VOL. 39 (1989) [11-14]

RINGS WHOSE ADDITIVE ENDOMORPHISMS ARE N-MULTIPLICATIVE

Shalom Feigelstock

Abstract

Sullivan's problem of describing rings, all of whose additive endomorphisms are multiplicative, is generalised to the study of rings R satisfying $\varphi\left(a_{1} \ldots a_{n}\right)=\varphi\left(a_{1}\right) \ldots \varphi\left(a_{n}\right)$ for every additive endomorphism φ of R, and all $a_{1}, \ldots, a_{n} \in R$, with $n>1$ a fixed positive integer. It is shown that such rings possess a bounded (finite) ideal A such that $[R / A]^{n}=0\left([R / A]^{2 n-1}=0\right)$. More generally, if $f\left(X_{1}, \ldots, X_{t}\right)$ is a homogeneous polynomial with integer coefficients, of degree >1, and if a ring R satisfies $\varphi\left[f\left(a_{1}, \ldots, a_{\ell}\right)\right]=f\left[\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{t}\right)\right]$ for all additive endomorphisms φ, and all $a_{1}, \ldots, a_{t} \in R$, then R possesses a bounded ideal A such that R / A satisfies the polynomial identity f.

Notation.

$Z(n) \quad$ a cyclic additive group of order n.
$R \quad$ a ring.
$R[n] \quad\{x \in R \mid n x=0\}, n$ a positive integer.
$R^{+} \quad$ the additive group of R.
$R_{t} \quad$ the torsion part of R^{+}.
$R_{p} \quad$ the p-primary component of R^{+}, p a prime.
$R_{P} \quad \bigoplus_{p \in P} R_{p}, P$ a set of primes.
$a_{p} \quad$ the p-primary component of $a \in R_{t}, p$ a prime.
$P_{n} \quad\{p$ a prime $\mid n \equiv 1(\bmod p-1)\}, n$ a positive integer.
End $\left(R^{+}\right) \quad$ the ring of endomorphims of R^{+}.
End $(R) \quad$ the semigroup of ring endomorphisms of R.
Sullivan [4] asked for a description of the rings R satisfying $\operatorname{End}(R)=\operatorname{End}\left(R^{+}\right)$. Kim and Roush [3] classified the finite rings satisfying Sullivan's property. In [1] the torsion rings satisfying End $(R)=\operatorname{End}\left(R^{+}\right)$were completely described, and very restrictive necessary conditions were obtained for a general ring to satisfy this property.

[^0]In this note, the following generalisation of Sullivan's problem will be considered. Let $n \geqslant 1$ be a positive integer. Which rings R satisfy $\varphi\left(a_{1} \ldots a_{n}\right)=\varphi\left(a_{1}\right) \ldots \varphi\left(a_{n}\right)$ for all $\varphi \in \operatorname{End}\left(R^{+}\right)$and all $a_{1}, \ldots, a_{n} \in R$? More generally, for $f\left(X_{1}, \ldots, X_{t}\right)$ a polynomial with integer coefficients, which rings R satisfy $\varphi\left[f\left(a_{1}, \ldots, a_{t}\right)\right]=$ $f\left[\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{t}\right)\right]$ for all $\varphi \in \operatorname{End}\left(R^{+}\right)$, and all $a_{1}, \ldots, a_{t} \in R$? Rings satisfying the polynomial identity f clearly satisfy this property. It will be shown that for f a homogeneous polynomial the converse is "almost" true.

Definition: Let $n>1$ be a positive integer. A ring R is said to be an $A E_{n}$-ring, (additive endomorphisms are n-multiplicative), if $\varphi\left(a_{1} \ldots a_{n}\right)=\varphi\left(a_{1}\right) \ldots \varphi\left(a_{n}\right)$ for all $\varphi \in \operatorname{End}\left(R^{+}\right)$, and all $a_{1}, \ldots, a_{n} \in R$.

The proof of the following lemma is due to Muskat (through personal communication).

Lemma 1. Let $n>1$ be a positive integer. A prime q satisfies $q \mid p^{n}-p$ for all primes p if and only if $q \in P_{n}$.

Proof: Suppose that $q \in P_{n}$, that is $n \equiv 1(\bmod q-1)$. For p an arbitrary prime $p^{q-1}-1 \mid p^{n-1}-1$. Clearly it may be assumed that $p \neq q$. By the Little Fermat Theorem $p^{q-1} \equiv 1(\bmod q)$, that is $q \mid p^{q-1}-1$, which implies that $q \mid p^{n-1}-1$, which in turn yields that $q \mid p^{n}-p$.

Conversely, suppose that the prime $q \notin P_{n}$, that is $n \not \equiv 1(\bmod q-1)$. Let g be a primitive root of the congruence $X^{q-1} \equiv 1(\bmod q)$. By Dirichlet's Theorem the sequence $\{q+k g \mid k=1,2, \ldots\}$ contains a prime $p \neq q$. Since $q-1 \nmid n-1$, it follows that $p^{n-1} \not \equiv 1(\bmod q)$, and so $q \nmid p\left(p^{n-1}-1\right)$.

Theorem 2. Let R be an $A E_{n}$-ring. Then $R^{n} \subseteq \bigoplus_{p \in P_{n}} R[p]$.
Proof: Let p be a prime. The map $R^{+} \rightarrow R^{+}$via $x \mapsto p x$ belongs to End (R^{+}), so for all $a_{1}, \ldots, a_{n} \in R$, the equation $p a_{1} \ldots a_{n}=p^{n} a_{1} \ldots a_{n}$ is satisfied, that is $\left(p^{n}-p\right) R^{n}=0$. It follows from Lemma 1 that $R^{n} \subseteq R_{P_{n}}$. Let $a \in R_{p}^{n}, p$ a prime. Then $p\left(p^{n-1}-1\right) a=0$. Since $p \nmid p^{n-1}-1$, it follows that $p a=0$, and so $R^{n} \subseteq \underset{p \in P_{n}}{\bigoplus} R[p]$.

Lemma 3. Let R be an $A E_{n}$-ring, and let H be a direct summand of R^{+}. Then $R^{k} H R^{n-k-1} \subseteq H$ for all $0 \leqslant k \leqslant n-1$.

Proof: Suppose that $R^{+}=H \oplus K$. Let π_{K} be the natural projection of R^{+} onto K along H. For $a_{1}, \ldots, a_{n-1} \in R$, and $h \in H$, the fact that $\pi_{K} \in \operatorname{End}\left(R^{+}\right)$ yields that

$$
\pi_{K}\left(a_{1} \ldots a_{k} h a_{k+1} \ldots a_{n-1}\right)=\pi_{K}\left(a_{1}\right) \ldots \pi_{K}\left(a_{K}\right) \pi_{K}(h) \pi_{K}(k+1) \ldots \pi_{K}\left(a_{n-1}\right)
$$

Since $\pi_{K}(h)=0$, it follows that $\pi_{K}\left(R^{k} H R^{n-k-1}\right)=0$, that is $R^{k} H R^{n-k-1} \subseteq H$.
Since P_{n} is a finite set of primes, Theorem 2 implies that an $A E_{n}$-ring R is nilpotent modulo a bounded ideal in R. Actually, if R is $A E_{n}$, then R is nilpotent modulo a finite ideal in R.

Theorem 4. Let R be an $A E_{n}$-ring, and let $P=\left\{p \in P_{n} \mid R_{p}^{+}=Z(p)\right\}$. Then $R^{2 n-1} \subseteq R_{P}$.

Proof: It may be assumed that $R^{2 n-1} \neq 0$. Let $a_{1}, \ldots, a_{2 n-1} \in R$ such that $a=\prod_{i=1}^{2 n-1} a_{i} \neq 0$. Let $b=\prod_{n=1}^{n} a_{i}$, and $c=\prod_{i=n+1}^{2 n-1} a_{i}$. It follows from Theorem 2 that $b=\sum_{p \in P_{n}} b_{p}$ with $\left|b_{p}\right|=p$ or $\left|b_{p}\right|=0$ for all $p \in P_{n}$. Let $p \in P_{n}$ such that $a_{p} \neq 0$. Suppose that b_{p} has nonzero p-height, that is $b=p b^{\prime}$ for some $b^{\prime} \in R$ and $a=p b^{\prime} c$. Since $b^{\prime} c \in R^{n}$, it follows that $\left(b^{\prime} c\right)_{p} \in R[p]$ by Theorem 2. Hence $a_{p}=p\left(b^{\prime} c\right)_{p}=\mathbf{0}$, a contradiction. Therefore $R^{+}=\left(b_{p}\right) \oplus H$ with (b_{p}) the cyclic group of order p generated by $b_{p},\left[2\right.$, Proposition 27.1]. Let $d \in R^{+}$, with $|d|=p$, and let $\varphi: R^{+} \rightarrow R^{+}$be the endomorphism induced by the maps $b_{p} \mapsto d$, and $h \mapsto 0$ for all $h \in H$. Then $d=\varphi(b)=\prod_{i=1}^{n} \varphi\left(a_{i}\right)$. Since $\varphi\left(a_{i}\right) \neq 0$, it follows that $\varphi\left(a_{i}\right)=k_{i} d$, with $1 \leqslant k_{i} \leqslant p-1$ for all $1 \leqslant i \leqslant n$. Hence $d=k d^{n}$ with $k=\prod_{i=1}^{n} k_{i}$. Since $p \nmid k$ it follows that $\left(d^{n}\right)=(d)$, that is, $d^{n}=m d$, with $1 \leqslant m \leqslant p-1$. If d has nonzero p-height, then $d=p d^{\prime}$ for some $d^{\prime} \in R_{p}$, and $d^{n}=p^{n}\left(d^{\prime}\right)^{n}=0$ by Theorem 2, a contradiction. Therefore every element d of order p in R^{+}generates a cyclic direct summand of R^{+}, and $d^{n}=m d$, with $1 \leqslant m \leqslant p-1$. This implies that $R^{+}=\bigoplus_{i \in I}\left(a_{i}\right) \oplus K$ with $\left|a_{i}\right|=p, a_{i}^{n}=m_{i} a_{i}$ with $1 \leqslant m_{i} \leqslant p-1$ for all $i \in I$, and $K_{p}=0$. If $|I|>1$, then $R^{+}=\left(a_{1}\right) \oplus\left(a_{2}\right) \oplus L$ with $1,2 \in I$. Let $\Psi: R^{+} \rightarrow R^{+}$be the endomorphism induced by the maps $a_{i} \mapsto a_{1}$ for $i=1,2$, and $x \mapsto 0$ for $x \in L$. Then $\Psi\left(a_{1}^{n-1} a_{2}\right)=a_{1}^{n}=m_{1} a_{1} \neq 0$. However, $a_{1}^{n-1} a_{2} \in\left[\left(a_{1}\right) R^{n-1}\right] \cup\left[R^{n-1}\left(a_{2}\right)\right]$. Lemma 3 yields that $\left(a_{1}\right) R^{n-1} \subseteq\left(a_{1}\right)$, and $R^{n-1}\left(a_{2}\right) \subseteq\left(a_{2}\right)$, that is, $a_{1}^{n-1} a_{2}=0$, and so $\Psi\left(a_{a}^{n-1} a_{2}\right)=0$, a contradiction.

A slight modification of the proof of Theorem 2 yields:
Theorem 5. Let $f\left(X_{1}, \ldots, X_{t}\right)$ be a homogeneous polynomial of degree $n>1$ with integer coefficients, and let m be the greatest common divisor of the coefficients of f. If $\varphi\left[f\left(a_{1}, \ldots, a_{t}\right)\right]=f\left[\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{t}\right)\right]$ for all $\varphi \in \operatorname{End}\left(R^{+}\right)$and all $a_{1}, \ldots, a_{t} \in$ R, then

$$
R /\left\{\underset{\substack{p \in P_{n} \\ p \nmid m}}{\bigoplus} R[p] \oplus \underset{\substack{p \notin P_{n} \\ p \mid m_{2}}}{\bigoplus} R_{p}\left[p^{k_{p}}\right] \oplus \bigoplus_{\substack{p \in P_{n} \\ p \mid m}} R_{p}\left[p^{k_{p}+1}\right]\right\}
$$

satisfies the polynomial identity f, where each p is a prime, and $p^{k_{p}}$ is the greatest power of p dividing m.

If S is a set of homogeneous polynomials satisfying the conditions of Theorem 5 , then there exists a torsion ideal $A \unlhd R$ such that R / A satisfies all the polynomial identities $f \in S$. If S is finite, then the ideal A obtained is bounded.

The following example shows that the homogeneity condition in Theorem 5 cannot be eliminated.

Example 6. Let G be a non-torsion additive group, and let R be the zeroring with $R^{+}=G$, that is, $R^{2}=0$. Then $\varphi\left(a^{2}-a\right)=[\varphi(a)]^{2}-\varphi(a)=-\varphi(a)$ for all $\varphi \in$ End $\left(R^{+}\right)$, and all $a \in R$. However R / R_{t} clearly does not satisfy the polynomial identity $x^{2}-x$.

Any polynomial with integer coefficients and possessing a nonzero linear summand provides a counterexample to Theorem 5, similar to Example 6. If $f\left(X_{1}, \ldots, X_{t}\right)$ is a sum of monomials each with integer coefficient and degree >1, and $\varphi\left[f\left(a_{1}, \ldots, a_{t}\right)\right]=$ $f\left[\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{t}\right)\right]$ for all $\varphi \in \operatorname{End}\left(R^{+}\right)$and all $a_{1}, \ldots, a_{t} \in R$, does R / R_{t} satisfy the polynomial identity f ?

References

[1] S. Feigelstock, 'Rings whose additive endomorphisms are multiplicative' (to appear), in Period. Math. Hungar. to appear.
[2] L. Fuchs, Infinite Abelian Groups I (Academic Press, New York-London, 1971).
[3] K.H. Kim and F.W. Roush, 'Additive endomorphisms of rings', Period. Math. Hungar. 12 (1981), 241-242.
[4] R.P. Sullivan, 'Research Problems', Period. Math. Hungar 8 (1977), 313-314.

Department of Math. and Computer Science
Bar-Ilan University
52100 Ramat-Gan
Israel

[^0]: Received 19 March 1988

