PROJECTIVE TENSOR PRODUCTS AND THE DUNFORD-PETTIS PROPERTY

Stephen P. Stehle

Abstract

We show the existence, in $c_{0} \otimes_{\gamma} c_{0}$, of a shrinking, subsymmetric basic sequence (z_{i}) having no c_{0} subsequences. In particular, the coefficient functionals for (z_{i}) are weakly null and the subspace $\overline{s p}\left(z_{i}\right)$ fails to have the Dunford-Pettis property.

Preliminaries

Throughout, we will use λ and γ for the least and greatest crossnorms repsectively. The sequence spaces c_{0} and l_{1} will be given their usual meanings and norms. The unit vectors for these spaces will be given by (e_{n}) and (e_{n}^{*}). It is known that the sequences $\left(e_{i} \otimes e_{j}\right)$ and ($e_{i}^{*} \otimes e_{j}^{*}$) are respective conditional bases for $c_{0} \otimes_{\gamma} c_{0}$ and $l_{1} \otimes_{\gamma} l_{1}$. The assumed ordering for both of these bases is the "upper rectangular" ordering given in [3]. A vector $x=\sum_{i j} \beta_{i j} e_{i}^{*} \otimes e_{j}^{*}$ in $l_{1} \otimes_{\lambda} l_{1}$ will be written in matrix form ($\beta_{i j}$) for short. Again, the sum is in the [3] ordering.

We recall that the definition of $\lambda(w)$ for $w=\left(\beta_{i j}\right)$ in $l_{1} \otimes_{\lambda} l_{1}$ is given by:

$$
\lambda(w)=\sup \sum_{i}\left|\sum_{j} \eta_{j} \beta_{i j}\right|=\sup \sum_{j}\left|\sum_{i} \zeta_{i} \beta_{i j}\right| .
$$

Here, the suprema are taken over $\left(\eta_{j}\right)$ and $\left(\zeta_{i}\right)$ in ball l_{∞}.
The spaces $c_{0} \otimes \gamma c_{0}$ and $l_{1} \otimes_{\lambda} l_{1}$ are among many spaces identifiable as "matrix spaces". Such spaces are studied extensively in [5]. In that paper, the authors define spaces of infinite, finitely non-zero, matrices endowed with a variety of "matrix norms". The " nth main triangle projection" on the completion of such a space is given by:

$$
T_{n}\left(\left(a_{i j}\right)\right)=\sum_{i+j \leqslant n+1} a_{i j} u_{i j}
$$

where $u_{i j}$ has 1 in position $i j$; and 0 elsewhere.
Of particular interest to us are the matrix spaces $M_{\lambda_{11}}$ and $M_{\lambda_{11}^{*}}$ which are isometric to $l_{1} \otimes_{\lambda} l_{1}$ and $c_{0} \otimes_{\gamma} c_{0}$ respectively. (See [5], p. 45, for the definition of

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.
conjugate norms α^{*}; and p. 47 for the definition of the norms $\lambda_{p q}$). In Proposition 1.2 of [5], the authors show that:

$$
\left\|T_{n}\right\| \geqslant C \log (n)
$$

for some $C>0$ independent of n; where the underlying space is $M_{\lambda_{11}}$. Later, they show (Lemma 6.1, p. 64) that $\lambda_{11}^{*}\left(b_{n}\right)=\left\|T_{n}\right\|$ for the matrix b_{n} defined by:

$$
b_{n}(i, j)= \begin{cases}1 & \text { for } n \geqslant i \geqslant j \geqslant 1 \\ 0 & \text { otherwise }\end{cases}
$$

The result given in the abstract will be proved by a sequence of propositions, beginning with the fullowing duality result.

Proposition 1. The dual space of $c_{0} \otimes_{\gamma} c_{0}$ is identifiable with $l_{1} \otimes_{\lambda} l_{1}$. In particular, the basis $\left(e_{i} \otimes e_{j}\right)$ is shrinking.

Proof: It is well known [1] that $\left(c_{0} \otimes_{\gamma} c_{0}\right)^{*}$ is canonically identifiable with $L\left(c_{0}, l_{1}\right)$, the space of continuous linear operators from c_{0} into l_{1}. The action of the identifying mapping is accomplished by extending the transformation:

$$
T(x \otimes y)=(T x)(y) \quad ; \text { for } T \in L\left(c_{0}, l_{1}\right) .
$$

It is easily established directly or by using [2] that each element of $L\left(c_{0}, l_{1}\right)$ is a weakly compact operator; hence compact, since l_{1} has the Schur property. Thus, because $c_{0}^{*}=l_{1}$ has Grothendieck's approximation property, the algebraic tensor product $l_{1} \otimes l_{1}$ (under the injective norm) is canonically identifiable with a norm dense linear subspace of $L\left(c_{0}, l_{1}\right)[1]$.

That $\left(e_{i} \otimes e_{j}\right)$ is shrinking follows from the established duality and the fact that $\left(e_{i}^{*} \otimes e_{j}^{*}\right)$ are the coefficient functionals.

We now define the basic sequence $\left(z_{i}\right) \subseteq c_{0} \otimes_{\gamma} c_{0}$ as follows:

$$
z_{i}=e_{i} \otimes \sum_{j=1}^{i} e_{j}
$$

Since $\left(z_{i}\right)$ is a block sequence of a shrinking basis, it is shrinking as well. Also, it is clearly normalized. Moreover, by our duality result and the Hahn-Banach theorem, the norm in $\overline{s p}\left(z_{i}\right)$ is given by:

$$
\gamma\left(\sum_{i} \alpha_{i} z_{i}\right)=\sup \left|\sum_{i} \alpha_{i} w\left(z_{i}\right)\right| .
$$

Here, the α_{i} 's are scalars and the sup is over all $w=\left(\beta_{i j}\right) \in$ ball $l_{1} \otimes_{\lambda} l_{1}$.
Before our next result, recall that a basic sequence is called sub-symmetric if it is unconditional and equivalent to each of its subsequences.

Proposition 2. The basic sequence (z_{i}) is sub-symmetric.
Proof: We first show unconditionality. To do this, we let N be a fixed integer, $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq\{1,2, \ldots, N\}$, and $\left(\alpha_{i}\right)_{i \leqslant N}$ be arbitrary scalars. By the above remarks on the γ norm, we can show that

$$
\gamma\left(\sum_{i_{p} \in I} \alpha_{i_{p}} z_{i_{p}}\right) \leqslant \gamma\left(\sum_{i \leqslant N} \alpha_{i} z_{i}\right)
$$

if given $w=\left(\beta_{i j}\right) \in$ ball $l_{1} \otimes_{\lambda} l_{1}$, there is a \hat{w} in the same ball for which:

$$
\left|w\left(\sum_{i_{p} \in I} \alpha_{i_{p}} z_{i_{p}}\right)\right|=\left|\hat{w}\left(\sum_{i \leqslant N} \alpha_{i} z_{i}\right)\right| .
$$

So, let such a w be given. Then from the definition of the λ norm, the vector $\hat{w}=\left(\hat{\beta}_{i j}\right)$ formed from w by replacing all rows in $\{1,2, \ldots, N\}-I$ with zeros is still in ball $l_{1} \otimes_{\lambda} l_{1}$ and satisfies the above equation. Thus (z_{i}) is unconditional with unconditional constant $\leqslant 1$.

Next, we first show that for a given increasing sequence (i_{k}) of integers, any fixed integer K, and scalars $\left(\alpha_{k}\right)_{k \leqslant K}$ that:

$$
\begin{equation*}
\gamma\left(\sum_{k=1}^{K} \alpha_{k} z_{k}\right) \leqslant \gamma\left(\sum_{k=1}^{K} \alpha_{k} a_{i_{k}}\right) \tag{*}
\end{equation*}
$$

For this it suffices to show that given $w=\left(\beta_{i j}\right) \in$ ball $l_{1} \otimes_{\lambda} l_{1}$, there is $\hat{w}=\left(\hat{\beta}_{i j}\right)$ in the same ball satisfying the equations:

$$
w\left(z_{k}\right)=\hat{w}\left(z_{i_{k}}\right) ; 1 \leqslant k \leqslant K .
$$

This is easily done by "spreading out" the matrix for w and defining \hat{w} 's coordinates by

$$
\begin{aligned}
& \hat{\beta}_{i_{p} q}=\beta_{p q}, 1 \leqslant p, q \leqslant K \\
& \hat{\beta}_{i j}=0 \text { for all other positions. }
\end{aligned}
$$

Clearly, \hat{w} satisfies the equations and, by the definition of the λ norm, $\lambda(\dot{w})=\lambda(w)$. To get the other half of inequality (*) it suffices to solve the equations:

$$
w\left(z_{i_{k}}\right)=\hat{w}\left(z_{k}\right), \quad 1 \leqslant k \leqslant K
$$

where $\lambda(w) \leqslant 1$ is given and \hat{w} satisfying $\lambda(\hat{w}) \leqslant 1$ is to be found. To get $\hat{w}=\left(\hat{\beta}_{p q}\right)$, we define

$$
\hat{\beta}_{p q}=\sum_{i_{q-1}+1 \leqslant t \leqslant i_{q}} \beta_{i_{p} t} ; \text { where } i_{0} \equiv 0 .
$$

It is straightforward that \hat{w} satisfies the required equations. To see that $\lambda(\hat{w}) \leqslant 1$, suppose that $\left(\eta_{k}\right) \in$ ball l_{∞} is arbitrary. We define $\left(\xi_{j}\right) \in$ ball l_{∞} by: $\xi_{j}=\eta_{k}$ for $i_{k-1}+1 \leqslant j \leqslant i_{k}$. Then

$$
\sum_{i}\left|\sum_{k} \eta_{k} \hat{\beta}_{i k}\right|=\sum_{i}\left|\sum_{j} \xi_{j} \beta_{i j}\right| \leqslant 1 .
$$

Thus, by taking the supremum over $\left(\eta_{k}\right)$, we get $\lambda(\hat{w}) \leqslant 1$ as desired.
The following is the crucial step in our proof:
Proposition 3. The basic sequence (z_{i}) has no c_{0} subsequences.
Proof: This is shown in [5] (Lemma 6.1, p. 64). Specifically, the authors show the existence of an independent constant $C>0$ for which:

$$
\gamma\left(\sum_{i=1}^{n} z_{i}\right) \geqslant C \log (n) ; \text { for all } n .
$$

Thus, $\left(z_{i}\right)$ is not a c_{0} sequence; and, by Proposition 2, it has no c_{0} subsequences.
Proposition 4. If $Z=\overline{s p}\left(z_{i}\right)$, then the coefficient functionals $\left(f_{i}\right) \subseteq Z^{*}$ are $\sigma\left(Z^{*}, Z^{* *}\right)$ null. In particular, Z fails to have the Dunford-Pettis property.

Proof: Let $F \in Z^{* *}$ have norm equal to one. If K is a fixed integer we choose $z \in$ ball Z for which $\left|f_{i}(z)-F\left(f_{i}\right)\right| \leqslant 2^{-i}$ for $i \leqslant K$. The triangle inequality yields:

$$
\left\|\sum_{i=1}^{K} F\left(f_{i}\right) z_{i}\right\| \leqslant\|F\|+\|z\| \leqslant 2
$$

By the unconditionality of (z_{i}) and the log inequality given above, the sequence ($F\left(f_{i}\right)$) is an element of c_{0}; whence, $\left(f_{i}\right)$ is weakly null. Finally, since $\left(z_{i}\right)$ is shrinking, it is weakly null; so Z fails the Dunford-Pettis property by Grothendieck's criterion [4].

References

[1] J. Diestel and J. Uhl, Vector Measures 15, Math Surveys, 1977.
[2] N. Dunford and J.T. Schwartz, Linear Operators Part 1, Interscience 1958.
[3] B.R. Gelbaum and J. Gil de la Madrid, 'Bases of Tensor Products of Banach Spaces', Pacific J. Math. 11 (1961), 1281-1286.
[4] A. Grothendieck, 'Sur les applications lineares faiblement compactes d'espaces du type $C(K)$ ', Canac. J. Math. 5 (1953), 129-173.
[5] S. Kwapien and A. Pelczynski, 'The main triangle projection in matrix spaces and its application', Studia Math 34 (1970), 43-68.

Mathematical Sciences
Akron Univ
Akron, Ohio 44325
United States of America

[^0]: Received 6 April 1987
 The results in this paper first appeared in the author's Ph.D. dissertation written at lient State University under the direction of Professor J. Diestel.

