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Abstract

In this work, we develop a method for robust single-cycle measurement velocity vector esti-
mation for automotive radar. Building upon our previous work, we introduce a methodology
that leverages spatial diversity for accurate estimation of the velocity vector of targets in the
medium to close ranges. We extend our initial conceptual framework, addressing limitations
from our first approach and proposing necessary enhancements for real-world applicability.
Our improved process excels in target separation, identification, and velocity vector estima-
tion, proving effective across various scenarios and minimizing errors. The system, tested on
pedestrians and metal targets, presents a promising avenue for exploring its performance with
varying target sizes. Simultaneously, our in-depth study on Doppler-multiplex modulation
reveals new relevant constraints, prompting a modulation change for improved response sep-
aration. Despite the necessity of increasing module numbers for enhanced performance, our
structured approach to target itemization and classification positions our methodology as a
valuable framework for future systems, offering a comprehensive solution to diverse challenges
in target estimation and classification within the automotive landscape.

Introduction

This work constitutes an extension to an earlier paper presented at the 20th European Radar
Conference (EuRAD) and published in its Proceedings [1]. In the quickly advancing world
of automotive technology, radar systems have become essential components, transforming the
manner in which vehicles perceive and traverse their environments. Currently and next to cam-
eras and Lidar, radar sits at the forefront of advanced driver-assistance systems (ADAS) and
autonomous driving [2, 3]. Radar differentiates itself from the rest of sensors due to its better
performance in darkness and adverse weather conditions [4], and they currently provide cru-
cial sensing for collision avoidance, adaptative cruise control, and multiple safety features in the
close ranges.

Currently, there is a notable trend toward the advancement of high-end single radar modules
situated at the front of vehicles for sensing purposes [5, 6]. Nevertheless, we advocate for a shift
toward employing simpler radar modules that form a coherent radar network within automotive
applications. Radar networks have demonstrated enhancements in detection rates, signal-to-
noise ratio (SNR) estimations [7], improved angular resolution [8], and various applications
such as the focal point of this work: estimating the velocity vector of targets.

Estimating the velocity vector of targets has conventionally relied on tracking methods
[9, 10], involving the maintenance of a target list over successive measurements to infer the
trajectory and speed of the targets. In our earlier research [1], we proposed an innovative
methodology that leverages the spatial diversity inherent in coherent radar networks to achieve
this in a single measurement cycle with independence of module position.

This approach capitalizes on the distinct Doppler velocities observed by individual sen-
sors within the network during each measurement cycle, providing a means to estimate
the velocity vector of targets. Various methods for estimating tangential velocity are dis-
cussed in [11]. Some studies, such as [12], focus on a single target and address the limita-
tions of Doppler ambiguity. In [13], the authors tackle velocity estimation by using multiple
detections of targets with a single module, leveraging clustering techniques. Additionally,
distributed system approaches are explored, as seen in [14], where the authors estimate
the velocity of a target using bi-static signals. This concept has also been applied to ego-
estimation, demonstrating the effective use of data from multiple radar sensors [15-17]. In
contrast, our approach utilizes the complete response from a radar network, incorporat-
ing both quasi-monostatic and bi-static signals. We introduce a robust method designed for
multi-target scenarios, with a particular focus on enhancing safety measures for vulnerable
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road users. In our previous work, the foundational idea was intro-
duced, and we presented preliminary radar measurements as a
proof of concept, specifically tailored for close-range automotive
applications.

In this subsequent phase of our research, our objective is to
further elaborate on and expand the conceptual framework intro-
duced in our previous work. Our aim is to conduct a more com-
prehensive investigation, delving into the inherent limitations of
the proposed method and identifying crucial extensions required
for its practical application in real-world scenarios within the auto-
motive domain. We have modified the system by replacing the fixed
threshold used in detection with a dynamic constant false alarm
rate (CFAR) approach which makes the process more robust in
unpredictable scenarios. We have also extended the applicability
of the method to multi-target scenarios, improving multipath and
side lobe rejection. Additionally, we identified the limitations with
the current modulation and proposed a viable alternative. All these
changes have been validated through measurement campaigns. By
undertaking this extended analysis, we strive to bridge the gap
between theoretical advancements and practical feasibility, paving
the way for the meaningful integration of our proposed approach
into existing systems in the landscape of automotive applications.

The Method section introduces the methodology, placing par-
ticular emphasis on redefining bistatic velocities. In the following
section, which constitutes the core of this research, we delve into
essential extensions required to adapt the method for real-world
applications, along with a discussion on Doppler multiplex mod-
ulations. The experimental results with the newly implemented
modifications are presented in the section after that. Lastly, the last
section encapsulates the conclusions drawn from our work.

The method

In this method, we rely on a radar network, and a key feature we
make use of is its spatial diversity. This network has various mod-
ules placed in a line able to capture Doppler velocities from the
targets in front of it. Now, the crucial characteristic is that each
module provides different Doppler measurements. These differ-
ences are not random - they are influenced by factors like the
distance between modules, where they are positioned in the net-
work, and how the targets are moving. The modules in the network
function as a group of observers, each offering a unique perspective
of the environment and the targets.

Each module’s viewpoint gives us a nuanced understanding of
the Doppler velocities of our targets. With these varied readings
and our knowledge of the network’s layout, we get down to estimat-
ing the velocity vector of the targets. It is this combination of spatial
diversity and network knowledge that helps us unravel the pat-
terns of velocity vectors and make sense of the dynamic movements
within the radar network.

The easiest way of visualizing the different Doppler velocities
and how they relate to each other on the system is by downsiz-
ing the network to just two modules and analyzing the scenario
for one moving target. Figure 1 illustrates this case, where vy
represents the actual velocity vector of the target and v, and v, rep-
resent the perceived Doppler components by each module. These
perceived velocities are the result after Doppler processing vari-
ous frequency-modulated continuos-wave (FMCW) chirps of the
quasi-monostatic responses. Additionally, Figure 1 includes v,,_,
which is the perceived velocity through the bistatic response when
we consider a signal being transmitted by module 2, reflected off
the target and received and processed at module 1.
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Figure 1. Target moving with velocity vector v;. The perceived velocity from the
quasi-monostatic response of two stations v; and v, as well as the bistatic
response vy, | is shown as well as the angle relations between the four.

It can be observed that v, and v, are the projections of v onto
the look direction of each module, while v, is the projection onto
the bisector of the bistatic angle (/3/2). Through Doppler process-
ing and estimation we have access to v;, v, and, v;,,_. Also, through
digital beamforming (DBF), we can estimate both 6, and 6, - the
direction of arrival for each module.

This was the assumption for [1], however, we have undergone
a deeper study of the bistatic signals that reveal some extra details
on the perceived velocities [18]. Let us focus for a moment on the
bistatic signal depicted in Fig 1. In the diagram module 2 is the
transmitter and 6, the transmitting angle, module 1 is the receiver
and 6, the receiver angle. 3 is the bistatic angle that characterizes
the bistatic triangle and is

B=0,—0. (1)

To define the relation between the velocity of the target V; and
the actual bistatic component v;, , we can start by defining the
variation of the range from the transmitter to the target R, in the
bistatic response as

T = Vreos(d = B/2), @

where ¢ is the angle between the true velocity direction of the target
and the bisector of the bistatic angle 5. Analogously, the term %
is the projection of the target velocity vector onto the receiver-to-
target line of sight (LOS) defined as

% = Vycos(d + 5/2). (3)

The bistatic Doppler is the time rate of change of the total path
length normalized by the wavelength A, being the total path R, +R,
the Doppler shift is

1 /dR, dRr,
pes (@ @) @
We can combine (2), (3), and (4) to express the bistatic shift as
fo = (2Vy/A) cosdcos(5/2) (5)

which can also be interpreted as a projection of the velocity vec-
tor of the target over the bisector of the bistatic angle. However,
it is important to note that the projection appears scaled by the
cosine of the bisector of the bistatic angle. The importance of this
formulation is due to the fact that the method is based on the scalar
projection of a vector (also called the scalar component or the mag-
nitude component). It is the length of the projection of the vector
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onto a given line or direction, it is a scalar value. The scalar pro-
jection of v for the response n over the LOS of its corresponding
module is

vt

V}‘l

In accordance to Figure 1, we can understand Hp:T

_ |vT i vn|

[val

(6)

‘ as the norm of

any of the perceived velocities (||v,,)), if we decompose and simplify
the scalar product we can express the relation between v and v,,
as

Vi= VeV, + VeV, 7)

where Vr_and Vy are the Cartesian components of vy taking the
target as origin as shown in Figure 1. V;, ‘and V,, are the compo-
nents of v, and V,, its norm. With this description of the system,
we have access to equations that relate the information gathered by
each module and response in the network to the actual velocity vec-
tor of the target when we understand them as scalar projections of
vr. This emphasizes the necessity to present the perceived bistatic
velocities as a projection of the velocity vector of the target as we
derived in (5). With access to at least two of these responses we can
form a system of equations following (7) (both quasi-monostatic
and bistatic) and solve it for the Cartesian components of v. Most
of the time, however, we will be presented with an over-determined
system of equations that combines the information gathered at
each module:

v? Vi, Y,
V22 sz sz
Vbzz,l = VTx Vb2—lx + VTy Vb2—1), ' (8)
V'% V”x Vﬂ),

Simplified (8) can be written as:
b=Av; 9)

where A € R™? and n > 2. In those cases, we resort to a least-
squares approach that minimizes the sum of the squared errors
between the collected data and the expected data based on the
model. We look for vector vy such that:

V1 = arg min||Avy — b|3. (10)
vr

The original work [1] operated with a network of four differ-
ent modules. Delving further into the intricacies of the parameter
extraction step, we used to start with a set of 16 (4 quasi-monostatic
responses and 12 bistatic responses) distinct 3D matrices capturing
range, Doppler, and angle information. To streamline computa-
tional efficiency, the initial move involved collapsing the angle
dimension by identifying the maximum value in each matrix.
Subsequently, a fixed range-dependent threshold was applied to
the matrix, with a more stringent criterion for closer ranges. This
threshold was designed taking into account the measurement
chamber where the experiments were conducted. The identified
detections initially resided solely in the range-Doppler domain,
prompting an extension into the angle domain. In this exten-
sion, the threshold was determined by selecting the stricter value
between the range-dependent threshold and the expected level for
secondary lobes resulting from windowing.

This process culminated in a 3D cloud of detections, where we
applied clustering to identify the moving target in the scene, and
for this, a modified iteration of DBSCAN - specifically EDBSCAN
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[19] - was employed. Through this clustering approach, we not
only identified the target of interest present in the scene but also
extracted essential parameters, including range, radial Doppler,
and receiving angle per module. As it will be explained in Section
I1I, bi-static responses will require an additional layer of processing
to resolve the geometry of the system. This multi-step methodol-
ogy not only enhanced computational efficiency but also ensured
a robust extraction of pertinent information.

Required extensions for practical applicability

The earlier-discussed method was initially designed as a proof
of concept within controlled scenarios. In essence, our goal is to
identify its limitations and create the necessary tools to main-
tain its performance when dealing with real-world targets and
environments.

Thresholding

The initial challenge we tackle is the range-dependent threshold.
This approach thrives when armed with a full understanding of
our operating ranges, the specific target(s) in focus, and the sur-
rounding environment. By fixing the threshold values, we secure
the detection of targets within our radar’s range, enabling accurate
estimation. Our ultimate objective is to estimate the velocity vector
of vulnerable road users in close to medium ranges. However, since
different targets exhibit diverse radar cross-sections (RCSs), relying
on pre-established threshold values is not feasible. Moreover, the
environment is inherently unpredictable, necessitating adaptability
in order to capture all potential targets without any oversight.

We have resorted to CFAR detection, a technique specifically
used to keep false alarms at a suitably low rate in priori unknown,
time varying and spatially non-homogeneous environments [20].
The basic function of CFAR is to determine the threshold above
which any peak can be considered a target. To determine this
threshold dynamically so it adapts to the background against which
the targets are to be detected we are using a cell-averaging (CA)
approach. For this work, we employ a two-dimensional version
of the algorithm to enable its application to the angle-flattened
range-Doppler matrices generated after the DBF step outlined in
Section II. A less computationally intensive alternative could be a
one-dimensional application along the range for each Doppler bin.
However, when using Doppler-division multiple access (DDMA),
the probability of false alarm calculation is different from the tra-
ditional one; to exploit the best use of DDMA and increase the
probability of detection we use 2D-CFAR [21]. The second axis
improves the detection of small targets by considering both dimen-
sions when setting up the threshold [22, 23]. The result is a list of
detections that can be subsequently be clustered to later identify
each target.

Target association

The method in Section II is straightforward under the assumption
of a singular target scenario, simplifying the process by consolidat-
ing all relevant information into a cohesive whole. This approach is
advantageous in its simplicity, requiring minimal additional pro-
cessing, we know all this information from all different modules
and responses belongs to this one target. However, as we transition
to addressing the complexities of the real world, where multiple
targets may coexist, a shift in strategy becomes imperative. The
dynamic nature of multiple targets necessitates a more intricate
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layer of processing to disentangle and appropriately account for the
diverse information streams.

Let us consider targets after detection to be characterized by
three distinct parameters: range, receiving angle, and radial veloc-
ity. In the optimal scenario, each target is detected by every module
and observed in every response (bistatic and quasi-monostatic),
this introduces two additional identifiers for each target (in which
module and in which response it was detected). Therefore, follow-
ing this initial processing step (a more detailed explanation will be
given in Section III.D), we possess a set of detections, F,, for each
module and response in the system where 1 < n < N. Here N
is the total amount of responses in the system (quasi-monostatic
and bistatic combined for every module) that will be processed and
formulated as in (6)

F,={d,,dy, ..., d¢} (11)

where

di = [R, Vi, O] (12)

andk = 1,2, ... K the total number of detections within a response.
The objective is to combine all N sets to establish the associations
between each detection present and the various targets within the
scene. This association is pivotal for the subsequent velocity vector
estimation procedure.

Before that, the first step involves aligning each detection onto a
common plane, facilitating comparison and association. To achieve
this, we rely on information regarding the spatial arrangement of
each module in the network. In our context, tailored for automo-
tive applications, we make the assumption that all modules align
linearly along the front bumper of the car. Utilizing available data
on module distances and their relative order, we are able to position
each detection onto the range/cross-range plane. This is achieved
by transforming the polar pair of range (R;) and angle (6,) values
into Cartesian coordinates.

The quasi-monostatic responses require adjustment to a com-
mon reference, and the correction depends on the position of the
receiving module on the network. This entails a lateral shift of all
points in Cartesian coordinates. Deeper processing is applied to
bistatic responses, where, in addition to potential lateral shifts due
to the module positions, each detected range undergoes correction
by solving the bistatic triangle

(Ry + Re)” — L2

13
2(RT+RR+LSin9R> ( )

RR:

where Ry is the actual receiver range we want to estimate. L is
the baseline or distance between the two modules and 6y is the
angle of arrival at the receiver. After corrections, we can fuse all
N sets together resulting in a point cloud of the detections on the
Cartesian plane. Subsequently, a second layer of clustering using
traditional DBSCAN is employed over it. One notable advantage is
that we are not required to pre-define the number of clusters in the
dataset which makes the process more versatile and robust.

It is worth mentioning that in this process, we deliberately omit
the use of velocity information. This decision is intentional. We
don't anticipate detections landing in the same position on the
Cartesian plane to necessarily share the same radial velocity. It is
precisely this divergence that the method relies on. Introducing
that extra dimension would only complicate the clustering proce-
dure, requiring a more lenient metric for velocity and potentially
grouping detections with a broader range of velocity values.

This is in contrast to the modified DBSCAN (EDBSCAN [19])
used previously in the process to create the different F, sets. Our
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Figure 2. Second layer of clustering for detections of two distinct targets at 8 m.
DBSCAN is able to group the detections from two different modules (0 and 1) and
their two different responses (quasi-monostatic and bistatic) in to two clusters (blue
and black). Three different detections are classified as noise (in red).

main focus initially is to avoid the influences that changes in the
densities of the search area can have over DBSCAN. We are looking
for targets and trying to avoid them getting clustered with clutter
and noise. That version specifically uses the three different metrics
(range, angle, and Doppler information) and power to group all
the points that surpass the CFAR threshold. It adds an extended
density-based spatial clustering adding a new size metric to the
process making it work well in both dense and sparse search areas
and specifically in high dynamic range environments. We want to
make sure that multiple detections of the same target (for example
both arms and torso of a pedestrian) are interpreted as just one in
order to add them as a single entry in its set. Now we are looking to
associate each detection in the fused F,, sets and thanks to the initial
clustering process we work already with a sparse point cloud that
has already been “filtered” and so, the original DBSCAN algorithm
proves to be sufficient for our needs.

This additional layer of clustering serves a dual purpose in
the process, aiding in the discrimination of false positives within
the detections. The clustering process will identify detections that
do not belong to actual targets in the scene and label them as
noise. Upon retracing the data, these detections typically align
with excessively high secondary lobes that manage to surpass
the CFAR threshold. When DBSCAN assesses groupings, these
detections become isolated from the rest, enabling the estima-
tion process to proceed seamlessly. This behavior has also been
noted with multi-path components, which eventually undergo fil-
tration through the clustering procedure as well. In Figure 2, the
depicted example illustrates the outcome of the second layer of
clustering, grouping detections from two distinct modules and
encompassing all responses within the network (quasi-monostatic
and bistatic). Utilizing DBSCAN, this process accurately discerns
two real targets, denoted by distinct colors (blue and black), within
the scene. Notably, DBSCAN adeptly discriminates three detec-
tions of ghost targets surpassing the CFAR threshold, which have
been highlighted in red.

Limitations of Doppler modulation in widely separated MIMO
radar networks

The fundamental principle behind the estimation process lies in
accessing the various measurements of radial velocity for a target
available in a radar network. We work with a four-module network
whose detailed specifications will be outlined in the next section.
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Figure 3. Doppler multiplex scheme for four modules. The Doppler spectrum is
divided into 16 distinct slots, with a strategic allocation of 12 slots dedicated to the
three individual transmitters within each module.

Figure 4. To demultiplex the MIMO channels, we shift the scheme in Figure 3 along
the Doppler, aligning each transmitter at the spectrum’s center. This ensures
complete transmitter overlap only in the targeted region - column 0 (if a target with
velocity zero is assumed). The image represents a single range-Doppler map
adjusted 12 different times, one per transmitter in the system. The bottom line
shows the expected overlap “weights” for each slot.

Each module features three transmitters and four receivers, oper-
ating in a multiple-input multiple-output (MIMO) configuration
[24, 25], totaling 192 channels. To separate each channel, we
have utilized a Doppler-multiplex modulation, capitalizing on the
Doppler dimension of signals by shifting each transmitter in the
Doppler domain. Unlike techniques such as code division mul-
tiplex, this modulation type eliminates the need for a dedicated
multiplexer on the receiver side. Essentially, we work with vir-
tual transmitters along the Doppler dimension and only need to
account for these shifts.

This modulation scheme works well in controlled measurement
scenarios and predominantly for longer ranges. However, there are
limitations in the modulation that require adjustments to our setup
and the modulation usage.

So, initially, we utilized a 16-phase shifting key (PSK) scheme,
of which we employed 12 different phase increments from the
constellation to separate the 12 transmitters. The shifts along the
Doppler dimension of the different transmitters are illustrated
in Figure 3. The figure illustrates a cross-section of a range-Doppler
map where the Doppler domain is divided up in 16 different slots,
12 of which get assigned to each transmitter in the system. The dis-
tribution is structured in a way that, upon shifting each transmitter
to the center of the spectrum (rolling the range-Doppler map along
its Doppler dimension) and essentially “demodulating” by elim-
inating the phase shift we introduced, a peak is achieved in the
center of the spectrum, where there is complete overlap of trans-
mitters. In every other slot of the 16-PSK, there is consistently a gap.
This design ensures that we can seek the maximum in the superpo-
sition of all rolled versions of the range-Doppler maps to identify
the actual target in the whole Doppler domain without detecting
ambiguities. Upon completing the requisite shifts, the final distri-
bution for a zero-velocity target is visually represented in Figure 4.
Notably, the most pronounced overlap is discernible only within
slot 0 of the Doppler domain. This effect is highlighted in Figure 4
by showing the “weights” of each slot in the Doppler domain.
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However, a significant limitation arises with this modulation for
widely separated MIMO radar modules, and it directly aligns with
the fundamental principle of our method. To achieve complete
overlap of every transmitter across all modules, we must assume
uniform Doppler shift measurements due to target movement
across them all. However, reality does not conform to this assump-
tion. When the estimated radial velocity varies from module to
module, the spectrum peak for a target shifts to a different Doppler
bin in each module, introducing an additional shift beyond the
intended PSK that we cannot compensate for. Consequently, the
assumption of finding the maximum peak after demultiplexing to
identify the target does not hold exactly. Moreover, this behavior
is more prominent in our specific use case when the distance to
the interest targets approaches the size of our radar network. This
can introduce errors in the first layer of clustering, where we esti-
mate parameters for each target (radial Doppler, receiving angle,
and range). These errors in estimated velocity can then propagate
through the subsequent steps of the process.

Furthermore, a second limitation becomes pronounced, par-
ticularly due to the imperative need to process and employ the
distinct responses within a module separately. As detailed in
Section II, it is essential to treat each perceived velocity separately,
given its correlation with the target’s velocity vector. Moreover,
to achieve successful target association, distinguishing between
different responses is crucial for implementing the appropriate
corrections in the second layer of clustering.

Consider the scenario where we aim to process only the monos-
tatic information from module 0. Referring to Figure 4, this entails
working with the data received at module 0 that was transmit-
ted from module 0. This information corresponds to the first
three rows, aligning with the shift of the three transmitters within
module 0. While we anticipate the spectrum’s maximum to be cen-
tered after demultiplexing, the presence of additional overlaps from
other stations like in slots 12, 13, 4, and 6 (highlighted in dashed
lines) introduces a level of inaccuracy to this search. Notably, this
effect is not consistently significant, as it occasionally coincides
with the first limitation. In some instances, the fact that different
modules estimate different Doppler shifts prevents overlaps from
non-interest modules. However, these secondary overlaps gain sig-
nificance in close ranges or when targets exhibit substantial angle
dependencies in their RCSs. The positioning of a target in space
can lead to a much stronger reflection for one module compared
to others, causing peaks on the spectrum to be more pronounced
at unexpected Doppler frequencies. This, ultimately, compromises
the assumption of maximum overlap. Similar to the first limita-
tion, this primarily impacts the initial layer of clustering, where we
set the parameters for each target and response. These parameters
are crucial for subsequent tasks, including the association between
modules and later velocity estimation.

One way to address these two limitations is to increase the
unambiguous velocity and the separations between transmitters in
the Doppler domain by modifying the distribution. However, due
to hardware constraints, we have opted for a strategic approach:
downsizing the network. Considering the current landscape of
automotive systems [26-29], it is evident that the limited space
within automobiles poses a challenge for accommodating multiple
radar sensors. Employing two radars serves as a solution, mitigat-
ing the effects mentioned and optimizing space utilization at the
front of the car. Additionally, to rigorously test the robustness of our
method, we curtailed the number of transmitters to two per mod-
ule, creating a more relaxed Doppler spectrum. While retaining
the 16-PSK constellation, we assigned only four slots. This decision


https://doi.org/10.1017/S175907872400117X

352

+ 10 -

M Module 0 Module 1

Figure 5. The first row presents the Doppler multiplex scheme for two modules. It
divides the spectrum into 16 distinct slots, strategically allocating 4 slots for each of
the 2 individual transmitters within every module. We have highlighted the specific
areas of overlap in individual responses, emphasizing that these overlaps
exclusively occur in the center of the spectrum. Additionally, this central area is
surrounded and protected by guard cells.

serves a dual purpose: it allows for the existence of guard cells
around the center of the spectrum, and it ensures that when exam-
ining quasi-monostatic and bistatic responses separately, the only
overlap of transmitters in the Doppler domain occurs in the region
of interest. Figure 5 illustrates the final distribution. Here, we can
discern that by focusing on either the initial two rows or the con-
cluding two, the overlap of transmitter slots is limited to the central
region of the Doppler spectrum. Furthermore, we incorporate a
single slot on each side, serving as a guard cell to enhance signal
integrity.

The process

Hence, the process for estimating the velocity vector in a sin-
gle measurement cycle for multiple targets within a radar net-
work unfolds as follows: initially, each module down-converts the
received signals, followed by range-Doppler processing. Given the
Doppler modulation used, this step allows us to separate informa-
tion from different transmitters. Once all received signals are iden-
tified, we employ DBF to generate a 3D matrix for each response
and module. These matrices encompass range, Doppler, and angle
of arrival dimensions. In our specific case, with the network down-
scaled to address the limitations of the Doppler multiplex mod-
ulation, we have four such matrices — two for quasi-monostatic
information and two for bistatic.

Next, we simplify the angle dimension in each matrix by taking
the maximum value across it, resulting in 2D range-Doppler matri-
ces. We then apply 2D CA-CFAR, yielding a set of detections in the
range-Doppler domain. To extend these detections to the angular
domain, we compare the threshold obtained by CA-CFAR with the
expected level of secondary lobes after beamforming windowing,
using the stricter of the two. For each detection in the range-
Doppler domain, we select every point along its angular dimension
that exceeds the chosen threshold. At this stage, EDBSCAN [19]
is implemented to group detections, ascertain the number of tar-
gets, and identify the center of each. These detections are grouped
per module and response in sets before association. Here begins
the preprocessing before grouping, as we position every detection
in the Cartesian plane. To ensure the integrity of the data for the
final estimation, as explained in Section II, we retain the original
parameters untouched, while also applying necessary corrections
for successful association, storing them separately. Adjustment of
bistatic signals is crucial to account for the module disposition,
ensuring correct receiving angles and ranges. Furthermore, every
detection undergoes a lateral shift to align with the baseline and its
module’s position.

Finally, after fusing each corrected set, a second round of
DBSCAN is executed resulting in a number of sets equal to the
number of targets in the scene grouping all relevant detections.
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Figure 6. Streamlined flowchart depicting the entire process leading to the
estimation of velocity vectors for each target within the scene. The diagram
delineates the format and quantity of data available between each step.

[ Velocity Vector Estimation ]

Once we establish which detections belong to each target, we pro-
ceed with the final estimation, employing unmodified parameters
for each separately through a least-squares approach. The process
described ensures that the estimation can be indeed performed
separately for each measurement cycle and is achieved indepen-
dently of the module positions. Figure 6 shows a simplified diagram
of the whole process culminating in the velocity vector estimation
for each target in the scene.

To end, it is interesting to note how the process will work even
when modules of the network miss detections of the targets: As
long as we can cluster enough detections (no matter the origin)
in the second layer of DBSCAN for association, a velocity vector
will be calculated. Furthermore, by concentrating our computa-
tional power on actual targets, this second layer provides an avenue
for introducing specific layers of filtering, enabling a more tai-
lored treatment of the detections as needed. This implies that upon
completion of the process, we will possess a meticulously curated
list of targets, along with their estimated radial velocities and
the system’s estimation of their actual velocity vectors. This com-
prehensive information will empower future target management
efforts.

Experimental results

Several measurement campaigns were conducted in order to test
the proposed process. The primary goal was to ascertain the accu-
racy and effectiveness of the association process, assess the perfor-
mance of the newly adapted Doppler modulation, and evaluate the
network’s capabilities at extended ranges. It was important to check
to the influence of downscaling the network to just two modules
in comparison to the four used in our previous work. Numerous
measurements were conducted across diverse targets and scenar-
ios, and this paper will delve into the findings from three specific
instances:

(i) Indoor measurement with two moving targets: a metal pole
and a person.
(ii) Outdoor measurement with two moving targets: two people.
(iii) Outdoor measurement with one person walking at higher
ranges.

Throughout all the measurement campaigns, the radar net-
work employed three distinct modules, with one designated as
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Figure 7. This module’s hardware snapshot reveals on the left the backside of a
radar node with the FMCW chirp-receiving waveguide (a), data-transmitting Ethernet
connector (b), synchronization signal reception (c) beneath the PCB, and its power
connector (d). On the right side, the transmitting and receiving arrays can be seen.

the network’s master, connected to the other two in a star con-
figuration. The central node does not engage in signal trans-
mission or reception but plays a crucial role in ensuring coher-
ent network operation. It generates FMCW chirps within the
38-40.5 GHz frequency range, transmitting them through coax-
ial cables to the remaining modules. An additional connection
facilitates the transmission of three signals: a reference clock, syn-
chronization signal for the analog-to-digital converter (ADC), and
ramp synchronization signal. This setup guarantees simultaneous
transmission, synchronized clocks, and aligned ADCs for both
modules.

Prior to transmission, the modules up convert the FMCW
chirps, the start frequency is 76.5 GHz, with a bandwidth of
900 MHz (range resolution of 17 cm) and a chirp duration of 32 us.
Processing-wise, we utilized a total of 512 intermediate-frequency
(IF) samples, analyzing 256 chirps for Doppler estimation. As
detailed in Section III, each module employs two transmitters for
transmission while employing the full four-element uniform linear
array (ULA) for reception. Figure 7 shows the hardware of a single
module within the network.

For this application, the different responses are processed indi-
vidually at each module in a non-coherent manner, without treat-
ing the network as a whole. While this approach means we cannot
leverage certain radar network benefits, such as increased angu-
lar resolution, it allows us to relax setup requirements and reduce
the need for additional calibration efforts. The signal processing
method follows the approach detailed in [30]. The results presented
here are likely optimal due to perfect synchronization but could be
achieved with a non-coherent setup.

During indoor measurements, the network was arranged on a
cartand the measurements performed inside an anechoic chamber.
This setup served to validate the hardware’s proper functioning and
the modulation’s accuracy before transitioning to outdoor mea-
surements. For the latter, the network was mounted on a car, with
radar nodes strategically placed atop the front bumper, spanning
the vehicle’s width. Refer to Figure 8 for the arrangement of all three
modules, noting that Module 0, for future reference, is positioned
on the right from the driver’s perspective. In both cases, the posi-
tioning limits the setup to azimuth estimation only for the direction
of arrival. We chose this limitation due to the increased complex-
ity of the installation, although all the procedures in Section II
could easily be extended to a third dimension. We aim to maximize
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Figure 8. Radar network installed on the car for outdoor measurements. The
distance between the two modules is 1.01 m.

Figure 9. In our initial measurement scenario, we introduced two targets: a pole
affixed to a rail, facilitating perpendicular movement, and a person traversing
parallel to the network. The image provides the perspective from Module 1.

the distance between the modules to increase spatial diversity and
the total aperture of the network. A larger aperture correlates with
greater differences in radial velocities, thereby enabling successful
velocity vector estimation at longer ranges. For the standard 1.5 m
width of a car, we have achieved acceptable results up to 25 m.

Indoor measurement

The first measurement campaign followed the reduction in size
of the radar network. Having previously assessed our method’s
performance with the full capabilities of four transmitting and
receiving modules, we aimed to draw a comparison with the effi-
cacy of using only two. Additionally, our objective was to scrutinize
the association process within a more controlled setting. To achieve
this, we conducted measurements featuring both static and moving
targets within an anechoic chamber. The showcased measurement
scenario, depicted in Figure 9, involved affixing a 150 cm metal
pole to a rail, enabling perpendicular movement to the network
at 1 m/s. Concurrently, an individual traversed parallel to the net-
work, intersecting the trajectory of the metal pole. The image shows
the targets before starting the data collection. The distance between
the modules is 1.01 m.

In conducting the measurements, we adhered to the process
outlined in Section III, delving into the analysis of the two quasi-
monostatic responses within the network and the two correspond-
ing bistatic responses. The information extracted from the bistatic
responses may appear somewhat redundant, given the near-
equivalence of the signal paths in both directions. Nevertheless,
this redundancy proves advantageous, fortifying the estimation
process for each measurement cycle.

In Figure 10, we present the culmination of our estimation
efforts. By processing and fusing information from the four dis-
tinct responses, we successfully detected the targets with an SNR of
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Figure 10. Fused information from all four responses [30], the image showcases
detections for both targets alongside the corresponding estimated velocity vectors.
Notably, the vector lengths align with the respective estimated modules. The power
values are normalized to the scene’s maximum for enhanced clarity.

Figure 11. In the first outdoor scenario, two pedestrians move in opposing
directions, walking perpendicular to the radars.

30 dB and derived their velocity vectors. The SNR was determined
by comparing the power level of the targets to the average noise
level in a target-free selected area. Notably, in this scenario, precise
ground truth data are available solely for the pole, obtained from
its predetermined movement along the rail at 1 m/s, post a brief
acceleration period. The estimated velocity for the pole exhibits
a root-mean-square error of 0.032m/s, a commendable outcome
aligning with our past estimations and deemed suitable for the
given scenario. The person’s speed, though slightly slower than
average walking speeds estimated at nearly half that of the pole,
aptly mirrors both the observed circumstances during the mea-
surements and the direction and module of their movement. We
specifically selected this frame due to the proximity of the tar-
gets, aiming to verify the accurate association of the estimated
parameters.

Outdoor measurements

In the subsequent two sets of measurements, the network was
affixed to the front bumper of a car, as illustrated in Figure 8.
Following the approach employed in indoor measurements, we
endeavored to uphold a consistent setup by maintaining the inter-
module distance at 1.01 m. The primary focus in this phase was to
assess the network’s performance with two pedestrians at extended
distances. The latter part of the outdoor measurements is specifi-
cally dedicated to higher ranges. Throughout these measurements,
the radar parameters remain constant, and we will present selected
frames from the acquired data to illuminate our findings.
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Figure 12. The image consolidates data from all four responses, displaying
detections for both targets with their corresponding velocity vectors. A slight tilt is
noticeable due to network positioning, natural walking motions, and minor
performance degradation at higher ranges. Power values are normalized for
improved clarity, relative to the scene’s maximum.

In the initial scenario, two pedestrians moved anti-parallel
to each other, quasi-perpendicular to the network, in opposite
directions. Refer to Figure 11 for their positions relative to the mea-
surement car. In the presented frame, the left pedestrian is slightly
farther, moving away from the network, while the right pedestrian
is approaching it. We processed the data akin to the initial measure-
ments — handling and fusing the four responses, detecting targets,
extracting parameters, and estimating velocity vectors. The out-
comes are depicted in Figure 12 which result in an estimation with
an SNR of 20 dB.

The estimated vectors align closely with the anticipated out-
comes for both norm and direction. The estimated velocities for the
targets — 1.694 m/s and 1.745 m/s, respectively — approach typical
walking speeds [31, 32]. However, there is a slight tilt observed in
the estimated directions, influenced partly by the actual position-
ing of the network and the natural tilting motions of the human
body during walking. The process encounters some challenges as
distances increase, leading to a reduction in the disparities between
the multiple estimated radial velocities.

We aimed to assess the algorithm’s proficiency in determining
accurate velocity vectors over extended distances. Since our pri-
mary focus remains on the 5-15m range, typical for short range
automotive scenarios, we sought to explore the algorithm’s capabil-
ities in those longer ranges. To conduct this evaluation, we affixed
the network to the vehicle and navigated it along a narrow road,
where a pedestrian walked at various distances. Figure 13 displays
selected frames capturing the person in different positions and
orientations during the walking sequence.

During the analysis of these measurements, the system oper-
ates in proximity to both its limits and optimal utilization. As
the distance increases, the distinctions between the radial veloc-
ities estimated by each response become less pronounced. This
poses a challenge in leveraging spatial diversity to accurately esti-
mate the underlying information about the true velocity vector.
Nevertheless, within the desired ranges, as illustrated in Figure 14,
the process continues to effectively function for this particular
target and environment. The radar system correctly detects the
pedestrian in both cases with an SNR of 25 dB. In both instances
of movement, the algorithm successfully estimates both the cor-
rect direction and magnitude of the velocity of 1.556 m/s for the
first frame and 1.199 m/s for the second. For this scenario, the
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Figure 13. The images depict frames extracted from a video capturing
measurements from inside the car. In the first frame, the person is observed
walking diagonally toward the car, while in the second frame, they exhibit a slight
sideways movement, this time moving away from the car.
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Figure 14. The left plot corresponds to the top frame, displaying the estimated
velocity vector for a target at 10 m. On the right, the estimation is shown for the
second frame, where the target moves away from the network at 12 m. The arrow
lengths represent the estimated magnitudes of the vectors. Power values are
normalized for improved clarity, relative to the scene’s maximum.

results have been compared to measurements made with a Lidar
system installed on the car. The estimations from our system
closely follows the results provided by the ground truth system,
demonstrating high accuracy.

Conclusion

Our recently developed process has proven highly effective within
our specified use case. We have been able to separate, identify,
and estimate the velocity vector of multiple targets at different dis-
tances from each other and the radar network. While its robust
association across various responses and modules plays a crucial
role in managing multi target scenarios, it also alleviates errors
related to both thresholding and multi-path effects. It is able to
both provide the velocity estimation and ease the weight on the
detection process. Although we have currently tested pedestrians
and metal targets, exploring how the system handles increasing
size differences among targets is an intriguing avenue for future
investigation.
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We have conducted an in-depth study on Doppler-multiplex
modulation, uncovering new relevant limitations. This analysis has
shed light on unforeseen challenges associated with this mod-
ulation scheme, particularly in situations where the goal is to
effectively distinguish responses within our radar systems. We have
proposed a new modulation as a solution, effectively overcoming
previous said limitations. It is evident that enhancing system per-
formance involves increasing the number of modules, and we may
explore alternative modulation schemes to facilitate response sepa-
ration and enhance velocity estimation within the limits on current
ADAS.

Nonetheless, the most significant advantage lies in the sys-
tematic organization of target itemization and response classifi-
cation within the process’s structure, positioning it as a valuable
framework for future systems. This structured and comprehen-
sive approach addresses diverse challenges in target estimation
and classification, making it a promising foundation for future
advancements.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.23919/EuRAD58043.2023.10289157.
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