
ON A CLASS OF ALMOST ALTERNATIVE ALGEBRAS 

L. A. KOKORIS 

Introduction. In the study of almost alternative algebras (2) relative to 
quasiequivalence an important class called algebras of (7, ô) type arises. 
An algebra of (7, d) type is a finite dimensional algebra 2Ï over a field % 
satisfying the identities 

(1) z{xy) = (zx)y + y(xz)y — yx(zy) + h{yz)x — ôy(zx), 

and 

(2) (xy)z = x(yz) + y{xz)y — yx(zy) + (5 — l)(yz)x — (5 — \)y{zx) 

where 7 and ô are elements of g satisfying y2 — ô2 + ô = 1. We shall restrict 
our study to (7, ô) type algebras with characteristic 5^2, 3, or 5 and with 
ô 9e 0, 1. With these restrictions the algebras are power-associative. Also, 
Albert has shown (2, p. 36) that if an algebra 21 of (7, 8) type has an idempo-
tent e it can be decomposed into a supplementary sum 2t = 2ln + 2lio + 2loi + 
8I00 where x is in 21 tj if and only if ex = ix and xe — jx. The subspaces of our 
decomposition have the same multiplicative properties as in the case of an 
associative algebra. 

The concepts of a solvable algebra, nilpotent algebra, and nil algebra are 
equivalent for (7, b) type algebras with the restrictions mentioned above 
(2, p. 35). The radical is defined to be the maximal nilideal and it is then 
proved that a simple algebra is either associative or contains a unity which is 
an absolutely primitive idempotent. A semisimple algebra is a direct sum of 
simple algebras. 

If ô = 0 or 1 we have the four pairs (7, 5) = (1, 1), ( — 1 , 0), (1, 0), or 
( — 1 , 1). The pair ( — 1, 1) implies that the algebra is right alternative and 
(1, 0) implies the left alternative law. In the remaining two cases we are not 
able to obtain the same multiplicative relations for the subspaces of the 
decomposition as for the general case and it seems that the results here should 
be different. 

1. Decomposition relative to an idempotent. Let 91 be an algebra of 
(7» ^) type with characteristic 5^2 and with an idempotent e. If (7, b) 9^ 
( — 1, 1) or (1, 0), it is known that 21 may be decomposed into a vector space 
direct sum 21 = 2ln + 2lio + 2toi + 2too- This is the decomposition of the 
theory of associative algebras and we are able to obtain the multiplicative 
relations of the associative theory when ô 9e 0, 1. 
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THEOREM 1. Let 21 be an algebra of (7, b) type with 5 ^ 0 , 1 and characteristic 
9*2, 3. Then »<,8tfl = 0 if j •£ q and « „ « „ < %it. 

The proof is made by considering the various cases. Take z = e, x in 21^, 
and y in 21^. Then (1) becomes 

(3) e(xy) = (i +7*7 — <?7)xy + (2ô — iô)yx. 

Interchanging x and y gives 

(4) e(yx) = (g + /7 — fy)yx + (jd — gô)xy. 

With x, y, z as above, (2) becomes 

(5) (xy)e = (t + jy ~ qy)xy + (b - l)(t - f)yx. 

Interchanging the roles of x and y we have 

(6) (yx)e = (j + ty - iy)yx + (b - l)(j - q)xy. 

Now consider the case where x and y are in 2ln so that i=j = q = t= 1. 
Relations (3) and (5) yield e(xy) = xy, and (xy)e = xy. Therefore, 2ln is a 
subalgebra. The values i = j = g = J = 0 i n (3) and (5) prove that 2loo is 
also a subalgebra. When x is in 2ln,y isin 2loo, (3) and (4) givee(xy) = ( l + 7 ) # y 
— byx and e(yx) — — yyx + bxy. We now use the fact that Le

2 = Le 

(later (cf. 2, p. 36) we shall also need Re
2 — Re) to see that 

e[e(xy)] = e(xy), e(xy) = (1 + y)[e(xy)] - Ôe(yx). 

It follows that (y2 — d2 + 7)xy = 0. Since y2 — ô2 + 7 = 0 together with 
the defining relation y2 — d2 + b = 1 for an algebra of (7, b) type implies 
ô = 0, we must have xy = 0. Also, 

e[e(yx)] = e(yx), — 7e (yx) + be(xy) = #(yx). 

Consequently (72 — ô2 + 7)yx = 0 and so yx = 0. Thus 2In and SIoo are 
orthogonal subalgebras. 

If x is in 2ln and y is in 2110, we have e(xy) — xy — byx,e(yx) = (1 — y) yx 
= (yx)e, and (xy)e = (1 — b)yx. Then e[e(xy)] = e(xy) implies be(yx) = 0 
and it follows that yx = 0. This also proves that xy is in 2110. Next let x be in 
2lu and y be in 2loi so that 

e(xy) = (1 + y)xy = (xy)e, e(yx) — bxy, (yx)e = yx + (5 — l)xy. 

The result xy = 0 is obtained by noting that [(yx)e]e= (yx)e and (5 — l)[(xy)e] 
= 0. Then yx is in 2loi. 

Consider the case where x and y are both in 2110 and 

e(xy) = (1 — 7)xy — byx, e(yx) = (1 — y)yx — bxy, (xy)e = — yxy + 
(1 — b)yx, (yx)e = — 7yx + (1 — b)xy. 

From e[e(xy)] = e(xy) and e[e(yx)] = e(yx) we obtain (7 + b)[e(xy) + 
e(yx)] = 0. Since 7 + b 9e 0 by hypothesis, 

e(xy) + e(yx) = 0 = (1 — 7 — b)(xy + yx). 
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Again 1 — 7 — 5 ^ 0 by hypothesis, so xy + yx = 0. Thus 

e(xy) = (1 — 7 + 8)xy, (xy)e = (—1 — 7 + 8)xy. 

Moreover, 

^OoO] = e(xy) = (1 - 7 + $M*30, (1 — 7 + 5 ) ( - 7 + 8)xy = 0. 

When the characteristic is not 3, 8 9e 0, 1 implies xy = 0. The case with x 
in St 10 and y in 2Ioi is proved immediately by substituting in (3) to (6). If 
both x and y are in SI01, e(xy) = yxy + ôyx and e(yx) = 7yx + 5xy. Therefore 

e[e(%y)] = e(#y) = ye(xy) + ôe(yx), £[e(yx)] = e(yx) = 7e (yx) + ôe(xy) 

when added give ( — 1 + 7 + 8)[e{xy) + e(yx)\ = 0. Hence (7 + 8){xy + yx) 
= 0 and thus xy = — yx. We then have 

e(xy) — (7 — ô)xy, e[e(xy)] = e(xy) = (7 — 8)[e(xy)]. 

This implies (7 — 8 — 1) (7 — 8)xy = 0, xy = 0. 
Take x in St 10 and y in 2too- Then e(xy) — xy — 8yx, (xy)e = (1 — 8)yxt 

and (yx)e = — yyx. We have [(xy)e]e] = (1 — 8)[(yx)e] = (xy)e and (1 — 8) 
(1 + y)yx = 0. Our hypothesis on ô implies yx = 0 and it follows that xy 
is in Slio. The last case is with x in Stoi and y in Sloo- Relations (3) to (6) 
become 

e(xy) = yxy, e(yx) = 8xy, (xy)e = yxy, (yx)e = yx + (8 — l)xy. 

Also e[e(yx)] = e(yx) = 8e(xy) and so 5(1 — y)xy = 0. Since 5(1 — 7) ^ 0, 
xy = 0 and yx is in Stoi. This completes the proof of Theorem 1. 

2. Power-associativity. Whenx = y = z, relation (1) becomes ( I + 7 + 5 ) 
(xx2 — x2x) = 0 and (2) yields (2 — 7 — 8) (xx2 — x2x) = 0. Addition of the 
two expressions gives xx2 = x2x if the characteristic ^ 3 . Assume that St is an 
algebra of (7, 8) type with characteristic F^2, 3 and let z = x2, y = x in (1) 
and (2) to obtain 

x2x2 = (1 + 7 + 8)xzx — (7 + ô)xx3 = (— 1 + 7 + ô)x3x — ( —2 + 7+ô)xx s . 

It follows that 2x3x = 2xx3 and X X —~" X X XX 3. If also 31 has characteristic 
5^5, it satisfies the hypotheses of the known (1, Lemma 4) : 

LEMMA 1. Let St be an algebra with characteristic ^ 2 , 3, 5 and xxx" = xx+/1 

for X + n < n, n > 5. Then 

(7) x x = x x H —[x , xj (a = 1, . . . , n — 1) 

where [xw_1, x] = xw_1x — xxn_1. yl/s0, nix11"1, x] = 0. 

The Lemma will be used to show that an algebra of (7, 8) type is power-
associative if its characteristic ^ 2 , 3, 5. Write xa for x, x^ for y and xw_a~^ 
for 0 in (1) where a, /3 are positive integers such that a + 13 < n and assume 
that x ^ = xx+M for X + M < n to obtain 

xw-a-'3xa+0 = xn~%0 + 7Xn~V - 7Xaxw"a + 8xn-axa - 8xVxn-v. 
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By (7) we have after multiplying by 2, 

(a + |8 - I)!**"1, x] = (1 + 7)08 - l)[xn~\ x] - y(n - a - l)[xn-\ x] 
+8(a - l)[xn~\ x] - 8(n - P - l ) ^ " 1 , x]. 

Thus either [xn_1, x] = 0 or 
a + p - l = p - l + yP~y + ya + y + 8a-8 + 8p + 8. 

If [xn_1, x] = 0, (7) implies 21 is power-associative. Otherwise a = (7 + 8) 
(a + jS). Since a and 0 are any positive integers, restricted only by a + P < n, 
interchange a and P to obtain p = (7 + ô) (a + 0). Adding, 

a + p = 2(y + 8)(a + P) 

and a = P = 1 implies 2(7 + 6) = 1. But it is impossible for 7 and ô to 
satisfy both this equation and y2 — 82 + 8 = 1. 

THEOREM 2. 4̂w algebra 21 0/ (7, ô) type whose characteristic 9^2, 3, 5 is 
power-associative. 

3. Simple algebras. From this point on we shall consider algebras of 
(7, 8) type with 5 ^ 0 , 1 and with characteristic 5^2, 3, 5 so that we may use 
the results of Theorems 1 and 2. We shall make use of the associator (x, y, z) 
which is defined by (x, y, z) = (xy)z — x(yz). If 21 is an algebra with an 
idempotent e we may prove the following result. 

LEMMA 2. The associator (x, y, z) is 0 if one of the elements x, y> z is in 2lio 
or 2I01. 

First consider the possible ordered triples with Xio in 2lio on the left and 
y, z in the decomposition subspaces. It is clear that by linearity we need only 
consider elements in the subspaces of the decomposition. By Theorem 1 it is 
clear that the only triples with Xio on the left giving nonzero products are 

#10, ^ 0 1 , S l l î #10, ^ 0 1 , 2 ioî X10, ^00, Zoiî #10, ^00, £00, 

where the subscripts indicate the subspaces in which the elements lie. Let 
x = Xio, y — 3>oi, z = 2n in (2) and use the fact that our decomposition is 
supplementary to obtain Xio (^oi^n) = (#io;yoi):yii. Similarly we prove the 
result for the second and third triples. For the last triple we use (1) with 
z = Xio, x = y00, y = Zoo to get Xio(̂ ooSoo) = (#io3>oo)zoo. 

Triples with yio in the middle giving nonzero products are 

#11, yio, Zoù X11, yio, Zoo] #01, yio, Z01] X01, ^10, Zoo. 

The result of the Theorem is proved by making the obvious substitutions in 
(1) for the first two of these triples and in (2) for the last two. 

There are also four triples with 210 on the right giving non-zero products. 
These are 

#11, y 11, zio', #01, yiu zio] xio, 3>oi, 210; #00, 3>oi, 210. 
For the first three substitute in (2) and use (1) for the last triple. By symmetry 
we have the result for elements in 2loi-
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COROLLARY. The algebra 21 is associative if and only if 2ln and 2too are 
associative. 

Now let 21 be a simple algebra. There must be a nonnilpotent element x 
in 31 and the subalgebra generated by x must be associative since 21 is power-
associative. Since an associative algebra not a nilalgebra has an idempotent, 
21 has an idempotent e. Decompose 21 relative to e. Then the sets 

« = 2ln + 2ïio + «oi + 2loi2lio, 6 = 2loo + 2t10 + 2loi + 2lio2t0i 

can easily be seen to be ideals of 21. Since e is in 33, 33 = 21 and thus 2loo = 2loi 
2(io. It follows from this and Lemma 2 that 2too is zero or an associative algebra. 
In the latter case 2ïoo is simple for if 33oo were a proper ideal of 2loo, then 33oo 
would generate the proper ideal 

33oo + 2tio93oo + 33oo2loi + 2tio33oo2loi 

of 2t. The ideal 6 = 21 or 0. If S = 2Ï, 2ln = 2li02Ioi and 2ln is a simple 
associative algebra. If S = 0, 21 = 2tn and e is the unity element of 21. In case 
e = u + v is not primitive, we can get a proper decomposition with respect 
to u and with the new 2loo 7̂  0. Then 21 is associative. When e is not absolutely 
primitive we can find a scalar extension $ of the base field g such that e = u +v 
for pairwise orthogonal idempotents u, v in 2Ï$. Consequently 2t$ is associative 
and 21 is associative. 

THEOREM 3. Let 21 be a simple algebra of (y, 5) type with ô 3^ 0, 1 and with 
characteristic 5^2, 3, 5. Then 21 is an associative algebra or 2Ï has a unity quantity 
which is an absolutely primitive idempotent. 

4. Semisimple algebras. The study of semisimple algebras begins with 

THEOREM 4. Let ebea principal idempotent of an algebra 2Ï of (7, 5) type with 
8 9e 0, 1 and characteristic ?^2, 3, 5. Then 2Iio + 2Ioi + 2loo is contained in the 
radical 91 of 2Ï. 

The proof is made by an induction on the order of 21. The result is clear when 
% has order one. Assume the Theorem for all algebras of order less than n 
and let 21 have order n. If 21 is not semisimple we consider 33 = 21 — 51 which 
has order m < n. The principal idempotent e of 2Ï corresponds to a principal 
idempotent u of 33. Decompose 33 relative to u. Since 33 is semisimple our 
induction hypothesis simplies 33io + 33oi + 33oo = 0. This implies that in the 
decomposition of 21 relative to e, 2Iio + 2Ioi + 2loo Q 91. 

If 21 is simple, Theorem 3 implies 21 has a unity e and an algebra with a 
unity has no other principal idempotent. Thus we may pass to the considera­
tion of a semisimple algebra 21 with a proper ideal 33. The ideal 33 can not be a 
nilideal so it must contain an idempotent and hence a principal idempotent e. 
Then 33 = 33n + 33io + 33oi + 33oo and we may also decompose 21 relative to e 
so that 21 = 2In + 2lio + 2loi + 2Ioo. The idempotent e is in 33 and so if 
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ex = x or xe = x, it follows that x is also in SB. Consequently, 21 = S3n + 93K> 

+ 93OI + Koo. By the induction S3 has radical 2R = 2Kn + »io + »oi + S3oo 
where 9RU is the part of 3DÎ in 93n. Since 33 is an ideal of 21 it follows that 2)î 
is a nilideal of 21 and that 3K = 0. Therefore 21 = 33 © 2too and e is the unity 
quantity of S3. The subalgebra 2loo is an ideal of 21 and by a repetition of the 
above argument 2loo has a unity / . Then u = e + / is a unity for 21 and is 
therefore the only principal idempotent of 21. This completes the proof1 of 
Theorem 4. We have also proved 

THEOREM 5. A semisimple algebra of (7, 5) type with b j* 0, 1 and with 
characteristic 3̂  2, 3, 5 has a unity quantity and is a direct sum of simple algebras. 

irThe reader should notice that our proofs follow those of Theorems 7 and 8 of Albert (3). 
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