# THE DECREASE IN MORTALITY DURING EARLY ADULT MALE LIFE IN ENGLAND AND WALES 

By W. J. MARTIN, B.Sc.<br>Of the Medical Research Council's Statistical Staff<br>From the Division of Epidemiology and Vital Statistics, London School of Hygiene and Tropical Medicine

(With 5 Graphs in the Text)
The course of mortality has undergone some remarkable changes since the early part of the last century, the period for which official statistics are available. The variations in the death-rates are emphasised when the rates of various countries are compared, and the cause of the difference in the trend of mortality between various countries has been the source of much speculation. The most striking contrast between the course of mortality in two countries is, probably, that discussed by Prof. Greenwood (1924) in his paper, "The vital statistics of Sweden and England" (J. Roy. Stat. Soc. 8y, Part 4). He made a comparison between the two countries for the ages $10-50$ for two periods. The first period covered the years 1838-54 for England and Wales and 1841-50 for Sweden, the second period was 1901-10 for both countries. The probability of dying for males during the first period was greater in England and Wales between the ages $10-35$ than in Sweden. The greatest difference occurred at age 19, when the value for England and Wales was $151 \cdot 2$ per cent. of the Swedish figure. From age 36 the male mortality in Sweden was in excess of that for England and Wales. The female mortality was greater in England and Wales for every age $10-50$. In the second period the mortality at adolescence in England and Wales had made such an improvement that it was less than that of Sweden, the probability of dying for males in England and Wales being less than that of Sweden for the ages $10-31$. The England and Wales value at age 19 was now only 59.8 per cent. of that of Sweden. From age 32 the male mortality in Sweden was less than that of England and Wales. The female rate for England and Wales was below that of Sweden for the ages 10-36 and above for 37-50. The mortality of 1901-10, of both countries, had shown considerable improvement on that of the earlier period. This decline in mortality has been general and has been shown in the experience of most countries.

An interesting feature exhibited by German, French and other continental life tables is that the probability of dying in early adult male life does not rise steadily with age but for a few years of life shows a slight decline. This phenomenon is not present in the corresponding English life tables, or amongst females for whom the probability of dying steadily increases with advancing
age. The values of $q_{x}$ for Germany, France, England and Wales for post- and pre-war periods are shown in the graph and in Table I. For the first periods given in this table the $q_{x}$ for males in Germany reaches a maximum value at age 21 , then declines and does not exceed this value until age 25 . The maximum occurs a little later for France than for Germany but the depression in the curve is longer, the maximum being at age 23 and the next greater value occurring at age 30 . This indentation of the $q_{x}$ curve for France and Germany and its absence from the English table, for the first periods, was noted by Otto Von Schjerning in his book Sanitätsstatistische Betrachtungen über Volk und Heer, published in 1910. He pointed out that while Germany and France had compulsory military service, England did not have this system, and he attributed the diminution of the rate of mortality to the favourable influence of military service. For the second period the decline with age in the probability of dying for both France and Germany is more pronounced than in the first period. Male mortality in France reached a maximum at the age of 21 and then declined, remaining below this value until age 34. In Germany the maximum occurred at age 22, and the lessened rate of mortality lasted until age 37 . This diminution of the values of the probability of dying is absent from the three English life tables, although the slope of the male $q_{x}$ curve of 1920-2 for the ages $23-26$ was appreciably less than for the other ages.

The official life tables for 1931 are not yet published, but with the issue of the census it was thought of interest to test whether the probability of dying for England and Wales steadily increased with advancing age or not. The life tables constructed on the census population of 1931 and the deaths of 1930-2, showed for females the usual increasing series of values, but for males the value of $q_{x}$ was lower at ages $24-28$ years than it was for age 23 . Thus in the most recent years the mortality of young adult males shows in England and Wales the same kind of course as has been previously observed in Germany and France but not before in this country. Compulsory military service cannot be invoked as an explanation of this change in England and Wales. To determine the factor that might be responsible, it appeared necessary to examine the causes of death in young adult life and thus detect which of them were responsible for the decline in the total $q_{x}$ values at these particular ages. For this purpose the causes of death were grouped into fourteen categories and the probability of dying found for each group, for the two periods 1920-2 and 1930-2. The life tables were constructed using King's method and were based on the deaths for 3 years and the census population. The census population of 1931 was brought down to the mid-year value on the assumption of a geometric increase in the intercensal period 1921-31. The quinquennial pivotal values were derived from the grouping $5-9,10-14,15-19$, etc., since the separate causes of death are only given in this grouping and it was thought best to use the same pivotal value throughout. A comparison with the 1921 table shows that the different pivotal values give very small differences in the value of $q_{x}$. The probability of dying from each group of diseases is shown in Table II and
in the graphs. The two groups, suicide, accidents and homicide, are more important causes of death in 1930-2 than in 1920-2 and are the only causes that show an appreciable increase during the decade. Cancer and tumours show a slight rise and there is a small increase in ages over 24 for diseases of the digestive system and in ages under 24 for epidemic diseases (less influenza and tuberculosis). All the other causes of death have declined from the 1921 values. Turning from the secular trend of mortality to its course with age tuberculosis and accidents are the only groups which exhibit a decline in the mortality rates for $1930-2$, between the ages of 24 and 27 , when as we have seen the mortality from all causes declined. The drop in the rate for tuberculosis from age 23 to age 28 , although contributing to the fall at those ages in the rate for all causes, cannot be responsible for the lowering of the mortality between ages 24-28 observed in the total rate for 1930-2 but not in 1920-2, for this cause of death had shown a similar but somewhat steeper decline in 1920-2 and, as is shown in Table III, tuberculosis in 1930-2 was proportionately slightly less important than in 1920-2. If it had become more important proportionately it might have been partly responsible for the indentation. This leaves accidents to account for the diminution in the probability of dying. It will be seen from the graph that the curve of mortality from this cause has altered considerably between 1920-2 and 1930-2. Not only is the curve of 1930-2 higher than that of 1920-2 but it has a pronounced maximum at age 22 followed by a steep decline. Table III shows the probability of dying for each group expressed as a percentage of the all causes rate. This table shows that the fall in the probability of dying from tuberculosis after age 23 was steeper in 1920-2 than in 1930-2, whilst the accident values show a steeper decline in 1930-2 than in 1920-2 for ages over 22. To compare the course of mortality from both causes of death more readily, the $q_{x}$ for ages over 23 have been expressed as a percentage of that of age 23 . The values are:

| Age | Accidents |  | Tuberculosis |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1920-2 | 1930-2 | 1920-2 | 1930-2 |
| 23 | 100 | 100 | 100 | 100 |
| 24 | 97.9 | 96.2 | 98.7 | 99.2 |
| 25 | $95 \cdot 3$ | 91.0 | 96.0 | $97 \cdot 0$ |
| 26 | 92.9 | 85.5 | $93 \cdot 3$ | 94.7 |
| 27 | 91.5 | 81.2 | 91.9 | $93 \cdot 4$ |
| 28 | 91.0 | $77 \cdot 2$ | 91.8 | $93 \cdot 1$ |
| 29 | $9 \mathrm{I} \cdot 6$ | $73 \cdot 4$ | $92 \cdot 1$ | $93 \cdot 0$ |
| 30 | $92 \cdot 4$ | $69 \cdot 8$ | $92 \cdot 9$ | $93 \cdot 2$ |

From this it will be seen that the greatest age decline is in accidents which have become proportionately much more important, while the tuberculosis decline has slackened and is proportionately less important. Hence the new indentation must be derived from accidents.

It is of interest to see whether tuberculosis and accident mortality for females has undergone any changes similar to those found in the male mortality experience. Accordingly the probability of dying was found for all causes, tuberculosis and accidents for the females for 1920-2 and 1930-2.

| 录 |  |
| :---: | :---: |
| - |  |















\＆





が心

－




©







Table IV. England and Wales. Females. Probability of dying per 100,000


Table V. England and Wales. Females. Probability of dying from tuberculosis, and accidents and homicide expressed as a percentage of all causes

| Cause of death | Age |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| 1920-2 |  |  |  |  |  |  |  |  |
| Tuberculosis | 50.5 | 51.0 | $50 \cdot 7$ | $49 \cdot 9$ | $48 \cdot 6$ | $47 \cdot 3$ | $45 \cdot 7$ | $43 \cdot 7$ |
| Accidents and homicide | $2 \cdot 6$ | $2 \cdot 5$ | $2 \cdot 3$ | $2 \cdot 2$ | $2 \cdot 1$ | 1.9 | 1.8 | 1.8 |
| 1930-2 |  |  |  |  |  |  |  |  |
| Tuberculosis | $49 \cdot 1$ | 50•1 | $50 \cdot 3$ | $49 \cdot 8$ | 49•1 | $48 \cdot 1$ | $47 \cdot 0$ | $45 \cdot 5$ |
| Accidents and homicide | $4 \cdot 7$ | 4.5 | $4 \cdot 4$ | $4 \cdot 2$ | 4-1 | $3 \cdot 9$ | $3 \cdot 7$ | $3 \cdot 5$ |
|  | Age |  |  |  |  |  |  |  |
| Cause of death | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
| 1920-2 |  |  |  |  |  |  |  |  |
| Tuberculosis | 41.5 | $39 \cdot 4$ | $37 \cdot 6$ | 36.0 | $34 \cdot 5$ | 33.0 | 31.6 | $30 \cdot 2$ |
| Accidents and homicide | 1.7 | $1 \cdot 6$ | $1 \cdot 6$ | 1.5 | $1 \cdot 6$ | $1 \cdot 6$ | $1 \cdot 6$ | $1 \cdot 6$ |
| 1930-2 |  |  |  |  |  |  |  |  |
| Tuberculosis | $43 \cdot 8$ | $42 \cdot 0$ | $40 \cdot 1$ | $38 \cdot 1$ | $35 \cdot 9$ | $33 \cdot 6$ | 31-3 | $29 \cdot 3$ |
| Accidents and homicide | $3 \cdot 3$ | $3 \cdot 1$ | 2.9 | 2.7 | $2 \cdot 6$ | $2 \cdot 4$ | $2 \cdot 3$ | $2 \cdot 2$ |


-5-2


These rates are set out in Table IV, and the values of tuberculosis and accidents expressed as a percentage of all causes are given in Table V. The curve of the tuberculosis rates for 1930-2 is similar to that of 1920-2 but lower. Mortality from accidents has increased and the values of 1930-2 show a rise to a maximum followed by a steady decline as did the males but on a much smaller scale. The rates for accidents are too small to affect the total death-rate to an appreciable extent, forming in 1930-2 approximately only one-twentieth of the deaths from all causes at the age when the probability of dying from this cause was at its maximum, whereas for males accidents accounted in 1930-2 for one-fifth of the total mortality at ages 19-23. From this analysis I think we may conclude that the indentation in the curve of the probability of dying from all causes, for males, between the ages 24 and 28 in 1930-2 is due to the trend of mortality from accidents. If accidents be excluded then the probability of dying, for males, steadily increases with increasing age and the indentation is absent.

Since it is of interest to determine what type of accident has been responsible for the greatly increased rate of mortality from this cause, the rates for the principal categories, for the age group $20-25$, have been found. They are:

|  | $\overbrace{1920-2}$ | Death rates per million |
| :--- | :---: | :---: |
| Drowning | 79 | $1930-2$ |
| Fall | 32 | 52 |
| Mines and quarries | 61 | 31 |
| Machinery | 14 | 36 |
| Railways | 32 | 12 |
| Road and air transport | 96 | 14 |
| Other accidents | 85 | 432 |
|  | Total... | 399 |

Accident mortality from every cause except road transport in 1930-2 shows a decrease on the 1920-2 value. Road accidents with a 450 per cent. increase accounted for more deaths in 1930-2 than did all forms of accidents in 1920-2.
(MS. received for publication 1. vir. 1935.-Ed.)

