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ON POSITIVELY COMPLEMENTED
SUBSPACES OF ¢,
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1. Introduction

It has been proved, see [1], that a closed infinite dimensional subspace of ¢, is
isomorphic to ¢, if and only if it is the range of a bounded linear projection. In [6] we
proved half of the order-theoretic analogue of this result. In fact we showed that an
infinite dimensional subspace of ¢, which is the range of a positive projection is
order-isomorphic to ¢,. We left open the question whether the converse holds also true.
In this paper we answer this question negatively by providing an example in Section 4.
In Section 3 we give necessary and sufficient conditions in order that an ordered-
subspace of ¢, be the range of a positive projection.

2. Terminology

By ¢, we denote the linear space of all real sequences x =(x(1), x(2),...) which
converge to zero, ordered by the natural coordinatewise ordering which makes ¢, a
Banach lattice (|x|=|y| implies ||x||=|lyl, where |x| = xV(—x) denotes the supremum of
x and —x). The positive cone of ¢, defined by this ordering is denoted by ¢ and the
unit ball by U. By an ordered-subspace of ¢, we mean a closed, infinite dimensional
subspace X of ¢, such that X=X,—-X,, where X, =XNcj. Such a subspace is
considered everywhere in this paper to be ordered by the cone X, . The closed unit ball
of X is denoted by Uy. A bipositive topological isomorphism between two ordered
topological linear spaces is called an order-isomorphism and then the spaces are said to
be order-isomorphic. By a projection we mean a continuous linear idempotent operator.
We write U-basis for an unconditional basis. The ordering associated with a basis (x,)
is given by the cone X, ={xe X: x=Y A,x,, A =0 for all n eN}. For terminology and
notation used here and not defined here we refer to [3], [4] and [6].

3. The main results

Our first theorem concerns those ordered-subspaces of ¢, which are order-isometric
to ¢o. Unlike the situation for [, spaces (see [6]) these are not necessarily sublattices.
For example, the subspace

X ={xecy: x(1)=3(x(2) +x(3))}
is order-isometric to ¢y without being a sublattice.
41
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Theorem 1. Let X be an ordered-subspace of ¢, Then, X is order-isometric to ¢, if and
only if X is the range of a positive contractive projection.

Proof. Suppose that X is order-isometric to ¢, and let (x,) be the sequence in X
which corresponds to (e,) under the order-isometry T. Evidently ||x,|l= 1 for every
neN, and for each neN, there exists a minimum natural number k, such that
x.(k,)=1. Since T is an isometry

lx. £x,=1 forall n¥m,nm=1,2,...
which implies that

1 n=m
0 n#m.

Now, for every x € ¢y, x(k,)— 0, and since (e,) and (x,) are equivalent, Y x(k,)x, €
X
The mapping P from ¢, into X defined by
Px =3 x(k,)x,

is linear, Px, = x, for every neN, and Px=x for every xe X. Also

%)= |

IP= sup IPxl=sup lx(i)| =l

This implies that ||P|=1 and, since P is a projection, finally that |P}|=1.

To prove the converse, suppose that X is an ordered-subspace of 'co so that it is the
range of a positive contractive projection. By virtue of Theorem 6 of [6], X is
order-isomorphic to ¢y, and more precisely the order of X is induced by a U-basis. So,
let (x,) be a normalised U-basis defining the ordering of X. If z,Vz, denotes the
supremum of two elements of X in the ordering defined by X, then, since |[P||=1 and
P(z,Vz,)=z,Vz,, we have that ||z,Vz,V...Vz,||=1 for every neN and every
Z1, Zo, . - . 5 Z, € Ux. Now, it can be easily proved (see also Theorem 2 of [5]) that for
the order-isomorphism T from X to ¢, defined by

TAx,+ A%+, )=(A, Ay, .. )
we have
3 Ixl =N Txl| = lx].
This implies that ||T||=1. For each neN and Ay, A, ..., A, real numbers, we have
TA1x,V...VAx,)=Ae, V... VAe,
which implies
MV VL =be Vo Vel STV . VAISING XV . VL (D
On the other hand, the relation

1
TR IO R MARRAL e AR LN
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implies, since ¢, is a Banach lattice, that

1

m IAx, V... VA= V... Vx]=1
Hv... n

or
A%, V... VA=A V. VAL (2)

Now, relations (1), (2) imply that
A V... VA x| =IA V. VAL

Let x =Y A,x, =VA,x, be an arbitrary element of X. Clearly, “Y )\ixi“—">||x||, S0,

=V IAd. (3)
On the other hand

ITxl = I Aedl =V A (4)

Relations (3) and (4) imply |ix||=|Tx|| for every x € X, which completes the proof.
Before stating the next results we need first a definition.

Definition 1. Let X be an ordered-subspace of ¢, and let 1 =\ <o, We say that X
has the A-positive extension property (A-P.E.P. in short) if A is the least real number for
which every positive linear functional x* on X with ||x*||=1 has a positive extension y*
on ¢, with ||ly*|=A. An ordered-subspace X of ¢, is said to have the bounded positive
extension property (B.P.E.P. in short) if it has the A-P.E.P. for some A.

Theorem 2. Let X be an ordered-subspace of ¢, order-isomorphic to c,. Then X is the
range of a positive projection if and only if it has the B.P.E.P.

Proof. If X is the range of a positive projection, then it clearly has the B.P.E.P. For
the converse, suppose that X has the B.P.E.P. Now, let (x,) be the basis of X which
corresponds to the natural basis (e,) of ¢, under the order-isomorphism, (x*) the
functionals associated with (x,) with m =||x*||= M, and y¥ a positive extension of x* on
co with [ly¥|=AM for all neN and some A =1.

We can also suppose that supp y¥csuppx, for each neN, where suppz=
{i eN: z(i) # 0}, for otherwise we can take another extension y.* of x¥ with y*=y¥*
and satisfying the above condition. Indeed, suppose that supp y¥ ¢ supp x,. Since

y¥(x,) = x¥(x,,) = 8., supp y¥<N\U supp x,.. By nullifying those coordinates of y*
mef\{n}

which do not belong to supp x, we get another extension y,* of x* with the required
property. Notice that for each neN, m =|ly/*|=AM and also that supp y.* Nsupp y/*=
& forall n#m, n, m#1,2,.... It follows now easily that y¥ — 0 with respect to the
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weak-star topology o(cy). The mapping P from ¢, onto X defined by

Px =, y¥(x)x,

is clearly a positive projection.

The following theorem has been also proved in [2] in much greater generality,
although I was not aware of this fact. However, I cite it here in the following form, for 1
think the explicit mention of the constants serves the purpose of this paper better.

Theorem 3. Let X be an ordered-subspace of co. If X has the A-P.E.P., then
XNWU=-c¢§)c AUx — X,. Conversely such a relation implies that X has the u-P.E.P.
with w = A.

Proof. Suppose that X has the A-P.E.P. but the given inclusion does not hold. Then
we can find an element u—pe XN(U-cy), with uelU and pecd, such that
u—p# AUx — X... By the separation theorem, there exists an x* e X* with [|x*||=1 such
that

x*(u—p)>sup x*(AUy — X, )= A.
Take an extension y*=0 of x* with |y*|=A. Then,
A<x*u-p)=y*u-p)=y*w)=ly*|=a

which of course cannot be true.

To prove the converse, take a positive linear functional x* on X with ||x*|=1. If q
denotes the Minkowski functional of U-cg, then, since XN(U—cg)c AUx — X, we
have that x*(x)=Aq(x) for every x€X. By the Hahn-Banach theorem x* can be
extended to a linear functional y* such that y*(x)=Ag(x) for every x € c,. If follows
that y* is positive and, since q(x)=||x|| for all x € c,, |ly*|=A.

A simple calculation shows that an ordered-subspace of ¢, which is order-isomorphic
to ¢ and has the A-P.E.P. is the range of a positive projection P with |P|=A. So,
recalling that a closed, infinite-dimensional sublattice X of ¢, is lattice-isometric to ¢,
and has the 1-P.E.P., [4, prop. 33.15], we immediately conclude that X is the range of
a positive contractive projection. It is also tempting to see how the “only if”” part of
Theorem 1 follows from Theorems 2 and 3. To this end it is enough to show that
X N(U —cg) e Ux — X,. Notice that the unit ball Uy of X is an upward directed subset
of ¢o. Suppose then that there is u—pe X N(U—c{) such that u—p¢ U, — X,. Then,
according to Theorem 3.1.12 [3], there exists an y*e cf with |ly*|=1 and y*(u—p)>
sup y*(Ux —X.,)= 1. Then, 1 <y*(u—p)= y*(u) £1 which cannot be true. Whence, X
has the 1-P.E.P. and consequently it admits a positive projection of norm one.

Before stating the next lemma, we explain some of the terminology and notation

used in it.

Given an ordered-subspace X of ¢, a lattice in its own ordering, and a subset A of
X, we denote by VA the set {x € X: there exist .y, ..., @, € A such that o,V ... Va, =
x}.

We say that A admits finitely many suprema, if for every neN and a,,...,a, €A,

a,V.. . Va,eA.
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Lemma 1. Let X be an ordered-subspace of c,, order-isomorphic to co. Then, the
following relations hold true:
(@) XNU=-cHs{VIXNWU—-ci))INX,—X,=VK—-X, where K=XN(U-cj);
(B) the sets VUx — X, VUx — X, admit finitely many suprema;
(y) the sets (VUx—X,)NX,, VUx—X,NX, are bounded.
Proof. (a) Take u—pe X N(U-cg). Since 0 XN(U - cyp),
(u—p)* =(u—p)V0e K
(u—p) =(p—u)Voe X,
Hence, u—p=(u—-p)"—(u—-p) e K-X.
(B) Let uy;—x,, u,—x,eVUx~X.. Then, u;Vu,—x,Ax,e VUx — X,. On the other

hand (u; —x)V(u, — x) = u; Vu, — x,Ax,. So, [u;Vu,—x;Ax,]— (U —x)V(u,—x,)=pe
X, and finally

(uy = x1)V(up — %) = u, Vuy — (x,Ax,+ p) e VUx — X

To prove that the second set has the required property, take x,, x, from VUy — X,.
There exist sequences (ux—x}), (u2—x2) from the set VUy — X, such that

1
ul—xl—x;, uZ-x2-x,.

It follows that (u!—x})V(u2—x?)— x,Vx,, and consequently, x;Vx,e VUx — X,.
(v) It is clear.

Theorem 4. Let X be an ordered-subspace of c¢,, order-isomorphic to ¢, and
K=XnN(U=cg). Then, X has the B.P.E.P. if and only if M(K)< +. where M(K)=
sup {lIx|]: xe VK N X, }.

Proof. Suppose M(K)< +o. Then, there exists A >0 such that

VKNX,cAUy.
Hence, VKN X, c AUx—X,, and by Lemma 1
XN(U=-c)cVKNX,— X, AUy —X,.

This implies, by Theorem 3, that X has the B.P.E.P.
Suppose now that X has the B.P.E.P. By Theorem 3, there exists A >0 such that

Hence, {VIXN(U-c3)IN X, cA(VUx) - X, NX,.
By Lemma 1, the set at the right side of the above inclusion is bounded, so
M(K) < +oo,
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4. The example

We are going to construct a sequence (x,) of positive elements of ¢, such that
(i) (x,) is an unconditional basic sequence;
(i) X =[x,], the closed linear span of (x,), is an ordered-subspace of ¢, with

= {Z A, c A, =0 forall neN};
1

(iii) ||x;+ ...+ x,||<M for all ne N and some positive real M. These conditions and
Theorem 2 of [5] will imply that [x,, ] is order-isomorphic to ¢,. However, X, as we shall
see, cannot be the range of a positive projection. Consider the element

_ 11 1 )
xl—(1,2,3,...,n,....

Now, to each prime number p,, p, <p,.. for all n € N\{1}, we correspond the element

1
x“=(0,0,...,0,1,0,0,...,0,——,0,...),
Vp2
where the only non-zero coordinates are those corresponding to the positions
Dn» P2, P2, ..., DX, ..., keN. More specifically, the p,-coordinate is equal to 1 and the

pkth to 1/{/p*. Clearly ||x,||=1 for all the n eN and (iii) holds true for M =2. To show
that (x,) is a basic sequence it is sufficient to show that

Aixy +. o Ax ) <Igxg+. o Ax, A X (A)
for all n, meN with n<<m and Ay, A,, ..., A, arbitrary real numbers. Indeed, put
x=Ax;+...+Ax, and y=A;x;+.. . +Ax, +...+A,X,.

and let i, be the coordinate at which |x||=]|x(iy)]. We distinguish the following two
cases:

(a) io# ‘U supp x;. Then, iy=1 and since x(1) =y(1), ||x||=]ly||.

(b) ipe U supp x;. Then, since supp x, Nsupp x, =, k#1, we have that x(ip) =

y(io) and consequently i =livhl-
Hence the proof of the inequality (A) has been completed. To prove that (x,) is an
unconditional basic sequence, it is sufficient to show that the convergence of each series

X =Y A.X, is unconditional. By virtue of [4, Cor. 31.2], it is sufficient to show that the
1

series Y A,x, is |J-Cauchy. Indeed, since supp x, Nsupp x,,, =&, n#¥m#1, [x,]5 is a
1

closed sublattice which, as is well known, is isomorphic to ¢y; hence (x,)3 is a |J-basic
sequence equivalent to the usual basis of ¢, So, for the sequence (x,); we have that,
given €>0, there exists a finite subset ®5 of N such that all finite subsets
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D' 2d; of N, [ Aix; — Y Ax;||<e. But then
D by

<g

; Axi— Y Aixi“=

®q

Y Ax X = L A=A = 2 A=Y A,
) @ ) @,

where ® =@’ U{1} and ®,=d;U{1}, which proves the required result. We are going
now to prove that

X, = {z AXx A =0 forall neN}.
1

Take xe X, Since (x,) is a U-basis for X, x =) A,x,. The fact that x =0 implies that
1

each coordinate is a non-negative real number. Since x(1)=A,, we have A, =0.
Moreover, for each n eN, the coordinates of x at the positions p2, p2,..., pX, ... must
also be non-negative numbers i.e.

AP+ AP =0 forall keN,
or

AP+ A, 20.

As k — o, the above inequality gives A, =0, as required. Finally, relation (iii) implies
that the M-constants of X are bounded, so, by Theorem 2 of [5], [x,] is order-
isomorphic to cy.

However, X cannot be the range of a positive projection. For if P is such a
projection consider P[kx; A x,], keN, where the infimum is calculated in c,.

As we have

0= P[kx, Ax,]= kPx,, Px,

and Px; =x,, Px,=x, are disjoint in [x,], P[kx; Ax,]=0. But now observe that P is
norm continuous and that kx; Ax, — x, in norm, so Px, =0, a contradiction.
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