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ABSTRACT. To investigate the internal structure and transformational 
processes from firn to ice of the Hisago snow patch on Daisetsu Mountain, 
Hokkaido, Japan, many drillings were made during the ablation period in 1986 and 
1987. The ice cores were analyzed for stratigraphy, density and free water content. 
The internal structure of the snow patch was characterized by a wet firn layer with 
abundant ice layers and ice glands overlying a 4.3 m-thick ice body. The thickness of 
the firn layer varied from 12.7 m inJune to 1.3 m in October. A water-saturated firn 
layer about 1 m thick existed just above the firn-ice transition. The annual layers 
were identified by dirt layers which showed that 1-2 m of ice was formed each year 
when the mass budget was positive. Although the densification of the water-saturated 
firn layer proceeded rapidly, the transformation from firn to ice could not be 
recognized during the ablation period. It was concluded that the formation 
mechanism of the ice body comprised three processes: the formation of superimposed 
ice, the densification of a water-saturated firn layer and the freezing of wet and/or 
water-saturated firn by cold wave penetration. 

INTRODUCTION 

In the snowy, mountainous regions of Japan, there are 
many perennial snow patches whose areas and thicknesses 
at the end of the ablation period are mostly less than 
0.1 km2 and 10 m, respectively. They are nourished by 
extremely heavy snowfall, drifting snow and snow 
avalanches. The maximum accumulation depth at the 
end of winter reaches 20 m or more. During the ablation 
period, rapid metamorphism from snow to firn, as well as 
heavy melting, has been observed (Wakahama and 
Narita, 1975). In addition, it has been reported that 
some perennial snow patches had continuous masses of ice 
at their lowest parts (Yosida, 1964; Yoshida and others, 
1983). The rapid transformation from firn to ice and the 
existence of an ice body are interesting since these snow 
patches are subject to a warm climate in summer. 

Ogasahara (1964), investigating perennial snow 
patches which consisted entirely of ice, considered early
winter refreezing of meltwater in the firn to be the major 
transformational process. The importance ofliquid water 
in the densification process of wet firn was also pointed 
out by Wakahama and Narita (1975), who observed the 
metamorphic processes of the Yukikabe snow patch on 
Daisetsu Mountain, Hokkaido, and discussed its trans
formation mechanism in light of the experimental results 
obtained by Wakahama (1968) . However, because of 
logistical difficulties, detailed transformational processes 

from firn to ice in a snow patch have not been observed. 
In order to clarify the transformational processes from 

firn to ice in a perennial snow patch, core drillings were 
done in 1986 and 1987 on a perennial snow patch in 
Hokkaido, Japan. 

SITES AND METHODS OF INVESTIGATIONS 

Investigations were made on the Hisago snow patch 
(1750 m a.s.!.), which is located beside Lake Hisago in the 
southern part of Daisetsu Mountain range, central 
Hokkaido. This snow patch was selected because an ice 
body was expected to be formed there. The Hisago snow 
patch is less than 300 m X 100 m in area, as shown in 
Figure I, and its thickness does not exceed 10 m at the end 
of the ablation period. The surface of this snow patch is 
inclined at 11° on average. Daily meteorological 
observations carried out in 1985 at Hakuun Hut 
(2000 m a.s.!.), about 12 km north of Lake Hisago (Sone 
and Takahashi, 1988), suggest the annual mean air 
temperature at the Hisago snow patch in 1985 was about 
-2°C. 

During the ablation period from June to October in 
1986, four cores were taken near the center of the Hisago 
snow patch (BS), using an electro-mechanical drill 
designed by Suzuki and Shimbori (1984). Additional 
cores were taken at five points (BI-B5) in September 
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Fig. 1. Schematic map of Hisago snow patch on 7 October 
1986 and 18 September 1987. Cores were drilled at sites 
labeled BS in 1986 and BS, B1, B2, B3, B4 and B5 in 
1987. 

RESULTS 

Stratigraphic characteristics 

Outlines of stratigraphic profiles obtained at BS in 1986 
are shown in Figure 2a. Since a great amount of water 
flowed into the borehole during the drilling, it was 
difficult to bore through the full depth of the snow patch. 
We could obtain an ice core to the full depth only in 
August when a 4.3 m-thick ice body was found under the 
wet firn layer. The firn layer contained abundant ice 
layers and ice glands formed by refreezing of percolated 
meltwater. The thickness of the firn layer decreased from 
12. 7 m in June to 1.3 m in October because of heavy 
melting and compaction. 

During the ablation period, a layer of water-saturated 
firn existed just above the firn-ice transition. Boreholes 
were used for measuring the water level in the water
saturated firn. The thickness of this layer varied from 0.6 
to 1.4 m during the summer of 1986 due to meltwater 
production on the surface and liquid precipitation. In 
September 1987 the maximum thickness of 2.7 m was 
observed soon after a heavy rainfall. 

Well-defined dirt layers were found in the ice body. 
Since they correspond to the firn surface at the end of the 
ablation period, it is interpreted that the ice and firn 
above the uppermost dirt layer accumulated during the 
winter season of 1985/86 and a 0.2-0.3 m thick ice layer 
just above the uppermost dirt layer was formed at the 
beginning of the melt season in 1986. The drillings of 
September 1987 revealed that a layer of water-satura ted 
firn was formed at almost all points except for the highest 
point, Bl (Fig. 3). At B2 the transformation from firn to 
ice was not completed in 1986 and the resulting water
saturated firn layer was formed in old firn. An ice layer 
0.2 m thick was formed just above the uppermost dirt 
layer at BS, just as was found in the previous year. 

1987 and were analyzed for stratigraphy, density and free 
water content. In addition, the surface was surveyed each 

field visit. 

Density proiues 

The vertical profiles of wet density (total density) are 
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Fig. 2. a, stratigraphies; b, density profiles; and c,free water content profiles at drilling site BS in 1986. 
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Fig. 3. Comparison of stratigraphies observed at six sites 
on Hisago snow patch on 18 September 1987. (Legend as 
Fig.2.) 

shown in Figure 2b. In June, the wet density tends to 
increase gradually with increasing depth in the first 5 m, 
and is fairly constant at around 650 kg m-3 from 5 to 
11.5 m. A discontinuity in the wet density profile is seen at 
the level of the water-saturated firn at 11.5 m depth, 
thereby resulting in the shift in wet density up to around 
850 kg m-3 at 13 m. In August and September, the wet 
density of the firn above the water-saturated firn layer 
increased a little, but a marked increase in wet density 
was found in the water-saturated firn layer. There was no 
significant difference between the wet density in Septem
ber and that in October throughout the entire depth. 

Free water content prof'ues 

In June, August and September, the free water content 
(percentage of water weight to total weight of firn) was 
measured using a snow-water content meter of the 
calorimeter type designed by Akitaya (1978). Profiles of 
the free water content are shown in Figure 2c. 
Irrespective of the depth and the day on which 
measurements were made, the water content in the 
upper unsaturated firn layer fell in the range of 4-8% and 
that in the ice body was almost 0%. Free water contents 
up to 10-20% were found in the water-saturated firn 
layer. 

Kawashima and others: Internal structure in a perennial snow patch 

DISCUSSION 

Internal structure 

The internal structure along the line A-A' (Fig. I) in 
September 1987 is summarized in Figure 4. In the ice 
body, four annual boundaries were identified by the dirt 
layers spaced less than 2 m apart at the center of the snow 
patch. The annual ice layers show that 1-2 m of ice was 
added to the ice body each year when the mass budget 
was positive. Snow is transformed into ice in a single year, 
except for the upper part of the snow patch. 

The water-saturated firn layer occurs where the 
vertical percolation of meltwater is interrupted just 
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Fig. 4. Longitudinal section along line A-A' (Fig. 1) of 
Hisago snow patch on 18 September 1987. 

above the firn-ice transition. Such a water-saturated 
firn layer, which is often called a "firn aquifer", has been 
found in the accumulation area in many temperate 
glaciers throughout the world (Sharp, 1951 b; Vallon and 
others, 1976; Ambach and others, 1978; Oeschger and 
others, 1978; Akbarov and others, 1980; Oerter and 
Moser, 1982; Yamada, 1987; Fountain, 1989). These 
aquifers are formed in the early ablation period and 
almost competely disappear at the beginning of the 
accumulation period. The firn aquifer found in the 
Hisago snow patch may also disappear during winter. 
Although the firn aquifer of the snow patch is similar to 
that of temperate glaciers in many respects, there is a 
difference in the age offirn; the former exists in I-year-old 
firn and the latter in older firn. It is interesting to note 
that the thickness of the water-saturated firn layer in the 
Hisago snow patch is nearly equal to that of an annual ice 
layer. 

Densification of a layer of water-saturated firn 

After the entire snow patch has been wetted and 
maintained at the melting point, the densification of 
wet firn under pressure of the overlying firn is considered 
to be the dominant transformationl process from firn to 
ice. To know the densification rate of wet firn, the dry 
density Pd (Fig. 2b) is calculated from the wet density Pw 
and the gravimetric free water content W measured in 
June, August and September 1986 using the equation 
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Pd = (1 - W /100)pw. (1) 

An initial increase in the dry density of the upper firn is 
followed by roughly constant values of 550-600 kg m -3 in 
June. This density seems to correspond to the maximum 
density due to mechanical packing. At the level of the 
water table, the dry density increases suddenly from 
600kgm-3 to 650-700kgm-3

• Vallon and others (1976) 
and Yamada (1987) also found this discontinuity of the 
density curve at the level of the water table in temperate 
glaciers. According to Wakahama (1968, 1975), the 
immersion of snow in water promotes densification as 
well as grain growth more quickly than can be seen in the 
unsaturated snow. In August and September, a marked 
increase in dry density is found in the water-saturated firn 
layer, with the dry density reaching 750-780 kg m-3. 

However, the transformation from firn to ice by 
densification could not be recognized during the ablation 
period in 1986. Judging from the stratigraphic diagram 
shown in Figure 3, the same must be true for 1987. This is 
presumably caused by a rapid decrease in overburden 

Table 1. Depth and age of firn-ice transition in upper 
accumulation area of temperate glaciers 

Glacier Depth Age Reference 

m a 

Upper Seward ·18 Sharp (195la) 
Glacier (St. Elias 
Mountains) 

Vallee Balache 32 6-7 Vallon and others 
(French Alps) ( 1976) 

Great Aletsch- 32 12 Oeschger and others 
gletscher (1978), Lang and 
(Swiss Alps) others (1981) 

Kessel wandferner 24-26 t13-l5 Ambach and others 
(Oetztal Alps) ( 1978) 

Vernagtferner 20 t20-22 Oerter and others 
(Oetztal Alps) (1981), Baker and 

others (1985) 

Yala Glacier 17 Iida and others 
(Langtang Himal) (1984 ) 

San Rafael Glacier 26.7 4-5 Yamada (1987) 
(Patagonia) 

J ostedalsbreen 29.5 10 Kawamura and 
(southern Norway) others (1988) 

Values estimated by: • seismic reflections, t the assump-
tion that the average wet density of firn is 650 kg m-so 
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pressure, from 70 kPa in June to 5 kPa in October at the 
level of the water table, because of heavy melting. 
Although quantitative relationships between the den
sification rate of water-saturated firn and overburden 
pressure are not clear, the decrease in overburden 
pressure must reduce the densification rate. 

The overburden pressure required for ice formation by 
the densification of the water-saturated firn can be 
estimated from the depth-density curves obtained in 
temperate glaciers. Table 1 lists the depth and age of the 
firn-ice transition found in the upper accumulation area 
of temperate glaciers. The age of the ice at the firn-ice 
transition was obtained by dividing the overburden 
pressure by the average net accumulation rate. Drillings 
confirmed that a firn aquifer was formed during the 
ablation period in all glaciers shown in Table 1 except for 
Yala Glacier and J ostedals breen where the drillings were 
made for the period without meltwater production. The 
age of ice lies in the range from 4 to 22 a, while the depth 
of firn-ice transition is characterized by a concentration 
between 20 m and 30 m and is independent of the elapsed 
time since snow deposition. This strongly suggests that the 
depth of firn-ice transition is determined mainly by the 
overburden pressure acting on the water-saturated firn 
layer. That is, it is presumed that the water-saturated firn 
can transform into ice by densification during the 
ablation period if the overburden pressure is above a 
critical value. The critical overburden pressure estimated 
from depth-density curves varies from 0.13 to 0.20 MPa, 
possibly depending on the duration of the ablation 
period. In view of the above argument, it seems 
reasonable that the water-saturated firn formed in the 
Hisago snow patch was not transformed into ice by 
densification during the ablation period of 1986, because 
the overburden pressure was less than 0.1 MPa even early 
in the melt season. 

Formation processes of ice body 

The formation of an ice body can occur through a 
mechanism other than densification: the transformation 
from firn to ice may occur by the freezing of liquid water 
in pores and grain boundaries when a cold wave 
penetrates into wet firn early in winter. Firn with a dry 
density of 780kgm-S can be transformed into ice in this 
way when free water content is as low as 6%. Even if the 
water-saturated firn layer has disappeared, enough liquid 
water for ice formation may be held in the firn by 
capillary attraction. The heavy snowfall on Daisetsu 
Mountain is usually brought by the northwesterly 
monsoon which becomes dominant in November. The 
resulting snow accumulation acts as thermal insulation to 
the penetration of winter cold wave; thus, the freezing of 
wet firn must be completed in October if the hypothesis 
above is to apply. 

This hypothesis is supported by the following simple 
calculation of heat conduction accompanied by the 
freezing of water. Suppose the free surface of a 
homogeneous wet firn layer is cooled below the melting 
point and the resulting frost front penetrates into the wet 
firn. At time t = 0 the surface temperature of the firn is 
brought to Ta and remains constant at that value. If it is 
assumed that the temperature in the frozen layer varies 
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linearly and that the initial temperature is Doe through
out the firn layer, the process of freezing is expressed by 
the equation 

(2) 

'where I is the thickness of the frozen layer, L is the latent 
heat of fusion of ice and K is the thermal conductivity of 
the frozen layer. When wet firn transforms into ice 
(830 kg m -3) by freezing, the following equation is 
required: 

W = 100(1 - Pd/830). (3) 

According to Motoyama and others (1986), the relation 
between the daily mean air temperature Ta and the 
surface temperature of the snowcover TB is written as 

Ts = Ta - 3.0. (4) 

Substituting Pw, Wand TB into Equation (2) from 
Equations (1), (3) and (4) yields 

dI K(Ta - 3) 
dt = IL(pd - 830)' 

(5) 

The initial condition is I = 0 at t = 0 and the solution is 

I = { 2K(Ta - 3)t }l 
L(Pd - 830) 

(6) 

The thermal conductivity of ice with the density of 
830 kg m-3 is taken to be 1.81 Wm-IK-I (Murakami and 
Maeno, 1989) and we use the value L = 3.35 X 105 J kg-I . 
Thus Equation (6) becomes 

or 

1= 0.966{(Ta - 3)t }i, 
Pd - 830 

= 1072 P(Pd - 830) 
t. Ta - 3 ' 

(7) 

(8) 

with I and t given in meters and days, respectively. From 
Equation (8) the time required to freeze a wet firn layer 
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Fig. 5. Time required to freeze a wet firn layer with 
thickness of 1.5 m as a Junction of air temperature Jor 
various values of dry density. 
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with a thickness of I can be calculated. Figure 5 shows as 
a function of Ta for various values of Pd the necessary time 
for a 1.5 m-thick ice layer (approximate thickness of the 
annual ice layer in the Hisago snow patch) to form by 
freezing of liquid water. This shows that the necessary 
time decreases rapidly when the air temperature is low or 
the dry density is high. The monthly mean air 
temperature in October 1986 at the Hisago snow patch 
was about -4°C, which would form a 1.5 m-thick ice layer 
in 30 days because the dry density of water-saturated firn 
reached more than 750 kg m -3 at the end of the ablation 
period. Although the calculation is somewhat over
simplified, the result shows that the freezing of wet firn 
can be completed within October and may be taken as 
evidence in favor of the hypothesis. It should be noted 
that the existence of the water-saturated firn layer plays 
an important role in the formation of the ice body in the 
sense that the firn is densified highly enough to be 
transformed into ice within a short period by freezing a 
small amount of liquid water. 

Another process is necessary to explain the formation 
of the ice layers with thicknesses of 0.2-0.3 m just above 
the uppermost annual boundary. Since the temperature 
of the underlying ice body is believed to be maintained 
below the melting point at the beginning of the ablation 
period, these layers are regarded as superimposed ice 
formed by refreezing of meltwater. 

CONCLUDING REMARKS 

The results from the ice-core studies on the Hisago snow 
patch provide valuable information on the internal 
structure and the transformational processes from firn to 
ice in perennial snow patches. 

The internal structure of the Hisago snow patch is 
characterized by a wet firn layer overlying a 4.3 m-thick 
ice body. During the ablation period, a water-saturated 
iirn layer exists just above the firn-ice transition. The 
annual layers identified by dirt layers show that 1-2 m of 
ice was added to the ice body each year when the mass 
budget was positive. 

The formation mechanism of the ice body in the 
Hisago snow patch comprises three processes: (1) the 
formation of superimposed ice, (2) the densification of a 
water-saturated firn layer, and (3) the refreezing of wet 
and/or water-saturated firn by cold wave penetration. 
Processes (I) and (3) are essentially the same as those 
found in sub-polar glaciers. The reasons why the 
transformation of sub-polar type occurs in the Hisago 
snow patch, which is subject to a rather warm climate, is 
that the snow patch is thin compared to the accumulation 
area of temperate glaciers; this allows deep penetration of 
the winter cold wave into the snow patch. Process (2), 
which is the major transformational process found in 
temperate glaciers, is believed to play an important role 
in completing the transformation from new snow to ice in 
a single year, although it is interrupted by the rapid 
decrease in the overburden pressure because of heavy 
melting when the dry density of the firn reaches 750-
780kgm- 3

. These three processes are in balance with the 
present climatic conditions and make possible the 
formation of an ice body. 
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