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Computing boundary extensions of conformal maps

Timothy H. McNicholl

Abstract
We show that a computable and conformal map of the unit disk onto a bounded domain D has
a computable boundary extension if D has a computable boundary connectivity function.

1. Introduction

We investigate what information can be used to compute the boundary extension of a conformal
map. By the boundary extension of a conformal map we mean its continuous extension to the
closure of its domain. The conditions under which a boundary extension (computable or
otherwise) exists will be reviewed in § 2. Our main result is that if φ is a computable and
conformal map of the unit disk onto a bounded domain D and if D has a computable boundary
connectivity function, then the boundary extension of φ is computable as well. By a boundary
connectivity function for D we mean a function g : N → N with the following property:
whenever p and q are distinct points of the boundary of D such that |p − q| 6 2−g(k), the
boundary of D contains an arc from p to q whose diameter is smaller than 2−k. (Here, N
denotes the set of non-negative integers.) Roughly speaking, such a function predicts how
close two boundary points must be in order to connect them with a small arc that is included
in the boundary. We do not assume any amount of differentiability of the boundary of D.
Thus, our results apply to domains bounded by fractal curves like the Koch snowflake.

Suppose that φ is a computable and conformal map of the unit disk onto a bounded domain
D and that the boundary extension of φ exists. To understand why computing the boundary
extension of φ may not be an entirely trivial matter, and might require some information
beyond φ itself, let us begin by considering how we extend φ to the boundary of the unit
disk. Namely, we set φ(ζ) = limz→ζ φ(z) whenever ζ is unimodular. It is well known that
limiting operations can churn incomputable behavior out of computable settings. For example,
a theorem due to Specker states that it is possible to compute a sequence of rational numbers
that is increasing and bounded but whose limit is incomputable [28]; that is, roughly speaking,
it is not possible to write a computer program to compute the decimal expansion of the limit.
In [20], it is shown that there is a computable and conformal map of the unit disk onto a
Jordan domain whose boundary extension is incomputable. Thus, some information beyond
φ itself must be utilized in order to compute the boundary extension of φ. We will make the
case for considering boundary connectivity functions in § 2.

We now outline our strategy for proving the main theorem. Suppose that D has a computable
boundary connectivity function. One natural approach to computing the boundary extension
of φ is to first show that φ is computable on the unit circle and then merge an algorithm for
computing φ on the unit circle with an algorithm for computing φ on the unit disk. The flaw in
this approach is that an algorithm for computing the boundary extension of φ can only accept
approximations of points (for example, approximations of the real and imaginary parts), and
from an approximation of a point it is not always possible to determine if it lies on the unit
circle. We work around this obstacle by first showing that φ is strongly computable on the
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unit circle. Roughly speaking, this means that not only is φ computable on the unit circle, but
also that our approximations of the values of φ on unimodular points hold for all nearby points
as well. This term is precisely defined in § 3. We then produce an algorithm for computing the
boundary extension of φ by merging an algorithm for computing φ on the unit disk and an
algorithm for strongly computing φ on the unit circle.

The outline of the paper is as follows. In § 2 we summarize background information from
complex analysis and the theory of computation. Our goal is to make our results accessible
to readers in computer science and complex analysis. In § 3 we summarize the intermediate
results of the paper and how they are combined to produce a proof of the main theorem. In
§ 4 we develop new estimates of the boundary values of φ in terms of a boundary connectivity
function for D. In § 5 we make the case that these estimates can be used by an algorithm. In
§6 we show that these results yield strong computability of φ on the unit circle and thereby
complete the proof of the main theorem.

2. Background and preliminaries

We begin by summarizing background material from complex analysis.
A domain is a subset of the plane that is open and connected.
Let Dr(z) denote the open disk whose center is z and whose radius is r. Let D denote the

unit disk, that is, the open disk whose center is the origin and whose radius is 1. We refer to
the boundary of D as the unit circle and to the closure of D as the closed unit disk.

The Riemann mapping theorem states that if D is a simply connected domain that omits
at least one point, then there is an injective and analytic map of the unit disk onto D. Since
this map is analytic and injective, it is also conformal. If w0 is a point in D, then, among all
such maps of the unit disk onto D, there is exactly one that maps the origin to w0 and whose
derivative at 0 is positive. We denote this map by φD,w0

. Such a map is called a Riemann map
of D.

Suppose that φ is a conformal map of the unit disk onto a domain D. By a theorem of
Pommerenke [25], φ has a boundary extension if and only if D is bounded and its boundary
is locally connected. If φ has a boundary extension, then we will denote this extension by φ
as well. The Carathéodory theorem states that if the boundary of D is a Jordan curve, then
the boundary extension of φ is a homeomorphism. A very elegant proof of the Carathéodory
theorem appears in [11, Chapter I].

By an arc we mean a homeomorphic image of [0, 1]. Such a homeomorphism is called a
parameterization of the arc. It will simplify our discussion if we identify each arc with its
parameterizations.

A metric space X is uniformly locally arcwise connected if, for every ε > 0, there is a
δ > 0 so that whenever p and q are distinct points of X such that d(p, q) < δ, X includes
an arc from p to q whose diameter is smaller than ε. Thus, a domain D has a boundary
connectivity function if and only if its boundary is uniformly locally arcwise connected. If X
is compact and connected, then X is locally connected if and only if it is uniformly locally
arcwise connected; see [15, Lemma 3-29, p. 129]. So, the requirement that D has a computable
boundary connectivity function is a suitable substitute for local connectivity when pursuing a
computable version of Pommerenke’s theorem on boundary extensions.

We now summarize background material from computability theory. In general, the adjective
‘computable’ refers to the ability to solve some problem with an algorithm. By ‘algorithm’ we
roughly mean a procedure that can be implemented on a computer. There are several ways
to mathematically formalize this notion, such as Turing machines. All of these formalizations
yield the same classes of computable objects. See [8] or [24] for a more expansive discussion.
For our purposes, it will suffice to work with the informal notion of ‘algorithm’.
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We begin with the computability of various kinds of subsets of the plane. Let us call an
interval rational if its end points are rational numbers, and let us call a rectangle rational if
its vertices are rational points.

When U is an open subset of the plane, let R(U) denote the set of all closed rational
rectangles that are included in U . When C is a closed subset of the plane, let R(C) denote the
set of all open rational rectangles that contain at least one point of C. Whether X is open or
closed, the set R(X) completely identifies X. That is, R(X) = R(X ′) if and only if X = X ′.

Let us call an open subset of the plane U computable if R(U) is computably enumerable,
that is, if the elements of R(U) can be arranged into a sequence {Rn}n∈N in such a way that
there is an algorithm that computes Rn from n for every n ∈ N. Intuitively, as such an
enumeration is run, it provides more and more information about what is in the set. We
similarly define what it means for a closed subset of the plane to be computable. Again,
by enumerating the rational rectangles that contain at least one point of a closed set C we
obtain more and more information about what is in the set. As an example, the interior of the
ellipse with equation 4x2 + 9y2 = 16 is computable, as is its boundary. In fact, most naturally
occurring open sets and closed sets are computable.

We now discuss computability of functions. A function g : N → N is computable if there is
an algorithm that given any k ∈ N as input produces g(k) as output.

Suppose that f is a function that maps complex numbers to complex numbers. We say that
f is computable if there is an algorithm P that satisfies the following three criteria.

• Approximation: whenever P is given an open rational rectangle as input, it either does
not halt or produces an open rational rectangle as output. (Here, the input rectangle is
regarded as an approximation of a z ∈ dom(f) and the output rectangle is regarded as
an approximation of f(z).)

• Correctness: whenever P halts on an open rational rectangle R, the rectangle it outputs
contains f(z) for each z ∈ R ∩ dom(f).

• Convergence: suppose that U is a neighborhood of a point z ∈ dom(f) and that V is a
neighborhood of f(z). Then there is an open rational rectangle R such that R contains
z, R is included in U , and, when R is put into P , P produces a rational rectangle that
is included in V .

For example, sin, cos, and exp are computable, as can be seen by considering their power
series expansions and the bounds on the convergence of these series that can be obtained from
Taylor’s theorem. A consequence of this definition is that computable functions on the complex
plane must be continuous. A comprehensive treatment of the computability of functions on
continuous domains can be found in [30]. See also [5, 13, 17, 18, 26, 29] and [6].

Suppose that f is a function of a complex variable and that X is included in the domain of
f . We say that f is computable on X if its restriction to X is computable. If X is the unit
circle, then, as remarked in the introduction, we will need a stronger version of this notion,
which we now define.

Definition 2.1. Suppose that f is a function that maps complex numbers to complex
numbers and is defined at every point on the unit circle. We say that f is strongly computable
on the unit circle if there is an algorithm P with the following properties.

• Approximation: whenever an open rational rectangle is input to P , P either does not
halt or outputs an open rational rectangle.

• Strong correctness: if P outputs a rational rectangle R1 on input R, then f(z) ∈ R1

whenever z ∈ R ∩ dom(f).
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• Convergence: if U is a neighborhood of a unimodular point ζ, and if V is a neighborhood
of f(ζ), then ζ belongs to an open rational rectangle R ⊆ U so that P halts on input R
and produces a rational rectangle that is contained in V .

Suppose that f is defined at every point of the closed unit disk. If we merely assert that f is
computable on the unit circle, then the correctness criterion only requires our output rectangle
to contain f(z) for each unimodular point z in the input rectangle. But, if we assert that f is
strongly computable on the unit circle, then our output rectangle must contain f(z) whenever
z is a point in the input rectangle that also belongs to the domain of f .

Proposition 2.2. Suppose f : D → C. Then f is computable if and only if f is both
computable on the unit disk and strongly computable on the unit circle.

Proof. If f is computable, then it trivially follows that f is both computable on the open
unit disk and strongly computable on the unit circle; any algorithm which computes f on the
closed unit disk works for each of these notions. So, suppose that f is both computable on the
unit disk and strongly computable on the unit circle. Let P1 be an algorithm that computes
f on the unit disk and let P2 be an algorithm that strongly computes f on the unit circle.
We compute f on the closed unit disk by merging these algorithms as follows. Suppose that
an open rational rectangle R is given as input. If R contains no point of the closed unit disk,
then we choose not to halt. So, suppose that R contains at least one point of the closed unit
disk. If R is contained in the unit disk, then we run algorithm P1 on R. Suppose that R is not
contained in the open unit disk; that is, that R contains at least one point of the unit circle.
We then run algorithm P2 on R.

It is clear that the approximation criterion is met. By considering the cases z ∈ D and
z ∈ ∂D, it is easily shown that the convergence criterion is met. It then follows from the strong
correctness criterion of Definition 2.1 that the correctness criterion is met.

We now review some related work. Suppose that D is a simply connected domain that omits
at least one point. Extending the work of Koebe [16], Cheng [7], and Bishop and Bridges [3],
Hertling proved that φD,w0

is computable if and only if w0,D, and ∂D are computable [14]. The
zipper algorithm of Marshall and Rohde provides a practical algorithm for computing Riemann
maps of a Jordan domain with a sufficiently differentiable boundary [19]. The complexity of
computing Riemann maps of a Jordan domain was determined by Binder et al. in [2]. In [20],
it was shown that if the boundary of D is a Jordan curve, and if φ is a Riemann map of D,
then φ has a computable boundary extension if and only if φ is computable and there is a
computable homeomorphism of the unit circle with the boundary of D. Various versions of
computable local connectivity properties are examined in [4], [10], and [9].

To facilitate exposition, let us make the following conventions. Throughout the rest of this
paper, φ denotes a conformal map of the unit disk onto a bounded domain D whose boundary
is locally connected. Let g denote a boundary connectivity function for D. We can assume
that this map is increasing. Our main theorem states that if φ and g are computable, then the
boundary extension of φ is computable.

3. Outline of the proof of the main theorem

3.1. Analytical estimates

We begin by developing approximations of the values of φ on unimodular points. We do so in
terms of sides of crosscuts, which we now define.
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C

Figure 1. A crosscut.

Suppose that C is an arc in D. If the only points of C that lie on the boundary of D are the
end points of C, then C is called a crosscut ofD. See Figure 1. If C is a crosscut ofD, thenD−C
has exactly two connected components. To see this, consider the map z 7→ (1 − |φ−1(z)|)−1

under which the boundary of D is mapped to ∞ and C is mapped to a Jordan curve through
∞; apply the Jordan curve theorem. These components are called the sides of C. When C is a
crosscut of D that does not contain φ(0), let C− denote the side of C that contains φ(0), and
let C+ denote the other side.

Whenever 0 < s0 < 1 and |ζ| = 1, let As0,ζ denote the image of φ on ∂Ds0(ζ). Thus, As0,ζ
is a crosscut of D. Note that A+

s0,ζ
is the image of φ on Ds0(ζ) ∩ D. Also, φ(tζ) ∈ A+

s0,ζ
if

1− s0 < t < 1.
Fix an integer N0 that is larger than the area of D. When 0 < r0 < s0 < 1, let

m(s0, N0, r0) =

√
πN0

ln(s0/r0)
.

Note that m(s0, N0, r0)→ 0+ when r0 → 0+.
The central idea is to use appropriately constructed crosscuts to approximate φ(ζ) when
|ζ| = 1; more precisely, to treat each point on such a crosscut as an approximation of φ(ζ). Let
C be such a crosscut. If φ(ζ) 6∈ C, then this leads to two considerations: determining which side
of C the point φ(ζ) abuts, and determining an upper bound on the diameter of this side. The
crosscuts we introduce in Definition 3.1 contain enough information to resolve these issues.

Definition 3.1. Suppose |ζ| = 1. Let C be a crosscut of D. We say that C recognizably
bounds the value of φ on ζ if there are rational numbers r0, s0 such that the following hold:

(i) 0 < r0 < s0 < 1/2;
(ii) φ((1− s0)ζ) ∈ C;

(iii) C ∩As0,ζ is connected and C ∩A+
s0,ζ

has two connected components;

(iv) |φ(tζ)− z| > m(s0, N0, r0) whenever z ∈ A+
s0,ζ
∩ C and 1− s0 6 t 6 1− r0.

We say that (r0, s0) witnesses that C recognizably bounds the value of φ on ζ.

Note that it follows from condition (iii) that C ⊆ As0,ζ ∪A+
s0,ζ

. An illustration of Definition
3.1 appears in Figure 2.

In § 4 we prove the following two theorems.

Theorem 3.2. Suppose that (r0, s0) witnesses that C recognizably bounds the value of φ
on ζ. Then A+

r0,ζ
⊆ C+.

Thus, φ(ζ) is a limit point of C+.
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Figure 2. Definition 3.1.

Theorem 3.3. Suppose that C recognizably bounds the value of φ on ζ. If 2−k+1 < |φ(0)−
φ(ζ/2)|, and if the diameter of C is smaller than 2−g(k), then the diameter of C+ is at most
2−k+1.

In § 4 we also prove the following theorem.

Theorem 3.4. Suppose |ζ| = 1. Then there are crosscuts of arbitrarily small diameter
that recognizably bound the value of φ on ζ. That is, for every ε > 0, there is a crosscut that
recognizably bounds the value of φ on ζ and whose diameter is smaller than ε.

So, points on crosscuts that recognizably bound the value of φ on ζ can be used to
approximate φ(ζ) with arbitrarily small error.

3.2. Computability issues

To say that an algorithm computes with crosscuts is a chimera, since there are uncountably
many crosscuts but algorithms proceed by manipulating strings from a fixed finite alphabet.
So, we are led to consider the approximation of crosscuts. Since a crosscut is an arc, we first
discuss how we approximate arcs. Our approach is drawn from the work on computable arcs
in [10] and [22]. To begin, a finite sequence of sets (S1, . . . , Sn) is a chain if Sj ∩ Sj+1 6= ∅
whenever 1 6 j < n. In addition, (S1, . . . , Sn) is a simple chain if Sj ∩ Sk 6= ∅ only when
|j − k| = 1. We then define a wad to be a union of a chain of open rational boxes and an
approximate arc to be a simple chain of wads.

When A1, . . . , An are subarcs of an arc A, we write A = A1 + . . . + An if Aj+1 contains
exactly one point of Aj whenever 1 6 j < n. An approximate arc (w1, . . . , wn) approximates
an arc A if A can be decomposed into a sum A = A1 + . . .+ An such that Aj ⊆ wj for all j;
equivalently, if there are numbers 0 = t0 < . . . < tn = 1 such that A maps each number in
[tj−1, tj ] into wj . The largest diameter of a wad wj will be referred to as the error in this
approximation. In § 5 we show that every approximate arc actually approximates an arc, and
that every arc can be approximated with arbitrarily small error.

We define an approximate crosscut of D to be an approximate arc (w1, . . . , wn) such that:

(i) wj ⊆ D when 1 < j < n; and

(ii) wj ∩ ∂D 6= ∅ if j = 1, n.
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It follows from the results in § 5 that every approximate crosscut indeed approximates a
crosscut of D, and that every crosscut of D can be approximated with arbitrarily small error
by an approximate crosscut.

So, when |ζ| = 1, the computation of φ(ζ) now reduces to producing approximate crosscuts
that approximate, with arbitrarily small error, crosscuts of arbitrarily small diameter that
recognizably bound the value of φ on ζ. This leads to the following two definitions and theorem.

Definition 3.5. Suppose that C is a set of crosscuts of D and that A is a set of approximate
crosscuts. We say that A describes C if the following two conditions are met.

(i) Every approximate crosscut in A approximates a crosscut in C.
(ii) Every crosscut in C can be approximated with arbitrarily small error by an approximate

crosscut in A. That is, if C is a crosscut in C, and if ε > 0, then C is approximated by
an approximate crosscut in A with error smaller than ε.

We say that an algorithm enumerates a set of approximate crosscuts A if it has the property
that whenever an approximate arc is given as input the algorithm halts if and only if the
approximate arc belongs to A.

Definition 3.6. Let C be a set of crosscuts of D. We say that an algorithm recognizes C if
it enumerates a set of approximate crosscuts that describes C. We say that C is recognizable
if at least one algorithm recognizes it.

In § 4 we prove the following theorem.

Theorem 3.7. Suppose that s0, r0 are rational numbers and that ζ is a computable
unimodular point. Let C be the set of all crosscuts C such that (s0, r0) witnesses that C
recognizably bounds the value of φ on ζ. If φ is computable, then C is recognizable.

The proof of Theorem 3.7 is uniform. That is, it produces an algorithm that from s0, r0, an
algorithm that computes ζ, and an algorithm that computes φ, computes an algorithm that
recognizes the set of all crosscuts C such that (s0, r0) witnesses that C recognizably bounds
the value of φ on ζ. This uniformity allows us to prove the following by a covering argument
in § 6.

Theorem 3.8. If φ and g are computable, then φ is strongly computable on the unit circle.

In light of Proposition 2.2, this yields the proof of the main theorem.

Theorem 3.9. The boundary extension of a computable and conformal map of the unit disk
onto a bounded domain with a computable boundary connectivity function is computable.

4. Recognizable bounding crosscuts

Our first task is to prove Theorem 3.3. We use two principles of analysis: Schwarz’s inequality
and the Lusin area integral. For reference, we state these theorems here. The first is stated
only for the case of Lebesgue measure on R. Schwarz’s inequality is a consequence of Hölder’s
inequality [27]. Greene and Krantz [12, Chapter 13, §1] contains a proof of Lusin’s area
integral. Recall that when X ⊆ R2, the area of X is defined to be∫

X

1 dA,

where
∫
X
f dA denotes the Riemann integral of f overX. We denote the area ofX by Area(X).
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Figure 3. Lemma 4.1.

• Schwarz’s inequality: let µ denote Lebesgue measure on the real line. Let X ⊆ R be
measurable and suppose that f, g are non-negative measurable functions on X. Then(∫

X

fg dµ

)2

6
∫
X

f2 dµ

∫
X

g2 dµ.

• Lusin area integral: suppose that U is a domain and that f is analytic and one-to-one
on U . Then

Area(f [U ]) =

∫
U

|f ′|2 dA.

We now set about proving Theorem 3.3. When X1, X2 ⊆ C, let

dinf(X1, X2) = inf{|z1 − z2| : z1 ∈ X1 ∧ z2 ∈ X2}.

Lemma 4.1. Suppose that ζ, r0, r1, α1, α2, and Ω are as in Figure 3. That is:
(i) 0 < r0 < r1 < 1 and |ζ| = 1;

(ii) α1 and α2 are disjoint crosscuts of

{z ∈ D : r0 < |z − ζ| < r1}

that do not touch the boundary of D;
(iii) Ω consists of those points in the side of α1 that includes α2 that also belong to the side

of α2 that includes α1.
Then

Area(φ[Ω]) >
1

π
dinf(φ[α1], φ[α2])2 ln

(
r1

r0

)
.

Proof. By the Lusin area integral,

Area(φ[Ω]) =

∫
Ω

|φ′|2 dA.
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We intend to write this integral in polar coordinates centered at ζ. To this end, let γr(θ) =
ζ + rζeiθ. Note that

Ω ⊆
{
γr(θ) : r0 < r < r1 ∧

π

2
6 θ 6

3π

2

}
.

When 0 < r0 < r < r1, let

Sr =

{
θ ∈

[
π

2
,

3π

2

]
: γr(θ) ∈ Ω

}
.

We now change to polar coordinates and obtain∫
Ω

|φ′|2 dA =

∫r1
r0

∫
Sr

|φ′(γr(θ))|2r dθ dr

=

∫r1
r0

(
r

∫
Sr

|φ′(γr(θ))|2dθ
)
dr

>
1

π

∫r1
r0

1

r

(∫
Sr

r2dθ

∫
Sr

|φ′(γr(θ))|2dθ
)
dr.

By Schwarz’s inequality,∫
Sr

r2 dθ

∫
Sr

|φ′(γr(θ))|2 dθ >
(∫

Sr

r|φ′(γr(θ))| dθ
)2

.

When r0 < r < r1, let

θr,1 = max

{
θ ∈

[
π

2
,

3π

2

]
: γr(θ) ∈ α1

}
,

θr,2 = min

{
θ ∈

[
π

2
,

3π

2

]
: γr(θ) ∈ α2

}
.

Then ∫
Sr

r|φ′(γr(θ))| dθ >
∫θr,2
θr,1

r|φ′(γr(θ))| dθ

=

∫θr,2
θr,1

∣∣∣∣ ddθφ(γr(θ))

∣∣∣∣ dθ.
The latter integral is the length of the arc traced by φ(γr(θ)) as θ ranges from θr,1 to θr,2.
This in turn is at least as large as the minimum distance between φ[α1] and φ[α2]. Pulling all
this together, we obtain

Area(Φ[Ω]) >
1

π

∫r1
r0

1

r
dinf(φ[α1], φ[α2])2 dr

=
1

π
dinf(φ[α1], φ[α2])2 ln

(
r1

r0

)
. �

When z1, z2 ∈ C are distinct, let [z1, z2] denote the line segment from z1 to z2.

Lemma 4.2. Suppose |ζ| = 1 and 0 < r0 < s0 < 1. Suppose that C is an arc from a point
p ∈ As0,ζ to a point q ∈ ∂D such that C ∩ ∂D = {q} and such that |φ(tζ)− z| > m(s0, N0, r0)
whenever 1− s0 6 t 6 1− r0 and z ∈ C. Then no point of A+

r0,ζ
belongs to C.

https://doi.org/10.1112/S1461157014000096 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000096


computing boundary extensions 369

Proof. By way of contradiction, suppose otherwise. Since C ∩ ∂D = {q}, it follows that
φ−1[C − {q}] starts at a point ζ0 on the boundary of Ds0(ζ) and crosses the boundary of
Dr0(ζ); let ζ1 be the first point at which it does so. Let α1 be the subarc of φ−1[C] from ζ0
to ζ1. Let α2 = [(1− s0)ζ, (1− r0)ζ]. It follows from Lemma 4.1 that

Area(D) >
1

π
m(s0, N0, r0)2 ln

(
s0

r0

)
> N0 > Area(D).

This is a contradiction and the proof is complete.

Proof of Theorem 3.2. We first note that if U is a connected subset of D that contains no
point of C, then U must be included in a side of C. Since r0 < s0, φ((1 − r0)ζ) ∈ C+. In
addition, φ((1 − r0)ζ) is a boundary point of A+

r0,ζ
. Thus, C+ contains at least one point of

A+
r0,ζ

. Since A+
r0,ζ

is connected, if A+
r0,ζ

is not included in C+, then it must contain a point

of C. Let C2 = C ∩ As0,ζ , and let C1 and C3 be the connected components of A+
s0,ζ
∩ C.

Since s0<r0, A+
r0,ζ

contains no point of C2. It follows from Lemma 4.2 and Definition 3.6 that

C1 ∪ C2 contains no point of A+
r0,ζ

. Since A+
r0,ζ
∩ C = ∅, it follows that A+

r0,ζ
⊆ C+.

Proof of Theorem 3.3. Let diam(X) denote the diameter of X. Let τ be an arc in the
boundary of D that joins the end points of C. Since the diameter of C is not larger than
2−g(k), we can assume that the diameter of τ is smaller than 2−k. Let J = C ∪ τ . Thus, J
is a Jordan curve. Since g is increasing, g(x) > k. Thus, the diameter of J is at most 2−k+1.
Note that the diameter of the interior of J is identical to the diameter of J . Since s0 < 1/2
(by Definition 3.6), φ(ζ/2) ∈ A−s0,ζ . However, A−s0,ζ ⊆ C− and so φ(ζ/2) ∈ C−. On the other

hand, since 2−k+1 < |φ(0)− φ(ζ/2)| (by assumption), the interior of J does not include C−.
We now claim that the interior of J contains a point of D − C. For, let p ∈ C ∩D. Thus,

p ∈ J . So, p is a boundary point of the interior of J . Since p ∈ D, D includes an open disk
centered at p. Thus, this disk contains a point in the interior of J ; let q denote such a point.
Therefore, q 6∈ C (since C ⊆ J) and q ∈ D.

Since q ∈ D − C, q belongs to one and only one side of C; let S denote this side. We claim
that the interior of J includes S. For, suppose that q1 is a point in S besides q. Since S is open
and connected, it includes an arc σ from q to q1. Since S includes σ, σ contains no point of C.
Since D includes σ, and since the boundary of D includes τ , σ contains no point of τ . Thus,
σ never crosses J and so q1 belongs to the interior of J . Thus, the interior of J includes S.

It now follows that S = C+. Since the diameter of J is at most 2−k+1, the diameter of C+

is at most 2−k+1.

We now show that there are arbitrarily small crosscuts that recognizably bound the value
of φ on a unimodular ζ. We use the following proposition.

Proposition 4.3. The pre-image of φ on a finite subset of the boundary of D has empty
interior (in the relative topology on ∂D).

Proof. By way of contradiction, suppose otherwise. It follows that there is a point ζ that
belongs to the boundary of D and whose pre-image under φ includes an arc G. Let C be
a crosscut of the unit disk whose end points are the end points of G. Then φ[C] ∪ {ζ} is a
Jordan curve and φ conformally maps the interior of G ∪C onto the interior of φ[C] ∪ {ζ}. It
follows from the Carathéodory theorem that the boundary extension of φ is injective. This is
a contradiction, since φ maps all of G onto ζ.

Actually, much more than Proposition 4.3 is true: if ζ ∈ ∂D, then φ−1[{ζ}] has measure
zero. However, the pre-image of φ on a boundary point may be uncountable. See Beurling [1].
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Proof of Theorem 3.4. Without loss of generality, we assume ζ = 1. The general claim then
follows by applying the following argument to the map ψ such that ψ(z) = φ(ζz) for all z ∈ D.
Fix a positive number s0 that is smaller than 1

2 . Suppose δ > 0. It follows from Proposition 4.3
that there is a positive number θ0 that is smaller than δ and π/2 and such that φ(eiθ0) 6= φ(1).
It also follows that there is a negative number θ1 that is larger than −δ and −π/2 and such
that φ(eiθ1) 6= φ(1), φ(eiθ0).

Choose δ small enough so that the lines with equations y = Im(eiθ0) and y = Im(eiθ1) cross
∂Ds0(1). Let σj denote the intersection of the line with equation y = Im(eiθj ) with the closure
of D ∩ Ds0(1). Let pj denote the end point of σj on ∂Ds0(1). Let τ denote the subarc of
∂Ds0(1) ∩ D from p1 to p2. Thus, since φ(eiθ0) 6= φ(eiθ1), the image of φ on σ0 ∪ τ ∪ σ1 is a
crosscut of D. Denote this crosscut by C.

By allowing s0 to approach zero from the right while allowing δ to approach zero from the
right, we can make the diameter C as small as we like. We can also choose s0 to be rational.

Let Cj = φ[σj ]. Thus, C0 and C1 are the components of C ∩A+
s0,1

. The key point now is
that φ(t) 6∈ C0∪C1 whenever 1−s0 6 t 6 1. The task now is to choose r0. We begin by letting
δ1 denote the minimum of |φ(t) − z| as t ranges from 1 − s0 to 1 and z ranges over σ0 ∪ σ1.
We can then choose r0 so that m(s0, N0, r0) < δ1. It follows that there is a rational number r0

between 0 and s0 such that d(φ(t), φ[σ1 ∪ σ2]) > m(s0, N0, r0) whenever 1 − s0 6 t 6 1 − r0.
It follows that C, s0, and r0 meet all conditions of Definition 3.1.

5. Approximating crosscuts

Our next task is to prove Theorem 3.7. We begin with the following results on arc
approximation.

Theorem 5.1. Suppose that (w1, . . . , wn) is an approximate arc and that p, q are points in
w1, wn, respectively. Then (w1, . . . , wn) approximates an arc from p to q.

Proof. Set p0 = p and pn = q. Choose a point pj in wj ∩ wj+1 for each j ∈ {1, . . . , n − 1}.
We can assume p0 6= p1 and pn−1 6= pn. Since (w1, . . . , wn) is a simple chain, it follows that
p0, . . . , pn are pairwise distinct.

Since a wad is a union of a chain of open rational rectangles, every wad is an open and
connected set. So, each wj includes an arc from pj−1 to pj ; call this arc Bj .

If we join the arcs B1, . . . , Bn together we do not necessarily get an arc, since, for example,
B2 may intersect B1 at one or more points besides p1. So, let p′j be the first point on Bj that
belongs to Bj+1 for each j ∈ {1, . . . , n− 1}. Let p′0 = p0 and let p′n = pn. Let Aj be the subarc
of Bj from p′j−1 to p′j . It then follows that A1 ∪ . . . ∪ An is an arc that is approximated by
(w1, . . . , wn).

In the proof of our next theorem, we use the following, which is [15, Theorem 3-4].

Theorem 5.2. If a, b are two points of a connected space S, and if {Uα}α∈I is a family of
open sets that covers S, then there exist α1, . . . , αn ∈ I so that (Uα1 , . . . , Uαn) is a simple
chain such that a ∈ Uα1 − Uα2 and such that b ∈ Uαn − Uαn−1 .

In the following proof, we will also use the fact that the connected components of an open
subset of a locally connected space are open. For example, see [15, Theorem 3-2].

Theorem 5.3. If A is an arc from p to q, then, for every positive number ε, there is an
approximation of A, (w1, . . . , wn), with error smaller than ε so that p ∈ w1 − w2 and q ∈
wn − wn−1.

https://doi.org/10.1112/S1461157014000096 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000096


computing boundary extensions 371

Proof. As a function, A is uniformly continuous. It follows that there are numbers 0 = t0 <
. . . < tn = 1 so that |A(s)−A(t)| < ε/3 whenever s, t ∈ [tj−1, tj ]. Let Aj denote the image of
A on [tj−1, tj ]. Then Aj ∩Ak = ∅ if |j − k| > 1. So, when |j − k| > 1, let δj,k denote

min{|z1 − z2| : z1 ∈ Aj , z2 ∈ Ak}.

Let δ denote the minimum of all δj,k.
Fix j for the moment. Let R be the set of all open rational rectangles that contain at least

one point of Aj and whose diameter is smaller than ε/3 and δ/2. If j ∈ {2, n − 1}, then we
also require p, q 6∈ R. We claim that there is a chain of rectangles in R that covers Aj . For, let
S be the set of all U for which there is an R ∈ R such that U is a connected component of
R∩Aj . Then each set in S is open (in the relative topology on Aj). Let a, b be the end points
of Aj . Let Uα1

, . . . , Uαm be as given by Theorem 5.2. Since (Uα1
, . . . , Uαm) is a simple chain,

its union is connected. Since a, b are the end points of Aj , it follows that
⋃
k Uαk = Aj . For

each k, there is a rectangle Rk ∈ R such that Uαk is a connected component of Rk ∩ Aj . It
follows that (R1, . . . , Rm) is a chain that covers Aj . Set wj =

⋃
k Rk.

By the choice of δ and the diameters of the R, (w1, . . . , wn) is a simple chain. It follows that
(w1, . . . , wn) approximates A. It follows from the choice of ε that the diameter of each wj is
smaller than ε.

We define an arc to be computable if it is the image of a map on the unit interval that is
computable and injective. We then have the following lemma.

Lemma 5.4. If A is a computable arc, then there is an algorithm that enumerates the set of
all approximations of A.

Proof. Let f be a computable homeomorphism of [0, 1] with A. Fix an algorithm that
computes f .

Let (w1, . . . , wn) be an approximate arc that is given as input. We first note that (w1, . . . , wn)
approximates A if and only if there are rational numbers t0 = 0 < t1 < . . . < tk = 1 so that, for
each j, f maps each point in [tj−1, tj ] into wj . We then note that f maps an interval [a, b] into
an open set U just in the case where there are open rational rectangles R1, . . . , Rm, S1, . . . , Sm
so that [a, b] is covered by {R1, . . . , Rm}, Sj ⊆ U for each j, and for each j the algorithm that
computes f produces Sj on input Rj . By putting these two observations together, we arrive
at a search procedure that terminates if and only if (w1, . . . , wn) approximates A.

We note that the proof of Lemma 5.4 is uniform. That is, it provides an algorithm that,
given any algorithm that computes an arc A as input, produces an algorithm that enumerates
all approximations of A.

Throughout the rest of this section, let C(s0,r0,ζ) denote the set of all crosscuts C such that
(s0, r0) witnesses that C recognizably bounds the value of φ on ζ. In order to prove Theorem
3.7, we need to define a set of approximate arcs that describes C(s0,r0,ζ) (see Definition 3.5).
To this end, we make the following definition.

Definition 5.5. Let A(s0,r0,ζ) denote the set of all approximate crosscuts of D (w1, . . . , wn)
for which there exist integers j1, j2 so that the following conditions are met:

(i) 1 < j1 < j2 < n and 0 < r0 < s0 < 1/2;
(ii) {wj}j2j=j1 approximates a subarc of As0,ζ that contains φ((1 − s0)ζ); let L denote the

connected component of φ((1− s0)ζ) in As0,ζ ∩
⋃
j16j6j2

wj ;

(iii) wj ⊆ A+
s0,ζ

whenever 1 < j < j1 and whenever j2 < j < n;

(iv) there is a component E1 of wj1 ∩A+
s0,ζ

such that L∩wj1 ∩ ∂E1 6= ∅ and E1 ∩wj1−1 6= ∅;
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(v) there is a component E2 of wj2 ∩A+
s0,ζ

such that L∩wj2 ∩ ∂E2 6= ∅ and E2 ∩wj2+1 6= ∅;
(vi) |φ(tζ)− z| > m(r0, N0, s0) whenever 1− s0 6 t 6 1− r0 and

z ∈
j1⋃
j=1

wj ∪
n⋃

j=j2

wj .

We now show that A(s0,r0,ζ) describes C(s0,r0,ζ). We begin with the following two lemmas.

Lemma 5.6. Suppose that (w1, . . . , wn) is an arc approximation and 1 6 k 6 n−1. Suppose
p1 ∈ w1, p2 ∈ wk ∩wk+1, and p3 ∈ wn. Suppose that (w1, . . . , wk) approximates an arc A from
p1 to p2 and that (wk+1, . . . , wn) approximates an arc B from p2 to p3. Then (w1, . . . , wn)
approximates an arc C ⊆ A ∪B from p1 to p2.

Proof. Let A = A1 + . . . + Ak be a decomposition of A with the property that Aj ⊆ wj
whenever 1 6 j 6 k. Let B = Bk+1 + . . . + Bn be a decomposition of B so that Bj ⊆ wj
whenever k + 1 6 j 6 n. Then let p′2 be the first point on A that belongs to B. Since
(w1, . . . , wn) is a simple chain, p′2 ∈ wk ∩ wk+1. So, p′2 6∈ A1 ∪ . . . ∪ Ak−1. So, let A∗k be the
subarc of Ak from Ak−1 to p′2. Since p′2 ∈ wk, p′2 6∈ Bk+2 ∪ . . . ∪ Bn. Let B∗k+1 be the subarc
of Bk+1 from p′2 to Bk+2. Let C = A1 ∪ . . . ∪Ak−1 ∪A∗k ∪B∗k+1 ∪Bk+2 ∪ . . . ∪Bn. Then C is
an arc and is approximated by (w1, . . . , wn).

In the following proof we use the fact that an open and connected subset of the plane is
arcwise connected.

Lemma 5.7. Suppose (w1, . . . , wn) ∈ A(s0,r0,ζ). Let j1, j2, L, E1, and E2 be as in Definition
5.5. Then:

(i) there is an arc G1 from a point in E1 ∩ wj1−1 ∩ wj1 to a point q1 in wj1 ∩ L ∩ ∂E1 so
that G1 ⊆ E1 ∪ {q1};

(ii) there is an arc G2 from a point in E2 ∩ wj2 ∩ wj2+1 to a point q2 in wj2 ∩ L ∩ ∂E2 so
that G2 ⊆ E2 ∪ {q2}.

Proof. We first note that each boundary point of E1 belongs either to As0,ζ or to the
boundary of wj1 . For, let p be a boundary point of E1. Suppose p 6∈ As0,ζ . Since E1 ⊆ A+

s0,ζ
,

p 6∈ A−s0,ζ . Since (w1, . . . , wn) is an approximate crosscut of D, wj1 ⊆ D. So, ∂E1 ⊆ D. Thus,

p ∈ D and so p ∈ A+
s0,ζ

. But, p 6∈ E1 since E1 is open. It follows that p 6∈ wj1 . For, if p ∈ wj1 ,

then its component in A+
s0,ζ
∩ wj1 is an open set that contains p but no point of E1. It now

follows that p ∈ ∂wj1 .
By condition (iv) of Definition 5.5, there is a point q′1 ∈ wj1 ∩ L ∩ ∂E1. Let ε be a positive

number such that Dε(q
′
1) ⊆ wj1 and Dε(q

′
1) ∩ As0,ζ ⊆ L. By [15, Theorem 3-18], there are a

point q1 ∈ ∂E1 and a point p ∈ E1 so that |q1 − q′1| < ε and [p, q1] ⊆ E1 ∪ {q1}. Thus, q1 ∈ L.
Let p′ ∈ E1 ∩wj1−1 ∩wj1 . Then E1 includes an arc G from p′ to p. Let p′′ be the first point on
G that belongs to [p, q]. Let G∗ be the subarc of G from p′ to p′′. Then take G1 = G∗ ∪ [p′′, q].

Part (ii) is proved similarly.

Theorem 5.8. A(s0,r0,ζ) describes C(s0,r0,ζ).

Proof. To begin, suppose that (w1, . . . , wn) is an approximate crosscut in A(s0,r0,ζ). We
construct a crosscut in C(s0,r0,ζ) that is approximated by (w1, . . . , wn). Let j1, j2, and L be as
in the definition of A(s0,r0,ζ).
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We first show that (w1, . . . , wj1) approximates an arc C1 such that C1 ∩ (As0,ζ ∪ ∂D) ⊆
{C1(0), C1(1)} and C1(1) ∈ L. By Lemma 5.7, there is an arc G ⊆ wj1 from a point p ∈
E1 ∩ wj1 ∩ wj1−1 to a point q ∈ wj1 ∩ L so that G ∩ (As0,ζ ∪ ∂D) = {q}. By Theorem 5.1,
(w1, . . . , wj1−1) approximates an arc H from a point p′1 ∈ ∂D to p. Let H = H1 + . . .+Hj1−1

be a decomposition of H so that Hj ⊆ wj for all j. Let p1 be the last point on H that belongs
to ∂D. Then p1 ∈ w1. Since (w1, . . . , wn) is an approximate crosscut of D, it follows that
p1 6∈ H2 ∪ . . . ∪ Hj1−1. Let H∗1 be the subarc of H1 from p1 to H2. Then (w1, . . . , wj1−1)
approximates H∗1 ∪H2 ∪ . . . ∪Hj1−1. The existence of C1 now follows from Lemma 5.6.

We can similarly show that {wj}nj=j2 approximates an arc C3 such that C3 ∩ (∂D∪As0,ζ) =
{C3(0), C3(1)} and such that C3(0) ∈ L. Let C2 be the subarc of As0,ζ from C1(1) to C3(0).
Then C := C1 ∪ C2 ∪ C3 is a crosscut that is approximated by (w1, . . . , wn). Furthermore, it
follows from the conditions of Definition 5.5 that (s0, r0) witnesses that C recognizably bounds
the value of φ on ζ.

Now suppose C ∈ C(s0,r0,ζ). Let ε > 0. We construct an approximate crosscut in A(s0,r0,ζ)

that approximates C with error less than ε. Let C1, C3 denote the components of C ∩A+
s0,ζ

.
Let C2 denote C ∩ As0,ζ . Let C ′2 be a subarc of C from an intermediate point of C1 to an
intermediate point of C3. Let Aj be a subarc of Cj that omits C ′2 and that contains a boundary

point of D. Let C ′j = Cj − (C ′2 ∪Aj).
Let a1 be the end point of A1 that lies on the boundary of D. Let a2 be the other end point

of A1. Let a3 be the other end point (besides a2) of C ′1. Let a4 be the other end point of C ′2.
Let a5 be the other end point of C ′3. Let a6 be the other end point of A3, and let a7 be the
end point of A3 that lies on the boundary of D.

We now apply Theorem 5.3. Let (w2, . . . , wk1) be an approximation of C ′1 with error smaller
than ε so that a2 ∈ w2 − w3 and a3 ∈ wk1 − wk1−1. Note that a2 6∈ w4 ∪ . . . ∪ wk1 and
a3 6∈ w2 ∪ . . . ∪ wk1−2. Let (w′1, . . . , w

′
m) be an approximation of C ′3 with error smaller than ε

so that a4 ∈ w′1 − w′2 and a5 ∈ w′m − w′m−1. We can suppose that ε is small enough so that

wj ⊆ A+
s0,ζ

for all j and w′j ⊆ A
+
s0,ζ

for all j. Fix a positive number δ > 0. Let Rj be a finite set
of open rational rectangles so that Aj ⊆

⋃
Rj , R∩Aj 6= ∅ for each R ∈ Rj , and the diameter

of each rectangle in Rj is smaller than δ. We choose δ so that⋃
R1 ∪

⋃
R3∩

(
C ′2 ∪

⋃
j

w2<j6k1−1 ∪
⋃

16j<m

w′j

)
= ∅.

As in the proof of Theorem 5.3, Rj contains a chain that covers Aj . Let w1 = R1 ∪ . . . ∪ Rt,
where (R1, . . . , Rt) is a chain in R1 that covers A1. Let w′m+1 = R′1 ∪ . . . ∪ R′s, where
(R′1, . . . , R

′
s) is a chain in R3 that covers A3. So, (w1, . . . , wk1) is an approximation of

A1 ∪ C ′1 and (w′1, . . . , w
′
m+1) is an approximation of C ′3 ∪ A3. Let (wk1+1, . . . , wk2) be an

approximation of C ′2. We can choose this approximation so that the error is small enough so
that (w1, . . . , wk2 , w

′
1, . . . , w

′
m) is a simple chain. Let wk2+j = w′j when 1 6 j 6 m+ 1, and let

n = k2 +m+ 1. It follows that (w1, . . . , wn) approximates C. Let j1 = k1 + 1 and let j2 = k2.
We can suppose that ε is small enough so that if j is not between j1 and j2, then |φ(tζ)−z| >

m(s0, N0, r0) whenever 1 − s0 6 t 6 1 − r0 and z ∈ wj . We can also suppose that ε is small
enough so that wj ⊆ D whenever 1 < j 6 j1 or j2 6 j < n. It follows that (w1, . . . , wn)
belongs to A(s0,r0,ζ).

In order to show that there is an algorithm that enumerates A(s0,r0,ζ) if ζ and φ are
computable, we will need the following characterization of A(s0,r0,ζ). By a rational polygonal
curve we mean a polygonal curve whose vertices are rational.

Lemma 5.9. Suppose that (w1, . . . , wn), j1, j2 satisfy all conditions of Definition 5.5 except
possibly (iv) and (v). Then conditions (iv) and (v) are satisfied if and only if there are rational
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numbers θ1, θ1, open rational rectangles R1, R2, and rational polygonal curves P1, P2 such
that the following hold:

(i) zk := ζ + s0ζe
iθk ∈ D;

(ii) the subarc of D ∩ ∂Ds0(ζ) from z1 to z2 is included in φ−1[wj1 ∪ . . . ∪ wj2 ];
(iii) Rk ⊆ φ−1[wjk ] and Rk ∩ ∂Ds0(ζ) 6= ∅;
(iv) one end point of P1 is in φ−1[wj1−1 ∩ wj1 ] and the other is in R1;
(v) one end point of P2 is in φ−1[wj2+1 ∩ wj2 ] and the other is in R2;
(vi) Pk ⊆ Ds0(ζ) ∩ φ−1[wjk ].

Proof. Suppose that conditions (i)–(vi) hold. It follows from Conditions (ii) and (vi) of
Definition 5.5 that 1− s0 is between z1 and z2 on D ∩ ∂Ds0(ζ). Let p1 be the end point of P1

in φ−1[wj1−1 ∩ wj1 ] and let q1 be the other end point of P1. Let p2 be the end point of P2 in
φ−1[wj2+1∩wj2 ] and let q2 be the other end point of P2. Since qk ∈ Ds0(ζ), [qk, zk]∩∂Ds0(ζ) =
{zk}. Let Gk = Pk ∪ [qk, zk]. Thus, Gk ∩ ∂Ds0(ζ) = {zk}. Hence, φ[Gk] ∩ As0,ζ = {φ(zk)}.
Let Ek be the component of φ(pk) in wjk ∩ A

+
s0,ζ

. Since Pk ⊆ Ds0(ζ) ∩ φ−1[wjk ] and since

Rk ⊆ φ−1[wj1 ], it follows that φ[Gk] − {zk} ⊆ wjk ∩ A
+
s0,ζ

. Thus, φ(zk) is a boundary point

of Ek. Since the subarc of D ∩ ∂Ds0(ζ) from z1 to z2 is contained in φ−1[wj1 ∪ . . . ∪ wj2 ], it
follows that φ(zk) ∈ L. Thus, Conditions (iv) and (v) of Definition 5.5 hold.

Now, suppose that Conditions (iv) and (v) of Definition 5.5 hold. We first show that L ∩
wjk ∩ ∂Ek contains a point of the form φ(ζ + s0ζe

iθk), where θk is a rational number. Let
qk ∈ wjk ∩L∩∂Ek. Let ε be a positive number such that Dε(qk) ⊆ wjk and Dε(qk)∩As0,ζ ⊆ L.
Let q′k ∈ Dε(qk) ∩ Ek. Let E′k be the component of q′k in Dε(qk) ∩ Ek. Thus, E′k ⊆ Ek.
Let ε1 be a positive number such that Dε1(qk) ∩ As0,ζ ⊆ Dε(qk). By [21, Proposition 5.2],
Dε1(qk) ∩As0,ζ ⊆ ∂E′k. On the other hand, As0,ζ ∩ ∂E′k ⊆ ∂Ek. Choose a rational number θk
so that φ(ζ + s0ζe

iθk) ∈ Dε1(qk).
Set zk = ζ + s0ζe

iθk . By construction, φ(zk) ∈ wjk . It follows from Conditions (ii) and (vi)
of Definition 5.5 that 1 − s0 is between z1 and z2 on D ∩ ∂Ds0(ζ). Choose an open rational
rectangle Rk so that Rk ⊆ φ−1[wjk ] and zk ∈ Rk. Since φ(zk) ∈ ∂Ek, zk ∈ ∂φ−1[Ek]. Thus,
Rk contains a point of φ−1[Ek]. Since Rk ∩ φ−1[Ek] is open, it contains a rational point rk.
Since E1 contains a point of wj1−1 ∩ wj1 , φ−1[E1] contains a point of φ−1[wj1−1 ∩ wj1 ]. Since
this set is open, it contains a rational point p1. Similarly, φ−1[E2] contains a rational point
p2 of φ−1[wj2+1 ∩ wj2 ]. Since φ−1[Ek] is open and connected, it contains a rational polygonal
curve Pk from pk to rk. Hence, Pk ⊆ Ds0(ζ) ∩ φ−1[wjk ].

Proof of Theorem 3.7. Suppose that ζ and φ are computable. It suffices to exhibit an
algorithm that enumerates A(s0,r0,ζ). Let (w1, . . . , wn) be given as input. By Hertling’s effective
Riemann mapping theorem (see § 2), D is computably open and its boundary is computably
closed. So, there is a search procedure that terminates if and only if (w1, . . . , wn) approximates
a crosscut of D. Suppose that this procedure terminates. Fix j1 and j2.

We then check that Condition (i) of Definition 5.5 is met. If it is, then we proceed by
searching for rational numbers q1, q2 so that π/2 < q1 < π < q2 < 3π/2 and so that {wj}j2j=j1
approximates the subarc of As0,ζ with end points φ(ζ + s0ζe

iq1) and φ(ζ + s0ζe
iq2). Here, we

are applying the uniform version of Lemma 5.4. This search terminates if and only if Condition
(ii) of Definition 5.5 is met.

Suppose that this search terminates as well. It is well known that if f : D→ C is computable
and if U is computably open, then f−1[U ] is computably open. Furthermore, this result is
uniform. It follows that φ−1[U ] is computably open whenever U is a computably open subset
of D. The sets wj1 , wj2 , wj1−1 ∩wj1 , and wj2 ∩wj2+1 are all computably open. It then follows
from Lemma 5.9 that there is a search procedure that terminates if and only if Conditions (iv)
and (v) hold.
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Suppose that this search terminates. It follows from the effective open mapping theorem (see
[14]) that A+

s0,ζ
is computably open. Furthermore, this result is uniform. So, we next search

for a finite set of rational rectangles B so that⋃
1<j<j1

wj ∪
⋃

j2<j<n

wj ⊆
⋃
B

and so that R ⊆ A+
s0,ζ

whenever R ∈ B. It follows that this search terminates if and only
if Condition (iii) of Definition 5.5 is met. If this search is successful, then we continue by
searching for an approximation (u1, . . . , us) of the arc traced by φ(tζ) as t ranges from 1− s0

to 1− r0 so that

d

(⋃
j

uj ,
⋃

16j6j1

wj ∪
⋃

j26j6n

wj

)
> m(s0, N0, r0).

Here, we are applying the uniform version of Lemma 5.4. It follows that this search is successful
if and only if Condition (vi) of Definition 5.5 is met.

If, for some j1 and j2, all of these searches terminate, then (w1, . . . , wn) belongs to A(s0,r0,ζ).
Conversely, if (w1, . . . , wn) belongs to A(s0,r0,ζ), then all of these searches must halt.

6. Computability of boundary extensions

We now prove Theorem 3.8 by means of the following three lemmas. When f is a continuous
and complex-valued function on [0, 1], let

‖f‖∞ = max{|f(t)| : 0 6 t 6 1}.

Lemma 6.1. Let G be a crosscut of D. Suppose that (w1, . . . , wn) approximates φ[G]. Then
there is a positive number δ so that (w1, . . . , wn) approximates φ[H] whenever H is a crosscut
of D such that ‖G−H‖∞ < δ.

Proof. Let C = φ[G]. Let C = C1 + . . . + Cn be a decomposition of C so that Cj ⊆ wj for
all j. Each Cj is compact. So, for each j, there is a positive number εj so that z ∈ wj whenever
|z − p| < εj for some p ∈ Cj .

Let Gj = φ−1[Cj ] ∩ G. (It is necessary to take the intersection with G in order to deal
with the possibility that one or both end points of C has more than one pre-image.) Then
G = G1 ∪ . . . ∪ Gn and each Gn is closed. By compactness, for each j there is a number δj
so that |φ(z1) − φ(z2)| < εj whenever z2 ∈ Gj and |z1 − z2| < δj . Let δ be the minimum of
δ1, . . . , δn.

There exist t0, . . . , tn such that 0 = t0 < t1 < . . . < tn−1 < tn = 1 and Gj = G[tj−1, tj ].
So, φ(G(t)) = Cj(t) if tj−1 6 t 6 tj . Suppose ‖H − G‖∞ < δ. Let Hj = H[tj−1, tj ]. Then
H = H1 + . . . + Hn. If tj−1 6 t 6 tj , then |H(t) − G(t)| < δ and so |φ(H(t)) − Cj(t)| < εj .
Thus, φ[Hj ] ⊆ wj . In other words, φ[H] is approximated by (w1, . . . , wn).

Lemma 6.2. Suppose |ζ| = 1 and (s0, r0) witnesses that a crosscut C recognizably bounds
the value of φ on ζ. Suppose that C is approximated by (w1, . . . , wn). Then, whenever ζ ′ is a
unimodular point that is sufficiently close to ζ, (w1, . . . , wn) approximates a crosscut C ′ such
that (s0, r0) witnesses that C ′ recognizably bounds the value of φ on ζ ′.

Proof. Let C1 = C − ∂D. Thus, φ−1 is defined at every point of C1. Let C− be the closure
of φ−1[C1]. Hence, C = φ[C−]. Suppose |ζ ′| = 1. When S is a subset of the plane and ξ is a
point in the plane, let ξS denote the set of all points of the form ξz such that z ∈ S. Thus,
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because of the structure of C−, (s0, r0) witnesses that φ[(ζ ′/ζ)C−] recognizably bounds the
value of φ on ζ ′. If ζ ′ is sufficiently close to ζ, then it follows from Lemma 6.1 that φ[(ζ/ζ ′)C−]
is approximated by (w1, . . . , wn).

Lemma 6.3. From k ∈ N it is possible to uniformly compute a finite set of open rational
rectangles Rk that covers the unit circle and so that |φ(z1)− φ(z2)| < 2−k whenever R ∈ Rk
and z1, z2 ∈ R ∩ D.

Proof. Fix k. Compute a positive integer k0 such that 2−(k0+1) < |φ(0) − φ(ζ/2)| for all
unimodular ζ.

For each rational number θ, let ζθ = eθi. Thus, the set of all the ζθ is dense in the unit circle.
Let R′k be the set of all open rational rectangles R for which there exist s0, r0, θ ∈ Q and

C ∈ Cs0,r0,ζθ such that ζθ ∈ R ⊆ Dr0(ζθ) and the diameter of C is smaller than 2−g(k+k0+2).
It follows from the uniformity of Theorem 3.7 that R′k is computably enumerable uniformly
in k. It follows from Theorems 3.2 and 3.3 that if R ∈ R′k and if z1, z2 ∈ R ∩ D, then
|φ(z1)− φ(z2)| < 2−k.

We claim that R′k covers the unit circle. For, suppose |ζ| = 1. By Theorem 3.4, there is a
crosscut C whose diameter is smaller than 2−g(k+k0+2) and that recognizably bounds the value
of φ on ζ. Let (s0, r0) witness that C recognizably bounds the value of φ on ζ. Let (w1, . . . , wn)
be an approximation of C so that the diameter of

⋃
j wj is smaller than 2−g(k+k0+2). By Lemma

6.2, there is a closed rational rectangle R ⊆ Dr0(ζ) such that ζ ∈ R and, for all ζ ′ ∈ R ∩ ∂D,
(w1, . . . , wn) approximates a crosscut C ′ such that (s0, r0) witnesses that C ′ recognizably
bounds the value of φ on ζ ′. The interior of R contains a point of the form ζθ for some θ ∈ Q.
Since R is closed, if ζθ is close enough to ζ, then R ⊆ Dr0(ζθ). Thus, the interior of R belongs
to R′k. Hence, ∂D ⊆

⋃
R′k.

To compute Rk, we enumerate R′k just until the unit circle is covered.

Proof of Theorem 3.8. Let R be given as input. If R contains no point of the unit circle,
then do not halt. Otherwise, search for the least k such that R 6⊆

⋃
Rk. If k = 0, then do not

halt. Suppose k > 0. Then R ⊆
⋃
Rk−1. Let R1, . . . , Rt be all the rectangles in Rk−1 that

contain a point of R. For each j, compute a rational point ζj in Rj ∩ D. Then, for each j,
compute a rational point qj such that |φ(ζj)− qj | < 2−k. Thus, if z ∈ R, then

φ(z) ∈
⋃
j

D2−k+1(qj).

Set

m1 = min
j

Re(qj)− 2−k+1,

M1 = max
j

Re(qj) + 2−k+1,

m2 = min
j

Im(qj)− 2−k+1,

M2 = max
j

Im(qj) + 2−k+1.

Then ⋃
j

D2−k+1(qj) ⊆ (m1,M1)× (m2,M2).

So, we output (m1,M1)× (m2,M2). Thus, the strong correctness criterion of Definition 2.1 is
satisfied.
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We now verify the convergence criterion. Suppose z ∈ R ∩ ∂D. Set δ = maxj |φ(ζj)− φ(z)|.
Let a = Re(φ(z)) and let b = Im(φ(z)). Thus,

(m1,M1)× (m2,M2) ⊆ (a− δ − 2−k+1, a+ δ + 2−k+1)× (b− δ − 2−k+1, b+ δ + 2−k+1).

Then δ → 0+ as diam(R) → 0+. In addition, k → ∞ as diam(R) → 0+ (otherwise, φ is
constant on a neighborhood of z). It follows that the convergence criterion is satisfied.

7. Conclusions and questions

The creation of an algorithm to solve a problem first requires an assessment of the information
that must be provided. It was shown in [20] that there is a computable conformal map of
the unit disk onto a Jordan domain whose boundary extension is incomputable. Thus, the
map φ by itself does not provide sufficient information for the computation of its boundary
extension. We are thus led to consider what additional information must be provided. Here,
we have shown that a boundary connectivity function for D provides sufficient additional
information. In a forthcoming paper [23], it is shown that there is a conformal map on the
unit disk that has a computable boundary extension even though its range does not have a
computable boundary connectivity function. Thus, a boundary connectivity function does not
provide necessary additional information for the computation of boundary extensions. That
is, it provides too much information.

We might then investigate other additional parameters. Since the boundary of D is compact
and connected, by the Hahn–Mazurkiewicz theorem (see [15, §§ 3–5]) the boundary of D is
locally connected if and only if it is the range of a continuous map on the unit interval. Such a
map might seem to be a reasonable and perhaps more intuitive additional parameter than
a boundary connectivity function. However, it fails to provide sufficient information. For, it
is quite easy to show that there is a computable map of the unit interval onto the boundary
of the aforementioned example from [20]. So, pinning down the precise amount of additional
information required to compute boundary extensions is still a question for investigation.

We note that the proof of Theorem 3.9 is uniform in that it produces an algorithm that
given as input an algorithm for computing a conformal map φ of the unit disk onto a bounded
domain D, an algorithm for computing a boundary connectivity function for D, and a rational
upper bound on the area of D, produces an algorithm for computing the boundary extension
of φ. Further uniformity in the format of type-two effectivity [30] also holds.

We conclude by proposing two additional and related questions:
(i) What is the complexity of computing φ(1) from φ, g?
(ii) Is there a proof of Pommerenke’s theorem in the constructive framework of Bishop?
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