BULL. AUSTRAL. MATH. SOC. Vol. 39 (1989) [11-14]

RINGS WHOSE ADDITIVE ENDOMORPHISMS ARE *N*-MULTIPLICATIVE

SHALOM FEIGELSTOCK

Sullivan's problem of describing rings, all of whose additive endomorphisms are multiplicative, is generalised to the study of rings R satisfying $\varphi(a_1 \ldots a_n) = \varphi(a_1) \ldots \varphi(a_n)$ for every additive endomorphism φ of R, and all $a_1, \ldots, a_n \in R$, with n > 1 a fixed positive integer. It is shown that such rings possess a bounded (finite) ideal A such that $[R/A]^n = 0$ $([R/A]^{2n-1} = 0)$. More generally, if $f(X_1, \ldots, X_t)$ is a homogeneous polynomial with integer coefficients, of degree > 1, and if a ring R satisfies $\varphi[f(a_1, \ldots, a_t)] = f[\varphi(a_1), \ldots, \varphi(a_t)]$ for all additive endomorphisms φ , and all $a_1, \ldots, a_t \in R$, then R possesses a bounded ideal A such that R/A satisfies the polynomial identity f.

Notation.

Z(n)	a cyclic additive group of order <i>n</i> .
R	a ring.
R[n]	$\{x \in R \mid nx = 0\}, n ext{ a positive integer.}$
R^+	the additive group of R .
R_t	the torsion part of R^+ .
R_p	the <i>p</i> -primary component of R^+ , <i>p</i> a prime.
R_P	$\bigoplus_{p \in P} R_p, P \text{ a set of primes.}$
a_p	the <i>p</i> -primary component of $a \in R_t$, <i>p</i> a prime.
P_n	$\{p \text{ a prime } n \equiv 1 \pmod{p-1}\}, n \text{ a positive integer.}$
$\operatorname{End}\left(R^{+} ight)$	the ring of endomorphims of R^+ .
$\operatorname{End}(R)$	the semigroup of ring endomorphisms of R .

Sullivan [4] asked for a description of the rings R satisfying $End(R) = End(R^+)$. Kim and Roush [3] classified the finite rings satisfying Sullivan's property. In [1] the torsion rings satisfying $End(R) = End(R^+)$ were completely described, and very restrictive necessary conditions were obtained for a general ring to satisfy this property.

Received 19 March 1988

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

S. Feigelstock

[2]

In this note, the following generalisation of Sullivan's problem will be considered. Let $n \ge 1$ be a positive integer. Which rings R satisfy $\varphi(a_1 \ldots a_n) = \varphi(a_1) \ldots \varphi(a_n)$ for all $\varphi \in \operatorname{End}(R^+)$ and all $a_1, \ldots, a_n \in R$? More generally, for $f(X_1, \ldots, X_t)$ a polynomial with integer coefficients, which rings R satisfy $\varphi[f(a_1, \ldots, a_t)] = f[\varphi(a_1), \ldots, \varphi(a_t)]$ for all $\varphi \in \operatorname{End}(R^+)$, and all $a_1, \ldots, a_t \in R$? Rings satisfying the polynomial identity f clearly satisfy this property. It will be shown that for f a homogeneous polynomial the converse is "almost" true.

DEFINITION: Let n > 1 be a positive integer. A ring R is said to be an AE_n -ring, (additive endomorphisms are *n*-multiplicative), if $\varphi(a_1 \dots a_n) = \varphi(a_1) \dots \varphi(a_n)$ for all $\varphi \in \text{End}(R^+)$, and all $a_1, \dots, a_n \in R$.

The proof of the following lemma is due to Muskat (through personal communication).

LEMMA 1. Let n > 1 be a positive integer. A prime q satisfies $q | p^n - p$ for all primes p if and only if $q \in P_n$.

PROOF: Suppose that $q \in P_n$, that is $n \equiv 1 \pmod{q-1}$. For p an arbitrary prime $p^{q-1}-1 \mid p^{n-1}-1$. Clearly it may be assumed that $p \neq q$. By the Little Fermat Theorem $p^{q-1} \equiv 1 \pmod{q}$, that is $q \mid p^{q-1}-1$, which implies that $q \mid p^{n-1}-1$, which in turn yields that $q \mid p^n - p$.

Conversely, suppose that the prime $q \notin P_n$, that is $n \not\equiv 1 \pmod{q-1}$. Let g be a primitive root of the congruence $X^{q-1} \equiv 1 \pmod{q}$. By Dirichlet's Theorem the sequence $\{q + kg \mid k = 1, 2, \ldots\}$ contains a prime $p \neq q$. Since $q-1 \nmid n-1$, it follows that $p^{n-1} \not\equiv 1 \pmod{q}$, and so $q \nmid p(p^{n-1}-1)$.

THEOREM 2. Let R be an AE_n -ring. Then $R^n \subseteq \bigoplus_{p \in P_n} R[p]$.

PROOF: Let p be a prime. The map $R^+ \to R^+$ via $x \mapsto px$ belongs to End (R^+) , so for all $a_1, \ldots, a_n \in R$, the equation $pa_1 \ldots a_n = p^n a_1 \ldots a_n$ is satisfied, that is $(p^n - p)R^n = 0$. It follows from Lemma 1 that $R^n \subseteq R_{P_n}$. Let $a \in R_p^n$, p a prime. Then $p(p^{n-1}-1)a = 0$. Since $p \nmid p^{n-1} - 1$, it follows that pa = 0, and so $R^n \subseteq \bigoplus_{p \in P_n} R[p]$.

LEMMA 3. Let R be an AE_n -ring, and let H be a direct summand of R^+ . Then $R^k H R^{n-k-1} \subseteq H$ for all $0 \leq k \leq n-1$.

PROOF: Suppose that $R^+ = H \oplus K$. Let π_K be the natural projection of R^+ onto K along H. For $a_1, \ldots, a_{n-1} \in R$, and $h \in H$, the fact that $\pi_K \in \text{End}(R^+)$ yields that

$$\pi_K(a_1 \dots a_k h a_{k+1} \dots a_{n-1}) = \pi_K(a_1) \dots \pi_K(a_K) \pi_K(h) \pi_K(k+1) \dots \pi_K(a_{n-1}).$$

Since $\pi_K(h) = 0$, it follows that $\pi_K(R^k H R^{n-k-1}) = 0$, that is $R^k H R^{n-k-1} \subseteq H$.

Since P_n is a finite set of primes, Theorem 2 implies that an AE_n -ring R is nilpotent modulo a bounded ideal in R. Actually, if R is AE_n , then R is nilpotent modulo a finite ideal in R.

THEOREM 4. Let R be an AE_n -ring, and let $P = \{p \in P_n \mid R_p^+ = Z(p)\}$. Then $R^{2n-1} \subseteq R_P$.

PROOF: It may be assumed that $R^{2n-1} \neq 0$. Let $a_1, \ldots, a_{2n-1} \in R$ such that $a = \prod_{i=1}^{2n-1} a_i \neq 0$. Let $b = \prod_{n=1}^n a_i$, and $c = \prod_{i=n+1}^{2n-1} a_i$. It follows from Theorem 2 that $b = \sum_{p \in P_n} b_p$ with $|b_p| = p$ or $|b_p| = 0$ for all $p \in P_n$. Let $p \in P_n$ such that $a_p \neq 0$. Suppose that b_p has nonzero p-height, that is b = pb' for some $b' \in R$ and a = pb'c. Since $b'c \in \mathbb{R}^n$, it follows that $(b'c)_p \in \mathbb{R}[p]$ by Theorem 2. Hence $a_p = p(b'c)_p = 0$, a contradiction. Therefore $R^+ = (b_p) \oplus H$ with (b_p) the cyclic group of order p generated by b_p , [2, Proposition 27.1]. Let $d \in \mathbb{R}^+$, with |d| = p, and let $\varphi \colon R^+ \to R^+$ be the endomorphism induced by the maps $b_p \mapsto d$, and $h \mapsto 0$ for all $h \in H$. Then $d = \varphi(b) = \prod_{i=1}^n \varphi(a_i)$. Since $\varphi(a_i) \neq 0$, it follows that $\varphi(a_i) = k_i d$, with $1 \leq k_i \leq p-1$ for all $1 \leq i \leq n$. Hence $d = kd^n$ with $k = \prod_{i=1}^n k_i$. Since $p \nmid k$ it follows that $(d^n) = (d)$, that is, $d^n = md$, with $1 \leq m \leq p-1$. If d has nonzero p-height, then d = pd' for some $d' \in R_p$, and $d^n = p^n(d')^n = 0$ by Theorem 2, a contradiction. Therefore every element d of order p in R^+ generates a cyclic direct summand of R^+ , and $d^n = md$, with $1 \leq m \leq p-1$. This implies that $R^+ = \bigoplus_{i \in I} (a_i) \oplus K$ with $|a_i| = p$, $a_i^n = m_i a_i$ with $1 \leq m_i \leq p-1$ for all $i \in I$, and $K_p = 0$. If |I| > 1, then $R^+ = (a_1) \oplus (a_2) \oplus L$ with $1, 2 \in I$. Let $\Psi \colon R^+ \to R^+$ be the endomorphism induced by the maps $a_i \mapsto a_1$ for i = 1, 2, and $x \mapsto 0$ for $x \in L$. Then $\Psi(a_1^{n-1}a_2) = a_1^n = m_1a_1 \neq 0$. However, $a_1^{n-1}a_2 \in [(a_1)R^{n-1}] \cup [R^{n-1}(a_2)]$. Lemma 3 yields that $(a_1)R^{n-1} \subseteq (a_1)$, and $R^{n-1}(a_2) \subseteq (a_2)$, that is, $a_1^{n-1}a_2 = 0$, and so $\Psi(a_a^{n-1}a_2)=0$, a contradiction.

A slight modification of the proof of Theorem 2 yields:

THEOREM 5. Let $f(X_1, \ldots, X_t)$ be a homogeneous polynomial of degree n > 1with integer coefficients, and let m be the greatest common divisor of the coefficients of f. If $\varphi[f(a_1, \ldots, a_t)] = f[\varphi(a_1), \ldots, \varphi(a_t)]$ for all $\varphi \in \text{End}(R^+)$ and all $a_1, \ldots, a_t \in R$, then

$$R/\{\bigoplus_{\substack{p\in P_n\\p\nmid m}} R[p] \oplus \bigoplus_{\substack{p\notin P_n\\p\mid m}} R_p[p^{k_p}] \oplus \bigoplus_{\substack{p\in P_n\\p\mid m}} R_p[p^{k_p+1}]\}$$

S. Feigelstock

[4]

satisfies the polynomial identity f, where each p is a prime, and p^{k_p} is the greatest power of p dividing m.

If S is a set of homogeneous polynomials satisfying the conditions of Theorem 5, then there exists a torsion ideal $A \subseteq R$ such that R/A satisfies all the polynomial identities $f \in S$. If S is finite, then the ideal A obtained is bounded.

The following example shows that the homogeneity condition in Theorem 5 cannot be eliminated.

Example 6. Let G be a non-torsion additive group, and let R be the zeroring with $R^+ = G$, that is, $R^2 = 0$. Then $\varphi(a^2 - a) = [\varphi(a)]^2 - \varphi(a) = -\varphi(a)$ for all $\varphi \in \text{End}(R^+)$, and all $a \in R$. However R/R_t clearly does not satisfy the polynomial identity $x^2 - x$.

Any polynomial with integer coefficients and possessing a nonzero linear summand provides a counterexample to Theorem 5, similar to Example 6. If $f(X_1, \ldots, X_t)$ is a sum of monomials each with integer coefficient and degree > 1, and $\varphi[f(a_1, \ldots, a_t)] =$ $f[\varphi(a_1), \ldots, \varphi(a_t)]$ for all $\varphi \in \text{End}(R^+)$ and all $a_1, \ldots, a_t \in R$, does R/R_t satisfy the polynomial identity f?

REFERENCES

- S. Feigelstock, 'Rings whose additive endomorphisms are multiplicative' (to appear), in *Period.* Math. Hungar. to appear.
- [2] L. Fuchs, Infinite Abelian Groups I (Academic Press, New York-London, 1971).
- [3] K.H. Kim and F.W. Roush, 'Additive endomorphisms of rings', Period. Math. Hungar. 12 (1981), 241-242.
- [4] R.P. Sullivan, 'Research Problems', Period. Math. Hungar 8 (1977), 313-314.

Department of Math. and Computer Science Bar-Ilan University 52 100 Ramat-Gan Israel