪⎩

dNx (u, v) x = y,
βγdM(x , y) x ≠ y,

where γ = maxz∈M diam(Nz)
minx≠y∈M dM(x ,y) . It is easily checked that the choice of the factor βγ guar-

antees that dβ is indeed ametric.

We prove that themetric composition preserves embeddability properties ofmet-
ric spaces in the following sense.

_eorem 2.9 Let C ,D ≥ 1. Let E be a Banach space and M be a ûnite metric space
which is C-embeddable in E. LetN = {Nx}x∈M be a family of ûnitemetric spaceswhich
are D-embeddable in E. Let β > 2(C + 1). _en Mβ[N] is A-embeddable in E, where
A = max(D,C + 2C(C+1)

β−2(C+1)) .
In particular, if ε > 0, D ≤ C, and β > 2( C+εε )(C+1), thenMβ[N] is (C+ε)-embed-

dable in E.
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Proof Without loss of generality we can assume that

(2.1) min
x≠y∈M

dM(x , y) = 1.

Let γ = maxx∈M(diamNx). We denote the metric in Mβ[N] by dβ . For all y1 , y2 ∈
Mβ[N] there exist x1 , x2 ∈ M so that y1 ∈ Nx1 , y2 ∈ Nx2 . We have

dβ(y1 , y2) =
⎧⎪⎪⎨⎪⎪⎩

dNx (y1 , y2) if x1 = x2 = x ,
βγdM(x1 , x2) if x1 ≠ x2 .

By assumption, there exists Ψ∶M → E so that for all x1 , x2 ∈ M,

1
C
dM(x1 , x2) ≤ ∥Ψ(x1) −Ψ(x2)∥ ≤ dM(x1 , x2).

Also, for all x ∈ M there exist Φx ∶Nx → E, so that for all y, y1 , y2 ∈ Nx

(2.2)
1
D
dNx (y1 , y2) ≤ ∥Φx(y1) −Φx(y2)∥ ≤ dNx (y1 , y2),

and ∥Φx(y)∥ ≤ diam(Nx).
Let λ = β − 2, and deûne Φ∶Mβ[N] → E by Φ(y) = Φx(y) + λγΨ(x), if y ∈ Nx

for some x ∈ M.
We claim that Φ is an A-embedding, where A = max(D,C + 2C(C+1)

β−2(C+1)) .
First we consider y1 , y2 ∈ Mβ[N] so that there exists x ∈ M with y1 , y2 ∈ Nx . _en

dβ(y1 , y2) = dNx (y1 , y2) and

Φ(y1) −Φ(y2) = Φx(y1) + λγΨ(x) − (Φx(y2) + λγΨ(x)) = Φx(y1) −Φx(y2).

_us by (2.2) we have

(2.3)
1
D
dβ(y1 , y2) ≤ ∥Φ(y1) −Φ(y2)∥ ≤ dβ(y1 , y2).

Next we consider y1 , y2 ∈ Mβ[N] so that y1 ∈ Nx1 , y2 ∈ Nx2 , for some x1 , x2 ∈ M,
with x1 ≠ x2. _en dβ(y1 , y2) = βγdM(x1 , x2), and

∥Φ(y1) −Φ(y2)∥ = ∥Φx1(y1) + λγΨ(x1) − (Φx2(y2) + λγΨ(x2))∥
≤ ∥Φx1(y1)∥ + ∥Φx2(y2)∥ + λγ∥Ψ(x1) −Ψ(x2)∥

≤ 2γ + λγdM(x1 , x2)
by (2.1)
≤ (2γ + λγ)dM(x1 , x2)

= βγdM(x1 , x2) = dβ(y1 , y2).
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On the other hand,

∥Φ(y1) −Φ(y2)∥ = ∥Φx1(y1) + λγΨ(x1) − (Φx2(y2) + λγΨ(x2))∥
≥ λγ∥Ψ(x1) −Ψ(x2)∥ − ∥Φx1(y1)∥ − ∥Φx2(y2)∥

≥ 1
C

λγdM(x1 , x2) − 2γ
by (2.1)
≥ ( 1

C
λ − 2)γdM(x1 , x2)

= ( 1
C
(β − 2) − 2)γdM(x1 , x2)

= β − 2C − 2
Cβ

βγdM(x1 , x2)

= β − 2C − 2
Cβ

dβ(y1 , y2).

_is and (2.3) imply that Φ is an A-embedding of Mβ[N] into E.
Note that if β > 2( C+εε )(C + 1), then

Cβ
β − 2C − 2

= C + 2C(C + 1)
β − 2C − 2

< C + 2C(C + 1)
2(1 + C

ε )(C + 1) − 2(C + 1)
= C + ε.

_us, if D ≤ C, then A ≤ C + ε.

Deûnition 2.10 ([BLMN05]) Given a class M of ûnitemetric spaces and β ≥ 1, we
deûne its closure compβ(M) under ≥ β-compositions as the smallest classC ofmetric
spaces that contains all spaces in M and satisûes the following condition: let M ∈M,
β′ ≥ β, and associate with every x ∈ M ametric space Nx that is isometric to a space
in C. _en the space Mβ′[N] is also in C.

Note that compβ(M) can be described as a union of smaller classes which have
increasing complexity. More precisely

(2.4) compβ(M) =
∞

⋃
m=0

Cm ,

where C0 = M, and for m ∈ N, Cm is the class of metric spaces of the form Mβ′[N],
whereM ∈M, β′ ≥ β, andN = {Nx}x∈M , where for every x ∈ M ametric space Nx is
isometric to a space in ⋃m−1

i=0 Ci .
_e operation of composition has the following associativity property.

Proposition 2.11 Let M be a ûnitemetric space, β1 ≥ 1/2, β2 ≥ 1,N1 = {Nx}x∈M and
N2 = {Ñy}y∈Mβ1 (N1) be families of ûnitemetric spaces. _en

(Mβ1(N1)) β2(N2) = Mβ1(N3),

whereN3 is a family of ûnitemetric spaces of the form (Nx)βx ({Ñy}y∈Nx ),where x ∈ M
and βx ≥ β2.
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Proof For each x ∈ M, deûne N⋆
x as the disjoint union of Ñy over y ∈ Nx , with the

metric inherited from (Mβ1(N1)) β2(N2). Let N3 be the collection of all N⋆
x

N3 = {N⋆
x }x∈M = {⋃̇y∈Nx

Ñy}x∈M .

Denote themetric in (Mβ1(N1)) β2(N2) by d. For all z1 , z2 ∈ (Mβ1(N1)) β2(N2)
there exist y1 , y2 ∈ Mβ1(N1) so that z1 ∈ Ñy1 , z2 ∈ Ñy2 , x1 , x2 ∈ M, and y1 ∈ Nx1 ,
y2 ∈ Nx2 . We have

d(z1 , z2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dÑy
(z1 , z2) if z1 , z2 ∈ Ñy ,

β2γ2dNx (y1 , y2) if z1 , z2 ∈ N⋆
x , y1 ≠ y2 ,

β2γ2β1γ1dM(x1 , x2) if z1 ∈ N⋆
x1
, z2 ∈ N⋆

x2 , x1 ≠ x2 ,

where

γ1 =
maxx∈M diam(Nx)

minx1≠x2∈M dM(x1 , x2)
, γ2 =

maxy∈Mβ1 (N1) diam(Ñy)
miny1≠y2∈Mβ1 (N1) dMβ1 (N1)(y1 , y2)

.

We claim that for every x ∈ M, there exists βx ≥ β2 so that

(2.5) N⋆
x = (Nx)βx ({Ñy}y∈Nx ).

Indeed, it is enough to observe that for every x ∈ M, γx ≤ γ2, where

γx
def=

maxy∈Nx diam(Ñy)
miny1≠y2∈Nx dNx (y1 , y2)

.

To prove that (Mβ1(N1)) β2(N2) = Mβ1(N3), we deûne

γ3
def= maxx∈M diam(N⋆

x )
minx1≠x2∈M dM(x1 , x2)

.

Observe that

max
x∈M

diam(N⋆
x ) = max(β2γ2 max

x∈M
diam(Nx), max

y∈Mβ1 (N1)
diam(Ñy)) .

Ifmaxy∈Mβ1 (N1) diam(Ñy) > β2γ2 maxx∈M diam(Nx), then by deûnition of γ2,

min
y1≠y2∈Mβ1 (N1)

dMβ1 (N1)(y1 , y2) > β2 max
x∈M

diam(Nx),

and thus, since β2 ≥ 1, minx∈M miny1≠y2∈Nx dNx (y1 , y2) > maxx∈M diam(Nx), which
is impossible. _us maxx∈M diam(N⋆

x ) = β2γ2 maxx∈M diam(Nx). Hence,
β1β2γ1γ2

γ3
= β1 ,

and the proposition is proved.

As an immediate corollary of Proposition 2.11 and (2.5) we obtain.

Corollary 2.12 Let M be a family of ûnitemetric spaces and β ≥ 1. _en

compβ(compβ(M)) = compβ(M).

As a consequence of_eorem 2.9 we obtain the following result.
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Corollary 2.13 Let C ≥ 1. Let E be a Banach space andM be a family of ûnitemetric
spaceswhich are C-embeddable in E. Let β > 2(C+ 1). _en every space in compβ(M)
is A-embeddable in E, where A = C + 2C(C+1)

β−2(C+1) .
In particular, for any ε > 0, if β > 2( C+εε )(C + 1), then every space in compβ(M)

is (C + ε)-embeddable in E.

Proof We prove this by induction on the level of complexity of spaces in compβ(M).
If M ∈ C0 =M, then by assumption M is C-embeddable in E.

Suppose that for some m ∈ N, every space in ⋃m−1
i=0 Ci is A-embeddable in E. Let

X ∈ Cm . _en there exist M ∈ M, β′ ≥ β, and N = {Nx}x∈M , where for every
x ∈ M ametric space Nx is isometric to a space in ⋃m−1

i=0 Ci , so that X = Mβ′[N]. By
assumption, M is C-embeddable in E, and by inductive hypothesis, every space inN

is A-embeddable in E. _us by _eorem 2.9, X is B-embeddable in E, where

B = max(A,C + 2C(C + 1)
β − 2(C + 1)) = A.

2.4 Ultrametrics and Hierarchically Well-separated Trees

An ultrametric is ametric space (M , d) such that for every x , y, z ∈ M,

d(x , z) ≤ max{d(x , y), d(y, z)}.

_ese spaces appeared in a natural way in the study of p-adic number ûelds, see
[Sch84]. Currently ultrametrics play an important role in many branches of mathe-
matics, see for example [BLMN05,Hug12,MN13], and references therein. It is known
that ultrametrics have very good embedding properties, see [Shk04] and its refer-
ences. In particular, Shkarin [Shk04] proved that for any ûnite ultrametric (M , d),
there exists m = m(M , d) ∈ N such that for any Banach space E with dim E ≥ m there
exists an isometric embedding of M into E. In this result m is large and depends on
M, not only on the cardinality of M. Observe that any isometric embedding of an
equilateral space with n points (it is the simplest ultrametric) into a Euclidean space
requires dimension ≥ n − 1. So isometric embeddings of ultrametrics require large
dimension. _e situation changes if we allow some distortion. Bartal, Linial,Mendel
and Naor [BLMN04] proved that there exist constants C ≥ 1 and c > 0 such that any
n-point ultrametric C-embeds into ℓkp , for any k ≥ c ln n and any 1 ≤ p ≤∞. _e goal
of this section is to prove that there exists a universal constant K such that any n-point
ultrametric embeds into any Banach space of dimension log2 n with distortion ≤ K.

It turns out that for embeddability of ultrametrics it is convenient to use the fol-
lowing,more restricted class ofmetrics.

Deûnition 2.14 ([Bar96]) For k ≥ 1, a k-hierarchically well-separated tree (k-HST)
is a metric space whose elements are the leaves of a rooted tree T . To each vertex
u ∈ T there is associated a label ∆(u) ≥ 0 such that ∆(u) = 0 if and only if u is a leaf
of T . It is required that if a vertex u is a child of a vertex v, then ∆(u) ≤ ∆(v)/k. _e
distance between two leaves x , y ∈ T is deûned as ∆(lca(x , y)),where lca(x , y) is the
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least common ancestor of x and y in T . A k-HST is said to be exact if ∆(u) = ∆(v)/k
for every two internal vertices (that is, neither u nor v is a leaf)where u is a child of v.

First, note that an ultrametric on a ûnite set and a (ûnite) 1-HST are identical con-
cepts. Any k-HST is also a 1-HST, i.e., an ultrametric. When we discuss k-HST’s, we
freely use the tree T as in Deûnition 2.14, which we refer to as the tree deûning the
HST. An internal vertex in T with out-degree 1 is said to be degenerate. If u is nonde-
generate, then ∆(u) is the diameter of the sub-space induced on the subtree rooted by
u. Degenerate nodes do not in�uence themetric on T ’s leaves; hence wemay assume
that all internal nodes are nondegenerate (note that this assumption need not hold for
exact k-HST’s).
By [BLMN05, Proposition 3.3], the class of k-HST coincides with compk(EQ),

where EQ denotes the class of ûnite equilateral spaces. _us, by Corollary 2.7 and
Corollary 2.13 there exists k0 ≥ 2 so that every k-HSTwith k ≥ k0 admits a bilipschitz
embedding into any Banach space X with dimX ≥ log2 D, where D is the maximal
out-degree of a vertex in the tree deûning the k-HST, with a uniformly bounded dis-
tortion, which generalizes [BLMN04, Proposition 3].

Our next goal is to provide an alternativemore direct proof of this result.

Proposition 2.15 Any k-HST with k > 17 admits a bilipschitz embedding into any
Banach space X with dimX ≥ log2 D, where D is the maximal out-degree of a vertex
in the tree deûning the k-HST, with distortion not exceeding 16k

k−17 .

Proof Let v be any of the non-leaf vertices of the tree deûning the k-HST. _e num-
ber of edges E(v) contributing to the out-degree of v is at most D. Let δ = 1/8. By
Corollary 2.7 there is an injective map φv from E(v) to the δ-net on the unit sphere
of X. Combining φv for all non-leaf vertices v we get a (no longer injective) map φ
from the edge set of the tree to the δ-net.

Now we deûne themap f on the set of leaves into X. For a leaf ℓ let

f (ℓ) = ∑
t∈[r ,ℓ]

∆(t)φ(t t̃ ),

where r is the root, ℓ is the last non-leaf on the way from r to ℓ, [r, ℓ] is the path
joining r and ℓ (path is regarded as a set of vertices), t̃ is the next a�er t vertex on the
path from r to ℓ, and ∆(t) is the label assigned according to Deûnition 2.14.

Let us estimate the distortion. Let ℓ1 and ℓ2 be two leaves in the tree, v be their
least common ancestor, v1 and v2 be the ûrst (a�er v) vertices on the paths [v , ℓ1] and
[v , ℓ2], respectively. _en (we use the fact that ∆(v) = d(ℓ1 , ℓ2))

∥ f (ℓ1) − f (ℓ2)∥ = ∥ ∑
t∈[v ,ℓ1]

∆(t)φ(t t̃ ) − ∑
t∈[v ,ℓ2]

∆(t)φ(t t̃ )∥

≥ ∆(v)∥φ(vv1) − φ(vv2)∥ − ∑
t∈[v1 ,ℓ1]

∆(t)∥φ(t t̃ )∥ − ∑
t∈[v2 ,ℓ2]

∆(t)∥φ(t t̃ )∥

≥ 1
8
∆(v) − 2∆(v)( 1

k
+ 1

k2 +
1
k3 + ⋅ ⋅ ⋅ ) = d(ℓ1 , ℓ2)(

1
8
− 2

k − 1
) .
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On the other hand,

∥ f (ℓ1) − f (ℓ2)∥ = ∥ ∑
t∈[v ,ℓ1]

∆(t)φ(t t̃ ) − ∑
t∈[v ,ℓ2]

∆(t)φ(t t̃ )∥

≤ ∑
t∈[v ,ℓ1]

∆(t)∥φ(t t̃ )∥ + ∑
t∈[v ,ℓ2]

∆(t)∥φ(t t̃ )∥

≤ 2∆(v)( 1 + 1
k
+ 1

k2 +
1
k3 + ⋅ ⋅ ⋅ ) = d(ℓ1 , ℓ2)

2k
k − 1

.

Since for any k > 1, any ultrametric is k-bilipschitz equivalent to a k-HST ([Bar99],
see also [BLMN05, Lemma 3.5]),we obtain the following corollary of Proposition 2.15
(which is an arbitrary-space version of results of [BLMN04] and [BM04]).

Corollary 2.16 Any n-point ultrametric embeds with uniformly bounded distortion
into any Banach space X with dim(X) ≥ log2 n.

Remark 2.17 It is natural to try to achieve distortions arbitrarily close to 1 in Propo-
sition 2.15, provided that k is suõciently large and the dimension is a suõciently large
multiple of log2 D. _is is what was done for embeddings into ℓp in [BLMN04], as
a consequence of the fact that n-point equilateral sets can be (1 + ε)-embedded into
ℓkp with k ≤ C(ε) ln n. By Corollary 2.13 (or a careful reading of the proof of Propo-
sition 2.15) we obtain the same conclusion in every Banach space that satisûes the
condition of Problem 2.5. See Section 2.2 for a list of classes of spaces known to sat-
isfy this condition.

3 A New Example: Weighted Diamond Graphs

Ourbasic example is the familyofweighted diamonds {Wn}∞n=0 introduced in [Ost14].
Let us recall the deûnitions.

Deûnition 3.1 ([GNRS04]) Diamond graphs {Dn}∞n=0 are deûned as follows: the
diamond graph of level 0 is denotedD0; it contains two vertices joined by an edge. _e
diamond graph Dn is obtained from Dn−1 as follows. Given an edge uv ∈ E(Dn−1), it
is replaced by a quadrilateral u, a, v , b, with edges ua, av, vb, bu. (See Figure 3.1 for a
sketch of D2.)

Deûnition 3.2 ([Ost14]) We pick a number ε ∈ (0, 1
2 ). _e sequence {Wn}∞n=0 of

weighted diamonds is deûned in terms of diamonds {Dn}∞n=0 as follows (see Figure
3.2 for a sketch ofW2).
● W0 is the same as D0. _e only edge of D0 is given the weight 1.
● W1 = D1 ∪W0 with edges of D1 givenweights ( 1

2 + ε) ; theweight of the edge ofW0
stays as 1 (as it was in the ûrst step of the construction).

● W2 = D2 ∪W1 with edges of D2 given weights ( 1
2 + ε)

2
; weights of the edges ofW1

stay as they were in the previous step of the construction.

⋮
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● Wn = Dn ∪Wn−1 with edges of Dn given weights ( 1
2 + ε)

n
; weights of the edges of

Wn−1 stay as they were in the previous step of the construction.
● Graphs {Wn} are endowedwith their shortest path distanceswhichwe denote dW .

Remark 3.3 Observe that themetric ofWn depends on ε althoughwe do not re�ect
this fact in our notation.

Figure 3.1: Diamond D2 .

Figure 3.2: Graph W2 . _e longest edge has weight 1, the shortest edges have weights ( 1
2 + ε)

2 ,
the edges of intermediate length have weights ( 1

2 + ε).

Note that Dk has 4k edges and that in each step we introduce 2 new vertices ofWk
per each edge of Dk−1. HenceWk , k ≥ 1, has 2(4k−1 + 4k−2 + ⋅ ⋅ ⋅ + 1)+ 2 vertices. _us
1
24

n ≤ ∣Wn ∣ < 4n for n ≥ 2 and

(3.1) 2n − 1 ≤ log2 ∣Wn ∣ < 2n.

Using amixture of δ-net arguments (Lemma 2.6) and some “linear”manipulations
we prove that Wn ’s admit bounded-distortion embeddings into all Banach spaces
with dimension bounds which are substantially smaller than the ones implied by the
Dvoretzky-type_eorem 2.1. Namely, in Section 3.3wewill prove the following result
(Corollary 3.22).
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Corollary 3.4 For every ε ∈ (1/2, 1), there exist constants c,C > 1 so that for every n ≥
C,Wn can be embedded in every Banach space X with dimX ≥ exp( c(log log ∣Wn ∣)2)
with the distortion bounded from above by a constant which depends only on ε.

Before provingCorollary 3.4we study the structure of theweighted diamondsWn .
We show that they are snow�aked versions of standard diamonds Dn and that Wn ’s
are not included in the set of examples presented in Section 2.

3.1 Weighted Diamonds Are Bilipschitz-equivalent to Snowflaked Diamonds

_e following deûnition is standard (see [Hei01, p. 98]).

Deûnition 3.5 Let (X , dX) be ametric space and 0 < α < 1. _e space X endowed
with amodiûedmetric (dX(u, v))α is called a snow�ake of (X , dX). We also say that
(X , dαX) is an α-snow�aked version of (X , dX).

One of the standard metrics on diamonds {Dk}∞k=1 is the shortest path distance
obtained under the assumption that each edge in Dk has length ( 1

2 )
k . Let us denote

this metric dDk .

Proposition 3.6 For any ε ∈ (0, 1/2) there exists α ∈ (0, 1) so that the natural identity
bijections of (vertex sets of)weighted diamonds {Wk} onto (vertex sets of) α-snow�aked
versions of diamonds {(Dk , dDk)} have uniformly bounded distortions for all k ∈ N.

For the proof we need the following fact about the structure of shortest paths in
Wn , which was proved in [Ost14, Claim 4.1].

Lemma 3.7 ([Ost14, Claim 4.1]) A shortest path between two vertices in Wn can
contain edges of each possible length:

1, ( 1
2
+ ε) , ( 1

2
+ ε) 2

, ( 1
2
+ ε) 3

, . . .

at most twice. Actually for 1 this can happen only once because there is only one such
edge. If there are two longest edges, they are adjacent.

Proof (_is proof is a slightlymodiûed version of the proof in [Ost14]; we include it
here for the convenience of the readers.) Let e be one of the longest edges in the path
and ( 1

2 + ε)
k be its length. We assume that k ≥ 1; the case k = 0 can be considered on

the same lines, it is even easier.
As for diamonds,we deûneweighted subdiamonds to be subsets ofWn that evolved

from an edge (as sets of vertices they coincidewith the subdiamonds deûned in [JS09,
Ost14]). _e edge from which a subdiamond evolved is called its diagonal.
Consider the subdiamond S containing e with diagonal of length ( 1

2 + ε)
k−1 . Let

e = uv. Without loss of generality we may assume that u is one of the ends of the
diagonal of S, denote the other end by t.

_e rest of thepath consists of two pieces, starting atu and v, respectively. We claim
that the part which starts at v can never leave S. It obviously cannot leave through u.
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It cannot leave through t, because otherwise the piece of the path between u and t
could be replaced by the diagonal of S, which is strictly shorter.

_is implies that the part of the path in S which starts at v can contain edges only
shorter than ( 1

2 + ε)
k . For the next edge in this part of the path we can repeat the

argument and get, by induction, that lengths of edges in the remainder of the path in
S are strictly decreasing.

_epart of thepathwhich starts atu can be considered similarly. _e last statement
of the Lemma is immediate from the proof.

Proof of Proposition 3.6 Let ε ∈ (0, 1/2) and let ( 1
2 + ε) be the weight of edges of

W1 which are not in W0. Pick α ∈ (0, 1) so that ( 1
2 )
α = ( 1

2 + ε). Since every edge of
Dk has length ( 1

2 )
k , ifwe raise its length to the power α,we get the length of the same

edge inWk . _erefore (since dαDk
satisûes the triangle inequality) for any two vertices

x , y of Dk (or Wk) we have (dDk(x , y))α ≤ dWk(x , y).
To get the inequality in the other direction, let uv be the one of the (at most two)

longest edges in the shortest xy-path in Wk . We claim that

(3.2) dDk(x , y) ≥
1
2
dDk(u, v).

If (3.2) is satisûed, then by Lemma 3.7 and since uv is an edge we have

dWk(x , y) ≤ 2dWk(u, v)( 1 + ( 1
2
+ ε) + ( 1

2
+ ε) 2 + ⋅ ⋅ ⋅)

= 2dWk(u, v)
1
2 − ε

= 2
1
2 − ε

(dDk(u, v))α ≤
2α+1

1
2 − ε

(dDk(x , y))α

= 8
1 − 4ε2

(dDk(x , y))α .

We assumewithout loss of generality that the shortest xy-path visits u before v. To
prove (3.2) we consider three possible cases.
Case 1: Both x and y are contained in the subdiamond S with diagonal uv.
Case 2: Exactly one of x, y is contained in the subdiamond S with the diagonal uv.
Case 3: None of x, y is contained in the subdiamond S with the diagonal uv.

Let m0 ∈ N be the smallest number such that

( 1
2
+ ε) + ( 1

2
+ ε) 2 + ⋅ ⋅ ⋅ + ( 1

2
+ ε)m0 ≥ 1 + ( 1

2
+ ε)m0 .

It is clear that m0 ≥ 3 if ε ∈ (0, 1
2 ).

We show that in Case 1 y is contained in one of the subdiamonds of S whose diag-
onal has length ≤ ( 1

2 + ε)
m0−1dWk(u, v), and v is one of its ends. In fact, otherwise the

vy-path in Wk , which is a part of the shortest xy-path which we consider, contains a
vertex z of the subdiamond S for which zv is an edge ofWk satisfying

dWk(z, v) = ( 1
2
+ ε) t

dWk(u, v)

for some positive integer t ≤ m0 − 1. But then there is a uz-path Ps in Wk which is
strictly shorter than any uz-path Pl through v, contrary to our assumption that one
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Figure 3.3: Paths Ps and Pl in the subdiamond S

of the shortest xy-paths passes through u and v. To see this we observe that we can
pick Ps (see Figure 3.3) of length

(( 1
2
+ ε) + ( 1

2
+ ε) 2 + ⋅ ⋅ ⋅ + ( 1

2
+ ε) t)dWk(u, v),

and that Pl is of length at least

( 1 + ( 1
2
+ ε) t)dWk(u, v).

_e conclusion length(Ps) < length(Pl) follows from t ≤ m0 − 1 and the deûnition
of m0.

_e statement that y is contained in one of the subdiamonds of S whose diagonal
has length ≤ ( 1

2 + ε)
m0−1dWk(u, v), and v is one of its ends implies that dDk(y, v) ≤

( 1
2 )

m0−1dDk(u, v) ≤ 1
4dDk(u, v) since m0 ≥ 3. Similarly we prove that dDk(x , u) ≤

1
4dDk(u, v). We conclude that

dDk(x , y) ≥ dDk(u, v) − dDk(y, v) − dDk(x , u) ≥ ( 1 − 2
4
)dDk(u, v) =

1
2
dDk(u, v),

so the inequality (3.2) is satisûed when Case 1 holds.
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InCases 2 and 3we consider the subdiamond ofWk with the diagonal of the length
( 1

2 + ε)
m−1 (where ( 1

2 + ε)
m is the length of uv in Wk). Wemay assume without loss

of generality that the diagonal of this subdiamond is of the form uw. We denote by ṽ
the other vertex for which both ṽu and ṽw have length ( 1

2 + ε)
m .

Because of lack of symmetry we consider separately Case 2a, where x is and y is
not in the subdiamond S with the diagonal uv, and Case 2b, where y is and x is not
in the subdiamond S with the diagonal uv.

In Case 2a the vertex y is contained in the subdiamond with the diagonal vw (be-
cause the edge uw is shorter than any other uw-path). Also dDk(x , u) ≤ 1

4dDk(u, v)
for the same reason as in Case 1. Hence dDk(x , y) > 3

4dDk(u, v).
InCase 2b there are two subcases: where x is in the subdiamondwith the diagonal

uw, and where x is not there. In both cases it is easy to see that the shortest in Dk
xy-path cannot be shorter than dDk(u, y) ≥ 3

4dDk(u, v).
In Case 3 the only situation inwhich the desired inequality is not immediate is the

situation where x is in the subdiamond with the diagonal ṽw and y is in the subdia-
mond with the diagonal vw. In this case the shortest path contains both the edge ṽu
and uv. Replacing these edges by the edges ṽw and wv, we get one of the previously
considered cases.

In this context it is natural to recall the following well-known result of Assouad
[Ass83] (see also [Hei01, Chapter 12]).

Deûnition 3.8 A metric space is called doubling if there exists N < ∞ such that
each ball in this space can be covered by at most N balls of twice smaller radius.

_eorem 3.9 ([Ass83]) Each snow�aked version of a doubling metric space admits a
bilipschitz embedding into a Euclidean space.

Remark 3.10 In the original proof of_eorem 3.9 the dimension N of the receiving
Euclidean space and the distortion of the embedding depend both on the doubling
constant of the metric space and on the amount α of snow�aking, with N going to
∞, as α approaches 1. Recently, Naor and Neiman [NN12] (cf. also [DS13]) obtained
estimates of N depending only on the doubling constant and independent of α, for
α ∈ (1/2, 1).

Remark 3.11 _e spaces {Wk} do not satisfy the assumptions of_eorem 3.9, i.e.,
the spaces {Dk}∞k=1 are not uniformly doubling. Indeed, balls of radius ( 1

2 )
k centered

at the bottom of Dk contain 2k vertices ofmutual distance ( 1
2 )

k−1, in addition to the
bottom vertex, and thus no pair of such vertices is contained in any ball of radius
( 1

2 )
k+1.
Note that the doubling condition is important for ℓ2-embeddability in_eorem 3.9.

Consider, for example, the space L1(0, 1) and α ∈ ( 1
2 , 1), and apply [AB14, Lemma 2.1].

_us the results about embeddings of {Wk} in [Ost14] and in the present paper are
not covered by the Assouad theorem (_eorem 3.9).
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3.2 Weighted Diamonds Are Not Included in the Set of Examples Presented in
Section 2

_e goal of this section is to show that the bilipschitz embeddability ofWn ’s into an ar-
bitraryBanach space of dimension exp(Ω((log log ∣Wn ∣)2))with uniformly bounded
distortion does not follow from results of Section 2.

We start from two simple results about nonembeddability ofWn ’s with uniformly
bounded distortion into low-dimensional Euclidean spaces and equilateral spaces.

Proposition 3.12 _e distortions of embeddings of Wn into ℓk(n)2 can be uniformly
bounded only if k(n) ≥ cn ≈ c log(∣Wn ∣) for some c > 0.

Proof _is is an immediate consequence of Lemma 2.2 and the following lemma.

Lemma 3.13 _e spaces Wn contain equilateral subsets of sizes 2m for all m ≤ n.

Proof _e bottom vertex b of Wn is adjacent in Wm ⊆ Wn to 2m vertices {a j}2m
j=1

with edges of length ( 1
2 + ε)

m joining them and b, and thus for all 1 ≤ i , j ≤ 2m , with
i ≠ j, dWn(a i , a j) = 2( 1

2 + ε)
m .

Remark 3.14 _e same argument shows non-embeddability ofWn ’swith uniformly
bounded distortion into any low-dimensional Banach spaces.

Proposition 3.15 _e spaces Wn cannot be embedded with uniformly bounded dis-
tortion into any equilateral space.

Proof _e maximal distance between two elements in Wn is ≥ 1, and the minimal
distance is ( 1

2 + ε)
n . Hence any embedding ofWn into an equilateral space has dis-

tortion greater than or equal to ( 1
2 + ε)

−n . _us, since ε ∈ (0, 1
2 ), the distortions are

not uniformly bounded.

In the next two propositions we show that Wn ’s do not admit bilipschitz embed-
dings with uniformly bounded distortions into spaces of the form Mβ(N) where
β ≥ 1/2, the collection N of metric spaces is such that Wn does not admit bilipschitz
embeddings with uniformly bounded distortions into any N ∈ N and M is either an
equilateral space or ametric space that admits a bounded-distortion embedding into
a O((log log ∣Wn ∣)2)-dimensional Euclidean space.

Proposition 3.16 For n ∈ N, let An , Bn > 0 be constants so that there exists a ûnite
equilateral metric space M, β ≥ 1/2, and N = {Nx}x∈M a collection of ûnite metric
spaces so that for any x ∈ M,Wn cannot be embedded into Nx with distortion ≤ An/Bn ,
and so that there exists an embedding ϕ∶Wn → Mβ(N) such that for all u1 , u2 ∈Wn ,

(3.3) BndWn(u1 , u2) ≤ dβ(ϕ(u1), ϕ(u2)) ≤ AndWn(u1 , u2).
_en

lim
n→∞

An

Bn
=∞.
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Proof Since M is equilateral, we have

dβ(y1 , y2) =
⎧⎪⎪⎨⎪⎪⎩

dNx (y1 , y2) if y1 , y2 ∈ Nx ,
βγ if y1 ∈ Nx1 , y2 ∈ Nx2 , x1 ≠ x2 ,

where γ = maxx∈M diam(Nx).
Since for any x ∈ M, Wn cannot be embedded into Nx with distortion ≤ An/Bn ,

there exist v1 , v2 ∈Wn so that

(3.4) ϕ(v1) ∈ Nx1 , ϕ(v2) ∈ Nx2 , and x1 ≠ x2 .

In Wn we can travel between any pair of vertices using edges of the smallest avail-
able length, i.e., there exists a sequence of vertices {u j} j0

j=0 so that u0 = v1, u j0 = v2,
and for all 0 < j ≤ j0, dWn(u j , u j−1) = ( 1

2 +ε)
n . For 0 < j ≤ j0, let z j = ϕ(u j). By (3.4),

there exists 0 < i ≤ j0 so that z i−1 ∈ Nx , z i ∈ Nx′ , and x ≠ x′. _us dβ(z i−1 , z i) = βγ.
Hence by (3.3), we have

(3.5) Bn(
1
2
+ ε) n ≤ βγ ≤ An(

1
2
+ ε) n

.

Now let w1 ,w2 ∈Wk be such that dWk(w1 ,w2) = 1. _en

(3.6) Bn ≤ dβ(ϕ(w1), ϕ(w2)) ≤ An .

If there exists x ∈ M so that ϕ(w1), ϕ(w2) ∈ Nx , then dβ(ϕ(w1), ϕ(w2)) =
dNx (ϕ(w1), ϕ(w2)) ≤ γ. _erefore, combining (3.5) and (3.6), since β ≥ 1/2, we ob-
tain

An

Bn
≥ β( 1

1
2 + ε

)
n
≥ 1

2
( 1

1
2 + ε

)
n
.

If ϕ(w1) ∈ Nx1 , ϕ(w2) ∈ Nx2 , where x1 ≠ x2, then dβ(ϕ(w1), ϕ(w2)) = βγ. _ere-
fore, combining (3.5) and (3.6), we obtain

An

Bn
≥ ( 1

1
2 + ε

)
n
.

Since ( 1
2 + ε) < 1, in either case the proposition is proved.

Proposition 3.17 Let C ≥ 1. For n ∈ N, let An , Bn > 0 be constants, possibly de-
pending on C, so that there exists a ûnitemetric spaceM which admits a C-embedding
into a O((log log ∣Wn ∣)2)-dimensional Euclidean space, β ≥ 1/2, and N = {Nx}x∈M a
collection of ûnitemetric spaces so that for any x ∈ M,Wn cannot be embedded into Nx
with distortion ≤ An/Bn , and so that there exists an embedding ϕ∶Wn → Mβ(N) such
that for all u1 , u2 ∈Wn ,

BndWn(u1 , u2) ≤ dβ(ϕ(u1), ϕ(u2)) ≤ AndWn(u1 , u2).

_en

lim
n→∞

An

Bn
=∞.
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Proof By Lemma 3.13, since ⌊
√

n⌋ ≤ n, the spaces Wn contain equilateral subsets
Sn of sizes 2⌊

√
n⌋ with distances between their elements equal to 2( 1

2 + ε)
⌊
√

n⌋. By
(3.1)we have limn→∞

⌊
√

n⌋
(log2 log2 ∣Wn ∣)2

=∞. _us, by Lemma 2.2, Sn do not admit bilip-
schitz embeddings with uniformly bounded distortions into a O((log log ∣Sn ∣)2) =
O((log log ∣Wn ∣)2)-dimensional Euclidean space, and thus into M. _erefore ϕ maps
some elements of u1 , u2 ∈ Sn into the same set Nx0 for some x0 ∈ M (see Deûni-
tion 2.8). We have

Bn2(
1
2
+ ε) ⌊

√
n⌋ ≤ dNx0

(ϕ(u1), ϕ(u2)) ≤ An2(
1
2
+ ε) ⌊

√
n⌋

and

(3.7) max
x∈M

diam(Nx) ≥ diam(Nx0) ≥ dNx0
(ϕ(u1), ϕ(u2)) ≥ Bn2(

1
2
+ ε) ⌊

√
n⌋
.

On the other hand, our assumptions imply that all elements ofWn are not mapped
into the same set Nx , i.e., there exist vertices v1 and v2 ofWn which aremapped into
sets Nx1 and Nx2 with x1 ≠ x2. Using the same argument as in the proof of (3.5) in
Proposition 3.16, we obtain that there exist y1 ≠ y2 ∈ M so that

(3.8) Bn(
1
2
+ ε) n ≤ βγdM(y1 , y2) ≤ An(

1
2
+ ε) n

,

where γ = maxx∈M diam(Nx)
minx≠y∈M dM(x ,y) . By (3.7) and (3.8) we get

An(
1
2
+ ε) n ≥ βγdM(y1 , y2) = β ⋅

maxx∈M diam(Nx)
minx≠y∈M dM(x , y) dM(y1 , y2)

≥ βmax
x∈M

diam(Nx) ≥ βBn2(
1
2
+ ε) ⌊

√
n⌋
.

_erefore

An

Bn
≥ ( 1

2
+ ε) ⌊

√
n⌋−n

.

Since ( 1
2 + ε) < 1, the proposition is proved.

We are now ready to prove the main result of this subsection. We denote by E

the class of all ûnite equilateral spaces, by Ln ,C , for n ∈ N and C ≥ 1, the class of all
ûnite metric spaces that admit embeddings into O((log n)2) = O((log log ∣Wn ∣)2)-
dimensional Euclidean spaces with distortion ≤ C, and let Mn ,C = E ∪Ln ,C .

_eorem 3.18 For any C , β ≥ 1, the spaces Wn do not admit embeddings with a
uniformly bounded distortion into metric spaces V ∈ compβ(Mn ,C).

Proof _e proof is by induction on the level m of complexity of spaces V ∈
compβ(Mn ,C) as deûned in (2.4). _e base casem = 0 follows from Propositions 3.12
and 3.15. By Proposition 2.11, the inductive step follows from Propositions 3.16 and
3.17.
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3.3 Embeddings of Weighted Diamonds Into Low Dimensional Banach Spaces
With Uniformly Bounded Distortion

We prove ûrst thatweighted diamonds can be embedded into low dimensional spaces
with a basis with distortion which is bounded by a constant that depends only on ε
and the basis constant of the target space.

_eorem 3.19 For every C ≥ 1 and ε ∈ (0, 1/2) there exists a constant D ≥ 1 so that
for every n ≥ 2,Wn D-embeds into every Banach space X with a Schauder basis with
basis constant smaller than or equal to C and of dimension ≥ 1

2 (log2 ∣Wn ∣)2.

To apply _eorem 3.19 to embeddings into arbitrary ûnite dimensional spaces we
need to know what is the best estimate for the dimension of a subspace with a basis
constant C in any n-dimensional Banach spaces. More precisely, we are interested in
lower bounds for the following problem.

Problem 3.20 Let C ∈ (1,∞). Deûne the function fC(n) to be the largest k ∈ N so
that each n-dimensional Banach space contains a k-dimensional subspace with basis
constant at most C. What are the estimates for fC(n)?

Known upper estimates can be found in [MT93]. Many experts believe that the
techniques of [MT93] (which go back to Gluskin [Glu81] and Szarek [Sza83]) can be
used to achieve the upper bound of order n1/2 (perhaps multiplied by some power of
a logarithm), but it does not seem that anyone has worked this out.

_e best lower bound for fC(n) that we have found in the literature is a result
Szarek and Tomczak-Jaegermann [ST09], where they studied the nontrivial projec-
tion problem. _us they were interested in ‘large’ subspaces with ‘large’ codimension
which have small projection constants in comparisonwith their dimension, but since
the subspaces found in [ST09] were close to ℓkp with p ∈ {1, 2,∞}, their result can
be used for our purposes. It appears that techniques of [AM83,Rud95, ST09,Tal95]
could be useful for further work on lower estimates for Problem 3.20.

We state here the result of [ST09] in the form closest to the answer to Problem 3.20.

_eorem 3.21 ([ST09]) _ere exist absolute constants A, B,C > 0 so that for every
n ≥ A and for every n-dimensional normed space X, there exists a subspace Y ⊆ X
so that dimY ≥ B exp( 1

2

√
ln n) and Y is C-isomorphic to an ℓp-space for some p ∈

{1, 2,∞}.

As an immediate consequence of _eorems 3.19 and 3.21 we obtain that Wn ’s can
be embedded with uniformly bounded distortion in an arbitrary Banach space of di-
mension exp(c(log log ∣Wn ∣)2) for some ûxed c > 1.

Corollary 3.22 For every ε ∈ (1/2, 1), there exist constants c,C > 1 so that for
every n ≥ C, Wn can be embedded in every Banach space X such that dimX ≥
exp(c(log log ∣Wn ∣)2) with the distortion bounded from above by a constant that de-
pends only on ε.
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_e remainder of this section is devoted to the proof_eorem 3.19.

Proof of_eorem 3.19 Fix C ≥ 1, ε > 0, and n ≥ 2. Let X be any Banach space with
dimX = d ≥ 1

2 (log2 ∣Wn ∣)2, and with a Schauder basis {x i}d−1
i=0 with basis constant at

most C so that ∥x i∥ = 1 for all i. Let

Y0 = span{x0}, Y1 = span{x1}, Ym = span{x j ∶ (
m−1

∑
k=1

k) + 1 ≤ j ≤
m

∑
k=1

k} ,

for m = 2, . . . , n. Note that, for m = 1, . . . , n, dimYm = m, and thus, by (3.1) and since
n ≥ 2,

1 +
n

∑
k=1

k = 1 + n(n + 1)
2

≤ (2n − 1)2

2
≤ 1

2
(log2 ∣Wn ∣)2 ≤ d .

_us there are enough basis vectors in X to deûne all these subspaces. For m =
0, . . . , n, let {ym ,k}2⋅4m−1

k=1 be elements of the unit sphere of Ym satisfying the condi-
tions of Lemma 2.6 with δ = 1/16. It is easy to see that for any m = 0, . . . , n, any
1 ≤ k ≠ k′ ≤ 2 ⋅ 4m−1, and any a with 0 ≤ a ≤ 1, we have

(3.9) ∥ym ,k − aym ,k′∥ ≥ δ/2.
Note that for m > m′, ym ,k and ym′ ,k′ are supported on disjoint intervals with

respect to the basis {x i}d−1
i=0 , and therefore

∥ym ,k − ym′ ,k′∥ ≥
1
C
∥ym′ ,k′∥ =

1
C

.

We construct an embedding Sn ∶Wn → X in the following way.
● _emap Sn maps the vertices of D0 to 0 and x0, respectively. It is clear that Sn ∣W0

is an isometric embedding.
● _e map Sn ∣Wm , 1 ≤ m ≤ n, is an extension of the map Sn ∣Wm−1 . Note that for each

m ≥ 1, ∣Wm∖Wm−1∣ = 2⋅4m−1. Let σm ∶Wm∖Wm−1 → {1, . . . , 2⋅4m−1} be any bijective
map. Each vertexw ∈Wm/Wm−1 corresponds to a pair of vertices ofWm−1: w is the
vertex of a 2-edge path joining u and v. Wemap the vertex w to

1
2
(Snu + Snv) + ε(

1
2
+ ε)m−1

ym ,σm(w) .

Now we estimate the distortion of Sn . First we observe that the map Sn is 1-Lip-
schitz. _is can be proved for Sn ∣Wm by induction on m = 0, 1, . . . , n. It suõces to
observe that for each edge uv in Wm−1 and each vertex w satisfying the condition of
the previous paragraph we have dWn(u,w) = ( 1

2 + ε)
m and

∥Snu − Snw∥ ≤ 1
2
∥Snu − Snv∥ + ε(

1
2
+ ε)m−1 ≤ ( 1

2
+ ε)m

.

To estimate from above the Lipschitz constant of S−1
n we consider any shortest path

P between two verticesw , z inWn . Let ( 1
2 + ε)

t be the length of the longest edge in it.
By Lemma 3.7,

(3.10) dWn(w , z) ≤
2( 1

2 + ε)
t

( 1
2 − ε)

.
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On the other hand, since the subspaces Ym are supported on disjoint intervalswith
respect to the basis {x i}d−1

i=0 , for every m ∈ {1, . . . , n}, we have

(3.11) ∥Snw − Snz∥ ≥
1

2C
∥(Snw − Snz)∣ Ym

∥

where x∣Ym denotes the natural projection onto Ym .
Let m0 ∈ N be the smallest number such that

(3.12) ( 1
2
+ ε) + ( 1

2
+ ε) 2 + ⋅ ⋅ ⋅ + ( 1

2
+ ε)m0 > 1 + ( 1

2
+ ε)m0 .

Such a number m0 obviously exists if ε > 0. It is clear that m0 ≥ 3 if ε < 1
2 and that m0

depends only on ε.
Now we turn to estimates of ∥Snw − Snz∣∣ from below. Let xy be one of the edges

of the largest length ( 1
2 + ε)

t in the path P from w to z (by Lemma 3.7 we know that
path P contains at most two such edges and that if there are two of them, they share
a vertex). We restrict our attention to the case where at least one of the vertices x , y
is not in W0; the excluded case can be considered along the same lines. Without loss
of generality we assume that y ∈Wt ∖Wt−1 and x ∈Wt−1. Let x be the vertex in Wt−1
so that xx is an edge of the length ( 1

2 + ε)
t−1 and y belongs to the subdiamond with

diagonal xx. We assume that our notation is chosen in such away that z is closer to y
than to x. _en the part of the path P from y to z does not contain an edge of length
( 1

2 + ε)
t , and z is either in the subdiamond with diagonal yx, or in the subdiamond

with diagonal yx.
To simplify the notation, let us denote the vector ε( 1

2 + ε)
t−1 yt ,σt(y) by πt ,y .

Lemma 3.23 (i) If z is in the subdiamond with the diagonal yx, then

Snz∣Yt = ρ1πt ,y

for some ρ1 ≥ ( 1
2 )

m0−1.
(ii) If z is in the subdiamond with diagonal yx, then (Sn y − Snz)∣Yt = ρ2πt ,y for

some 0 ≤ ρ2 ≤ ( 1
2 )

m0−1.
(iii) If w is in the subdiamond with diagonal yx, then Snw∣Yt = ρ3πt ,y for some

0 ≤ ρ3 ≤ ( 1
2 )

m0−1.
(iv) If w is not in the subdiamond with the diagonal yx, then Snw∣Yt = ρ4 yt ,k , for

some k ≠ σt(y) and ρ4 ∈ [0, 1].

Proof (i) Let z be in the subdiamond with diagonal yx. Observe that ends of edges
of length ≤ ( 1

2 + ε)
m0+t−1 with one end at x and the other end in the subdiamondwith

the diagonal xy cannot be in P because then, by (3.12), the path through x would be
shorter. _erefore,

Snz = (1 − b)Snx + bSn y + z t ,
where

Sn y ∈ Bt
def= span{x j ∶ j ≤

t
∑
k=1

k} = span(
t
⋃
m=1

Yt), Snx ∈ Bt−1 ,

z t ∈ Tt
def= span{x j ∶ j >

t
∑
k=1

k} , and b ≥ ( 1
2
)

m0−1
.
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Note that

(3.13) Sn y =
1
2
(Snx + Snx) + πt ,y ,

where Snx , Snx ∈ Bt−1 and πt ,y ∈ Yt . Hence, Snz∣Yt = bπt ,y and the conclusion
follows.

(ii) If z is in the subdiamondwith diagonal yx, since yx is a part of a shortest path,
we conclude that the longest edge in the part of the path P from y to z has length
≤ ( 1

2 + ε)
t+m0 , where m0 satisûes (3.12). _us

(3.14) Snz = aSn y + (1 − a)Snx + zt ,

where Sn y ∈ Bt , Snx ∈ Bt−1, zt ∈ Tt , and

1 ≥ a ≥ 1 −
∞

∑
k=m0

( 1
2
) k = 1 − ( 1

2
)m0−1

.

By (3.13) we get (Sn y − Snz)∣Yt = πt ,y − aπt ,y = (1 − a)πt ,y and the conclusion
follows.

(iii) If w is in the subdiamond for which xy is the diagonal, similarly as in (3.14),
we obtain Snw = cSnx + (1 − c)Sn y + wt , where Snx ∈ Bt−1 , Sn y ∈ Bt , wt ∈ Tt , and
1 ≥ c ≥ 1 − ( 1

2 )
m0−1. By (3.13), Snw∣Yt = (1 − c)πt ,y and we are done in this case.

(iv) If w is not in the subdiamond for which xy is the diagonal, let q ∈ Wt ∖Wt−1,
q ≠ y, be the vertex which is an endpoint of an edge of length ( 1

2 + ε)
t which is

a diagonal of the subdiamond that contains w. By construction, the projection of
Snw onto the subspace Yt is a multiple of yt ,σt(q) ≠ yt ,σt(y), with some coeõcient
ρ4 ∈ [0, 1].

Observe that Lemma 3.23 implies the estimate for the Lipschitz constant of S−1
n ,

and thus _eorem 3.19, in all of the cases except the casewhere both (i) and (iii) hold.
Consider, for example the case where (i) and (iv) hold. _en (we use (3.10), (3.11), the
conclusions of (i) and (iv), the deûnition of πt ,y and (3.9))

dWn(w , z)
∥Snw − Snz∣

≤
2( 1

2 + ε)
t

( 1
2 − ε)

1
2C ∥ρ1πt ,y − ρ4 yt ,k∥

≤
4C( 1

2 + ε)
t

( 1
2 − ε)

δ
2 ρ1ε( 1

2 + ε)t−1
≤

8C( 1
2 + ε)

( 1
2 − ε)δε(

1
2 )m0−1

,

and this number depends only on C and ε.

It remains to consider the casewhen both (i) and (iii) hold. In this casewe estimate
from below the norm of (Snw − Snz)∣Yt−1 . We use Snz = (1 − b)Snx + bSn y + z t and
Snw = cSnx + (1− c)Sn y+wt with 1 ≥ b ≥ ( 1

2 )
m0−1 and 1 ≥ c ≥ 1− ( 1

2 )
m0−1. _e value

of b actually does not matter for our argument, it is only important that 0 ≤ b ≤ 1.
Recall also that Sn y = 1

2 (Snx + Snx) + πt ,y .
_erefore

(Snz − Snw)∣Yt−1 = (( 1 − 1
2
b − 1 − c

2
)Snx − ( c + 1 − c

2
− 1

2
b)Snx) ∣

Yt−1
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Observe that each of the coeõcients of Snx and Snx in this sum is at least

( 1
2
− ( 1

2
)m0) .

_ere are two possible cases:
Case (A): x ∈Wt−1/Wt−2, x ∈Wt−2;
Case (B): x ∈Wt−1/Wt−2, x ∈Wt−2.

_e cases are similar, so we consider case (A) only. Let o ∈ Wt−2 be such that x is
in the subdiamond with diagonal ox, so Snx , Sno ∈ Bt−2,

Snx =
1
2
(Snx + Sno) + ε(

1
2
+ ε) t−2

yt−1,σt−1(x) ,

and
(Snz − Snw)∣Yt−1 = −( c +

1 − c
2

− 1
2
b) ε( 1

2
+ ε) t−2

yt−1,σt−1(x)

We get

dWn(w , z)
∥Snw − Snz∥

≤
2( 1

2 + ε)
t

( 1
2 − ε)

1
2C (c +

1−c
2 − 1

2b)ε(
1
2 + ε)t−2

≤
4C( 1

2 + ε)
2

( 1
2 − ε)ε(

1
2 − ( 1

2 )m0)
.

_e obtained number depends only on C and ε. _is concludes the proof.

4 More General Examples

_e goal of this section is to generalize the results of Section 3 to more general “hi-
erarchically built weighted graphs”, which we denote {G i}∞i=0 and call corals because
they aremore chaotic than diamonds.

Deûnition 4.1 We pick λ ∈ ( 1
2 , 1) and a sequence {N i}∞i=0 of natural numbers so

that N0 = 2 and N i ≥ 1 for all i ≥ 1. _e sequence {Gn}∞n=0 of corals is deûned
inductively. Vertices and edges of a coral come in generations denoted {Vi}∞i=0 and
{E i}∞i=0, respectively. We proceed as follows (see Figure 4.1 for a sample graph G1).
● G0 is the same as D0, i.e., V0 consists of two vertices v0 , v1 which are joined by one
edge of weight 1. _us G0 = (V0 , E0), where ∣V0∣ = 2, ∣E0∣ = 1.

● Suppose that ⋃k
i=0 Vi , ⋃k

i=0 E i , and Gk have been already deûned. Let Vk+1 be a
set of cardinality Nk+1, disjoint with ⋃k

i=0 Vi . _e vertex set of the graph Gk+1 is
⋃k+1

i=0 Vi . _e set Ek+1 of new edges is a subset of edges joining the vertices of Vk+1

with ⋃k
i=0 Vi . Every edge in Ek+1 is is given weight λk+1. Edges in Ek+1 are chosen

so that each vertex in Vk+1 has degree 1 or 2 and if a vertex v ∈ Vk+1 has degree 2,
then it is adjacent to vertices u,w ∈ ⋃k

i=0 Vi which are joined by an edge uw in Ek ,
i.e., uw is of length λk in Gk .

Remark 4.2 _e graph Gn depends on λ, the numbers N1 ,N2 , . . . ,Nn , and on
the choices that we make when we attach new vertices to already existing ones. For
brevity, we do not re�ect these dependencies in the notation for Gn .
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Figure 4.1: Sketch of G1

Note that a coral can be regarded as a chaotically branching snow�aked diamond
in which we allow attaching smaller diamonds to vertices of larger diamonds. In par-
ticular the weighted graph Wn is an example of a very regular coral. Also one can
think of the coral as constructed in a fractal-like fashion, where we start from two
vertices joined by one edge. On the next step we replace the one edge by a copy of G1
(see Figure 4.1) so the set of edges is now E0 ∪E1,where every edge in E1 has length λ.
We now replace every edge in E1 by a scaled (by λ) version of G1, obtaining set E2 of
additional edges of length λ2. We continue for arbitrary number of generations. _e
diòerence between this procedure and a true fractal is that every scaled copy ofG1 can
have diòerent number of vertices and edges, so the ûnal graph can be very chaotic (see
Figure 4.2).

 

Figure 4.2: An example of a coral with a few generations

Our goal is to prove that Corollary 3.22 can be generalized for corals.
We introduce the following function L∶N→ N,

L(i) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if i = 1, 2,
2 if i = 3, 4,
⌈log4 i⌉ if i ≥ 5.
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_e function L(i) shows the dimension, which is suõcient to accommodate i δ-sep-
arated points, for δ = 1/16, in the unit sphere, cf. Lemma 2.6.

_eorem 4.3 Let C ≥ 1 and λ ∈ (1/2, 1). _en there exists a constant D = D(C , λ),
so that every coral Gn with parameters λ and {N i}n

i=0 ⊂ N, D-embeds into any Banach
space X which contains a basic sequence of length∑n

i=0 L(N i) with basis constant ≤ C.

Remark 4.4 Note that in the case when Gn = Wn , _eorem 4.3 reduces to _eo-
rem 3.19.

Remark 4.5 Analogs of _eorem 3.18 and Proposition 3.12 do not hold for some
families of corals. In fact, certain families of corals can embed in low dimensional Eu-
clidean spaces, for example a family consisting of a triangle with progressively longer
tails embeds into R with uniformly bounded distortions.

For the proof of_eorem 4.3 we will need an analogue of Lemma 3.7.

Lemma 4.6 (_is is a version of [Ost14, Claim 4.1]) A shortest path between two
vertices in Gn can contain edges of each possible length: 1, λ, λ2 , λ3 , . . . at most twice.
Actually for 1 this can happen only once because there is only one such edge. If there are
two longest edges, they are adjacent.

_e proof of this lemma is a slightly modiûed version of the proof of Lemma 3.7.
We start with a deûnition of a notion analogous to the notion of a subdiamond.

Deûnition 4.7 We deûne a (degree 2) subcoral of a coral Gn grown out of an edge
uv to be the subgraph of Gn induced by the set of vertices containing u, v and viewed
as constructed in steps such that the following conditions are satisûed.
● All vertices except u and v can be included into the subcoral only if they have de-

gree 2 when they appear for the ûrst time;
● All vertices that have degree 2 when they appear, with both ends in the subcoral,

get into the subcoral.
_e edge from which a subcoral evolved is called its diagonal.

Proof of Lemma 4.6 Let e = uv be one of the longest edges in the path and λk be
its length. For each edge of the graph Gn except the initial edge, one of the ends was
introduced later. Assuming that e is not the initial edge of the graph, wemay assume
that the vertex v was introduced later than u.

_ere are two cases.
Case 1: _e vertex v was attached to two vertices of an edge uw. Let S be the subcoral

which evolved from uw, so S contains e and has a diagonal of length λk−1

Case 2: _e vertex v was attached to the vertex u only.
_e rest of the path consists of two pieces: (1) _e one which starts at v and (2) the

one which starts at u.
We claim that in Case 1 the part which starts at v can never leave S. It obviously

cannot leave through u, nor can it leave through the w, because otherwise the piece
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of the path between u and w could be replaced by the diagonal of S, which is strictly
shorter. _is implies that the part of the path in S which starts at v can contain edges
only strictly shorter than λk .

_e same is true in Case 2 because only vertices of further generations will be
attached to v in this case and they are attached using edges of length ≤ λk+1.
For the next edge in the part of the path which starts at v we can repeat the ar-

gument and get (by induction) that lengths of edges in the remainder of the path are
strictly decreasing.

_e part of the path which starts at u can be considered similarly.
_e last statement of the Lemma is immediate from the proof.

Proof of_eorem 4.3 _e proof is very similar to the proof of _eorem 3.19. Let
L = ∑n

i=0 L(N i), X be a Banach space and {x i}L−1
i=0 be a basic sequence in X with

∥x i∥ = 1 for all i, and a basis constant ≤ C. Let Y0 = span{x0}, and Ym = span{x j ∶
(∑m−1

k=0 L(k)) + 1 ≤ j ≤ ∑m
k=0 L(k)}, for m = 1, . . . , n. _us dimYm = L(Nm) for m =

0, . . . , n. Let {ym ,k}Nm
k=1 be elements of the unit sphere of Ym satisfying the conditions

of Lemma 2.6 with δ = 1/16 (observe that the deûnition of L(Nm) is such that this
is always possible). Note that for m > m′, ym ,k and ym′ ,k′ are supported on disjoint
intervals with respect to the basis {x i}, hence

∥ym ,k − ym′ ,k′∥ ≥
1
C
∥ym′ ,k′∥ =

1
C

.

We construct an embedding T ∶Gn → X in the following way. We deûne it in steps
for vertices of V0 ,V1 , . . . ,Vn

● _emap T maps the two vertices of V0 to 0 and x0, respectively. It is clear that it is
an isometric embedding.

● Suppose thatwe have already constructed the restriction of T to⋃m−1
i=0 Vi . Our next

step is to extend T toVm . Observe that our notation is such that there exists a bijec-
tion between Vm and {ym ,k}Nm

k=1. Let w ∈ Vm . We denote the vector corresponding
to a vertex w by ym ,σm(w). _en we deûne Tw as follows.
– If the vertex w is attached to two vertices u, v ∈ ⋃m−1

i=0 Vi , we let

Tw = 1
2
(Tu + Tv) + ( λ − 1

2
) λm−1 ym ,σm(w) .

– If the vertex w is attached to one vertex u ∈ ⋃m−1
i=0 Vi , we let

(4.1) Tw = Tu + λm ym ,σm(w) .

Now we estimate the distortion of T . First we show that themap T is 1-Lipschitz.
_is can be proved for T ∣Gm by induction on m = 0, 1, . . . , n (observe that themetric
induced on Gm from Gm+1 coincides with themetric of Gm). It suõces to prove that
for eachw ∈ Vm and each edgeuw inGm wehave dW(u,w) = λm and ∥Tu−Tw∥ ≤ λm .

_e equality dW(u,w) = λm follows immediately from our deûnitions. To prove
that ∥Tu − Tw∥ ≤ λm , we need to consider two cases: (a) w has degree 1 in Gm ; (b) w
has degree 2 in Gm .
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Since ∥ym ,σm(w)∥ = 1, the desired inequality in case (a) follows immediately from
(4.1). In case (b) we get

∥Tu − Tw∥ ≤ 1
2
∥Tu − Tv∥ + ( λ − 1

2
) λm−1 ≤ λm ,

where for the last inequality we use the assumption that uv is an edge in Gm−1 and
therefore ∥Tu − Tv∥ ≤ λm−1.

To estimate the Lipschitz constant of T−1 from abovewe consider any shortest path
P between two vertices w , z in Gn . Let λt be the length of the longest edge in it. By
Lemma 4.6,

(4.2) dW(w , z) ≤ 2λt /(1 − λ) .

On the other hand, since the subspaces Ym are supported on disjoint intervalswith
respect to the basis {x i}, we have for every m ∈ {0, 1, . . . , n},

(4.3) ∥Tw − Tz∥ ≥ 1
2C

∥(Tw − Tz)∣ Ym
∥,

where by x∣Ym we denote the natural projection of x onto Ym .
Let m0 ∈ N be the smallest number such that

(4.4) λ + λ2 + ⋅ ⋅ ⋅ + λm0 > 1 + λm0 .

Such number m0 obviously exists since λ > 1
2 . It is clear that m0 ≥ 3 since λ < 1, and

that m0 depends only on λ.
Now we turn to estimates of ∣∣Tw − Tz∣∣ from below. Let xy be one of the edges

of the largest length λt in the path P from w to z (by Lemma 4.6 we know that the
path P contains at most two such edges; and that if there are two of them, they share
a vertex). Without loss of generality we assume that y ∈ Vt and x ∈ ⋃t−1

i=0 Vi .
(1) In the case where y is of degree 2 in Gt , let x be the vertex in Vt−1 so that xx is

an edge of the length λt−1 in Gt−1 and xy is an edge of length λt in Gt . _en the part
of the path P from y to z does not contain an edge of length λt . Furthermore, some
part of this path (from y to z), starting at y (possibly all of the path from y to z) is
either in the subcoralwith diagonal yx, or in the subcoralwith diagonal yx, and then
leaves for parts of the coral which are attached to older parts of the coral through one
vertex. Let z be the vertex at which this happens. We let z = z if this never happens.

(2) In the casewhere y is of degree 1 inGt ,we do the same, but in this case the only
option which is available is the option of subcoral with the diagonal xy.

Similarly we deûne w. For simplicity we denote the vector (λ − 1
2 )λ

t−1 yt ,σt(y) by
πt ,y .

Lemma 4.8 (i) If z is in the subcoral with the diagonal yx, then

Tz∣Yt = Tz∣Yt = απt ,y

for some α ≥ ( 1
2 )

m0−1.
(ii) If z is in the subcoral with diagonal yx, then

(Ty − Tz)∣Yt = (Ty − Tz)∣Yt = βπt ,y

for some 0 ≤ β ≤ ( 1
2 )

m0−1.
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(iii) If w is in the subcoral with diagonal yx, then

Tw∣Yt = Tw∣Yt = γπt ,y

for some 0 ≤ γ ≤ ( 1
2 )

m0−1.
(iv) If w is not in the subcoral with the diagonal yx, then

Tw∣Yt = Tw∣Yt = ωyt ,k ,

for some k ≠ σt(y) and ω ∈ [0, 1].

Proof Observe that the le�most equalities in each of the statements follow immedi-
ately from (4.1), so we shall focus only on the rightmost equalities.

(i) Let z be in the subcoral with diagonal yx. Observe that ends of edges of length
≤ λm0+t−1 with one end at x and the other end in the subcoral with the diagonal xy
cannot be in P because then, by (4.4), the path through x would be shorter. _erefore,
Tz = (1 − b)Tx + bTy + z t , where

Ty ∈ Bt
def= span{x j ∶ j ≤

t

∑
k=0

L(Nk)} = span(
t
⋃
k=0

Yk), Tx ∈ Bt−1 ,

z t ∈ Tt
def= span{x j ∶ j >

t

∑
k=0

L(Nk)}, b ≥ ( 1
2
)m0−1

.

Note that

(4.5) Ty = 1
2
(Tx + Tx) + πt ,y ,

where Tx , Tx ∈ Bt−1 and πt ,y ∈ Yt . Hence Tz∣Yt = bπt ,y and the conclusion follows.
(ii) If z is in the subcoral with diagonal yx, since yx is a part of a shortest path, we

conclude that the longest edge in the part of the path P from y to z has length ≤ λt+m0 ,
where m0 satisûes (4.4). _us

(4.6) Tz = aTy + (1 − a)Tx + zt ,

where Ty ∈ Bt , Tx ∈ Bt−1, zt ∈ Tt , and

1 ≥ a ≥ 1 −
∞

∑
k=m0

( 1
2
) k = 1 − ( 1

2
)m0−1

.

By (4.5)we get (Ty−Tz)∣Yt = πt ,y−aπt ,y = (1−a)πt ,y and the conclusion follows.

(iii) If w is in the subcoral for which xy is the diagonal, similarly as in (4.6), we
obtain Tw = cTx + (1 − c)Ty + wt , where Tx ∈ Bt−1, Ty ∈ Bt , wt ∈ Tt , and 1 ≥ c ≥
1 − ( 1

2 )
m0−1. By (4.5), Tw∣Yt = (1 − c)πt ,y and we are done in this case.

(iv) If w is not in the subcoral for which xy is the diagonal, let q ∈ Vt , q ≠ y, be
the vertex which is an endpoint of an edge of length λt which is a diagonal of the
subcoral that containsw. By construction, the projection of Tw onto the subspace Yt
is amultiple of yt ,σt(q) ≠ yt ,σt(y), with some coeõcient ω ∈ [0, 1].

Observe that Lemma 4.8 implies the estimate for the Lipschitz constant of T−1,
and thus _eorem 4.3, in all of the cases except the case where both (i) and (iii) hold.
Consider, for example the case where (i) and (iv) hold. _en (we use (4.2), (4.3), the
conclusions of (i) and (iv), the deûnition of πt ,y and the observation that for any two
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elements y1 ≠ y2 of the set constructed in Lemma 2.6, the inequality ∥y1 − ay2∥ ≥ δ/2
holds for all a with 0 ≤ a ≤ 1)

dW(w , z)
∥Snw − Snz∥

≤ 2λt

(1 − λ) 1
2C ∥απt ,y − ωyt ,k∥

≤ 4Cλt

(1 − λ) δ2 α(λ −
1
2 )λt−1

= 8Cλ
(1 − λ)δ(λ − 1

2 )(
1
2 )m0−1

,

and this number depends only on C and λ.

It remains to consider the case where both (i) aand (iii) hold. In this case we esti-
mate from below the norm of (Tw − Tz)∣Yt−1 . We use Tz = (1− b)Tx + bTy + z t and
Tw = cTx + (1− c)Ty+wt with 1 ≥ b ≥ ( 1

2 )
m0−1 and 1 ≥ c ≥ 1− ( 1

2 )
m0−1. _e value of

b actually does not matter for our argument, it is only important that 0 ≤ b ≤ 1. Recall
also that Ty = 1

2 (Tx + Tx) + πt ,y .
_erefore

(Tz − Tw)∣Yt−1 = (( 1 − 1
2
b − 1 − c

2
)Tx − ( c + 1 − c

2
− 1

2
b)Tx) ∣

Yt−1

Observe that each of the coeõcients of Tx and Tx in this sum is at least

( 1
2
− ( 1

2
)m0) .

_ere are two possible cases.
Case A: x ∈ Vt−1, x ∈ ⋃t−2

i=0 Vi ;

Case B: x ∈ Vt−1, x ∈ ⋃t−2
i=0 Vi .

_e cases are similar, so we consider Case (A) only.
Subcase 1: _ere is o ∈ ⋃t−2

i=0 Vi such that x is in the subcoral with diagonal ox, so
Tx , To ∈ Bt−2, and

Tx = 1
2
(Tx + To) + ( λ − 1

2
) λt−2 yt−1,σt−1(x) ,

and

(Tz − Tw)∣Yt−1 = −( c +
1 − c
2

− 1
2
b)( λ − 1

2
) λt−2 yt−1,σt−1(x) .

We get

dW(w , z)
∥Tz − Tw∣ ≤

2λt

(1 − λ) 1
2C (c +

1−c
2 − 1

2b)(λ −
1
2 )λt−2

≤ 4Cλ2

(1 − λ)(λ − 1
2 )(

1
2 − ( 1

2 )m0)
.

_e obtained number depends only on C and λ.
Subcase 2: _e vertex x has degree 1 in Gt−1 so Tx ∈ Bt−2,

Tx = Tx + λt−1 yt−1,σt−1(x) ,
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and

(Tz − Tw)∣Yt−1 = −( c +
1 − c
2

− 1
2
b) λt−1 yt−1,σt−1(x) .

We get

dW(w , z)
∥Tz − Tw∥ ≤ 2λt

(1 − λ) 1
2C (c +

1−c
2 − 1

2b)λt−1

≤ 4Cλ
(1 − λ)( 1

2 − ( 1
2 )m0)

.

_e obtained number depends only on C and λ. _is concludes the proof.
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