Notes

86.60 Immediate successors and predecessors of Fibonacci and Lucas numbers

Fibonacci numbers F_n are often defined by the recursive formula

$$F_n = F_{n-1} + F_{n-2} \quad (1)$$

where $F_1 = F_2 = 1$, and $n \geq 3$. Lucas numbers L_n are also often defined recursively: $L_n = L_{n-1} + L_{n-2}$, where $L_1 = 1, L_2 = 3$, and $n \geq 3$. Both formulas, although easy to work with, require two consecutive elements in either sequence to compute the next one in the sequence.

Interestingly, the immediate successor F_{n+1} of F_n can be computed without knowing F_{n-1}. To see this, let $\alpha = (1 + \sqrt{5})/2$, the golden ratio, and $\beta = (1 - \sqrt{5})/2 = 1 - \alpha = -1/\alpha$. Using the recurrence relation (1), we have:

$$F_{n+1} - \alpha F_n = (1 - \alpha)F_n + F_{n-1} = \beta F_n + F_{n-1} = \beta(F_n - \alpha F_{n-1})$$

$$= \beta^2(F_{n-1} - \alpha F_{n-2})$$

$$= \beta^3(F_{n-2} - \alpha F_{n-3})$$

$$\vdots$$

$$= \beta^{n-1}(F_2 - \alpha F_1)$$

$$= \beta^{n-1}(1 - \alpha)$$

$$= \beta^n.$$

Since $|\beta| < 0.62$, $|\beta|^2 < \frac{1}{2}$; so $|\beta|^n < \frac{1}{2}$ for $n \geq 2$. This implies that

$$-\frac{1}{2} < F_{n+1} - \alpha F_n < \frac{1}{2}$$

and hence

$$\alpha F_n - \frac{1}{2} < F_{n+1} < \alpha F_n + \frac{1}{2} \quad (2)$$

for $n \geq 2$. Thus

$$F_{n+1} = \left\lfloor \alpha F_n + \frac{1}{2} \right\rfloor \quad (3)$$

for $n \geq 2$. See [1, 2] for an alternate proof of this.

For instance, the immediate successor of the Fibonacci number $F_{20} = 6765$ is given by $\left\lfloor 6765\alpha + \frac{1}{2} \right\rfloor = \left\lfloor 10946.4999... \right\rfloor = 10946 = F_{21}$.

The recursive formula (3) provides a bonus. It can be used to compute the ratios F_{n+1}/F_n as $n \to \infty$, without resorting to the method of continued fractions.

It follows from (3) that

$$F_{n+1} = \alpha F_n + \frac{1}{2} - \theta_n$$

for some real number θ_n, where $0 \leq \theta_n < 1$. Then

$$\frac{F_{n+1}}{F_n} = \alpha + \frac{1}{2F_n} - \frac{\theta_n}{F_n}.$$
Therefore, \(\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \alpha + 0 + 0 = \alpha \)
a fact that is well-known [1, 2].

Interestingly, formula (3) can be used in the reverse direction also. Using the double inequality (2), it can be shown that

\[
F_n = \left\lfloor \frac{F_{n+1} + \frac{1}{2}}{\alpha} \right\rfloor
\]

(4)

This formula computes the immediate predecessor of a given Fibonacci number.

For example, the immediate predecessor of \(F_{21} = 10946 \) is given by \(\left\lfloor 10946.5/\alpha \right\rfloor = \left\lfloor 6765.3090\ldots \right\rfloor = 6765 = F_{20} \).

Formula (4) shows that \(\lim_{n \to \infty} \frac{F_n}{F_{n+1}} = \frac{1}{\alpha} \). We leave the details as an exercise.

Formulas (3) and (4) can be written in terms of the ceiling function \(\lceil x \rceil \), where \(\lceil x \rceil \) denotes the ceiling of \(x \), that is, the least integer \(\geq x \):

\[
F_{n+1} = \left\lfloor \alpha F_n - \frac{1}{2} \right\rfloor
\]

(5)

\[
F_n = \left\lceil \frac{F_{n+1} - \frac{1}{2}}{\alpha} \right\rceil, \quad n \geq 2
\]

(6)

For instance, using formula (5), the immediate successor of \(F_{17} = 1597 \) is given by \(\left\lceil 1597\alpha - \frac{1}{2} \right\rceil = \left\lceil 2583.5002\ldots \right\rceil = 2584 = F_{18} \).

Formulas (3) through (6) have analogous results to Lucas numbers. They can be obtained by simply changing \(F_m \) to \(L_m \) in each formula. For example, the immediate predecessor of the Lucas number \(L_{20} = 15127 \) is \(\left\lfloor 15127.5/\alpha \right\rfloor = \left\lfloor 9349.3091\ldots \right\rfloor = 9349 = L_{19} \).

Acknowledgment

The author would like to thank the referee for the helpful and thoughtful comments for improving the original version of this article.

References

THOMAS KOSHY

Department of Mathematics, Framingham State College, 100 State St, Framingham MA01701-9101 USA