Bull. Austral. Math. Soc. Vol. 46 (1992) [225-243]

REPRESENTATIONS OF FINITE GROUPS AND CUNTZ-KRIEGER ALGEBRAS

M.H. MANN, IAIN RAEBURN AND C.E. SUTHERLAND

We investigate the structure of the C^* -algebras \mathcal{O}_{ρ} constructed by Doplicher and Roberts from the intertwining operators between the tensor powers of a representation ρ of a compact group. We show that each Doplicher-Roberts algebra is isomorphic to a corner in the Cuntz-Krieger algebra \mathcal{O}_A of a $\{0, 1\}$ -matrix $A = A_{\rho}$ associated to ρ . When the group is finite, we can then use Cuntz's calculation of the K-theory of \mathcal{O}_A to compute $K_*(\mathcal{O}_{\rho})$.

Doplicher and Roberts have recently developed a duality theory for compact subgroups of $SU(n, \mathbb{C})$ in which the dual object consists of a simple C^* -algebra \mathcal{O}_G and an endomorphism of \mathcal{O}_G [3, 4]. The construction of \mathcal{O}_G is based on the concrete representation ρ of G in $SU(n, \mathbb{C})$ rather than the abstract group G, so we prefer to call it \mathcal{O}_{ρ} ; our work originated in an attempt to find out how the structure of \mathcal{O}_{ρ} depends on the choice of representation. To this end we have computed the K-theory of \mathcal{O}_{ρ} for finite G, by embedding it as a corner in a Cuntz-Krieger algebra \mathcal{O}_A , and using Cuntz's calculation of $K_*(\mathcal{O}_A)$ [1]. One conclusion is that different representations of the same finite group can give algebras which have quite different K-theory, and hence are not even stably isomorphic or Morita equivalent.

The algebra \mathcal{O}_{ρ} is constructed from the spaces of intertwining operators between the different tensor powers ρ^n of ρ , and its structure is determined by the decompositions of ρ^n into irreducibles, and hence by the decompositions of $\pi \otimes \rho$ for $\pi \in \hat{G}$. The combinatorics of the situation can be summed up in a bipartite graph with \hat{G} as vertices, and our main observation is that these combinatorics are similar to those involved in Cuntz and Krieger's construction of a C^* -algebra \mathcal{O}_A from a $\{0, 1\}$ -matrix A. When G is compact, A is infinite, and there are technical problems in transferring this combinatorial similarity to the C^* -algebra level; indeed, we need to appeal to both [2] and [3] to do it. For finite groups, we can prove directly that \mathcal{O}_{ρ} is a corner in \mathcal{O}_A , and the simplicity of \mathcal{O}_{ρ} therefore follows from [2] alone. We shall go as far as we can in full generality, since we are optimistic that one can extend the results of [1] to cover infinite A, and use them to compute $K_*(\mathcal{O}_{\rho})$ for compact G along similar lines.

Received 6th September, 1991

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.

[2]

We begin with a discussion of the two Doplicher-Roberts algebras ${}^{0}\mathcal{O}_{\rho}$, \mathcal{O}_{ρ} associated to a finite-dimensional representation ρ : ${}^{0}\mathcal{O}_{\rho}$ is a *-algebra, and \mathcal{O}_{ρ} its C*enveloping algebra. In Section 2, we associate a $\{0,1\}$ -matrix A_{ρ} to ρ , and show how ${}^{0}\mathcal{O}_{\rho}$ can be canonically mapped into the Cuntz-Krieger algebra $\mathcal{O}_{A_{\rho}}$; in Section 3, we prove that, when G is finite, this mapping induces an isomorphism of \mathcal{O}_{ρ} onto a corner $P\mathcal{O}_{A_{\rho}}P$ in $\mathcal{O}_{A_{\rho}}$. Since $\mathcal{O}_{A_{\rho}}$ is known to be simple [2], this implies that \mathcal{O}_{ρ} is Morita equivalent to $\mathcal{O}_{A_{\rho}}$, and in particular has the same K-theory. In our final section, we compute $K_{*}(\mathcal{O}_{\rho})$ for a few examples of finite groups, using methods which should work whenever we have a character table for G.

One could also hope to investigate the structure of Doplicher-Roberts algebras by realising them as the C^* -algebras of locally compact groupoids whose unit spaces are path spaces associated to the infinite diagram of Section 1, and exploiting general properties of groupoid C^* -algebras, as done for AF-algebras in [7]. At present, though, it is not clear whether the appropriate groupoids for the Cuntz-Krieger algebras of infinite $\{0,1\}$ -matrices are locally compact, and hence the present approach may be more easily adapted to compact groups. In [6], we gave a brief discussion of the groupoid approach, and the problems involved in it.

We stress that many of the ideas and results in this paper are either well-known or implicit in the work of Doplicher-Roberts and Cuntz-Krieger. For example, our comments in Section 4 on computing $K_*(\mathcal{O}_A)$ are surely known to all experts. However, we do hope a detailed presentation of this circle of ideas in a technically-straightforward special case will be informative and useful.

This research was supported by the Australian Research Council.

1. DOPLICHER-ROBERTS ALGEBRAS

Let ρ be a finite-dimensional representation of a locally compact group, and for $n \in \mathbb{N}$, let ρ^n be the *n*-fold tensor power of ρ , acting in $H_\rho \otimes \cdots \otimes H_\rho = H_\rho^n$. For each pair $m, n \in \mathbb{N}$, we denote by (ρ^m, ρ^n) the space of intertwining operators $T : H_\rho^n \to H_\rho^m$; we have chosen this notation so that the composition $S \circ T$ of $S \in (\rho^m, \rho^n), T \in (\rho^n, \rho^p)$ lies in (ρ^m, ρ^p) . There is a natural embedding $T \to T \otimes 1$ of (ρ^m, ρ^n) in (ρ^{m+1}, ρ^{n+1}) , and we denote the direct limit $\lim_{n \to \infty} (\rho^p, \rho^{p+k})$ by ${}^0\mathcal{O}_\rho^k$. The direct sum ${}^0\mathcal{O}_\rho = \bigoplus_{k \in \mathbb{Z}} {}^0\mathcal{O}_\rho^k$ is a *-algebra in which the product of $S \in (\rho^m, \rho^n)$ and $T \in (\rho^p, \rho^q)$ is

$$\begin{cases} (S \otimes 1_{p-n}) \circ T \in (\rho^{m+(p-n)}, \rho^q) & \text{if } p \ge n \\ S \circ (T \otimes 1_{n-p}) \in (\rho^m, \rho^{q+(n-p)}) & \text{if } p > n, \end{cases}$$

and the adjoint of $S \in (\rho^m, \rho^n)$ is $S^* \in (\rho^n, \rho^m)$.

We shall refer to either ${}^{0}\mathcal{O}_{\rho}$ or its C^{*} -enveloping algebra \mathcal{O}_{ρ} as a *Doplicher-Roberts* algebra; of course, it is not immediately obvious that ${}^{0}\mathcal{O}_{\rho}$ has a C^{*} -enveloping algebra,

since a priori

$$||T|| = \sup \{ ||\pi(T)|| : \pi \text{ is a *-representation of } {}^{0}\mathcal{O}_{\rho} \}$$

could be infinite. To settle this, we shall describe a natural basis for each (ρ^m, ρ^n) , which is parametrised by paths in an infinite graph associated to ρ , and which will be important in our later constructions.

We first let R be the set of (equivalence classes of) irreducible summands of the tensor powers ρ^n , (adding in the trivial representation ι , if necessary), and to each element of R we associate a specific representation $\pi : G \to U(H_{\pi})$. We define a bipartite graph with R as the set of vertices, and the number of edges joining π_1 at the top level to π_2 at the lower level equal to the multiplicity of π_2 in $\pi_1 \otimes \rho$. Thus, for example, if π_2 occurs with multiplicity 2 in $\pi_1 \otimes \rho$, and multiplicity 1 in $\pi_3 \otimes \rho$, the graph contains

If x is an edge from π_1 above to π_2 below, we write $s(x) = \pi_1$ and $r(x) = \pi_2$, and we let E denote the set of all edges. We now assign to each edge x an isometric intertwiner $T_x: H_{r(x)} \to H_{s(x)} \otimes H_{\rho}$, in such a way that, for each π ,

$$H_{\pi}\otimes H_{\rho}=\bigoplus_{\{\boldsymbol{x}:\boldsymbol{s}(\boldsymbol{x})=\pi\}}T_{\boldsymbol{x}}T_{\boldsymbol{x}}^{*}(H_{\pi}\otimes H_{\rho})$$

—in other words, such that the edges out of π give a specific decomposition of $H_{\pi} \otimes H_{\rho}$ into irreducibles. Next we consider the infinite graph obtained by sticking infinitely many copies of the bipartite graph below the original. We note that a sequence x_1, x_2, \ldots, x_n of edges in the original graph combines to form a vertical path in the infinite graph if and only if $r(x_j) = s(x_{j+1})$ for all j. Each path $x = \{x_1, x_2, \ldots, x_n\}$ represents an intertwiner

$$T_{\boldsymbol{x}} = (T_{\boldsymbol{x}_1} \otimes 1_{\boldsymbol{n}-1}) \circ (T_{\boldsymbol{x}_2} \otimes 1_{\boldsymbol{n}-2}) \circ \cdots \circ T_{\boldsymbol{x}_n} : H_{\boldsymbol{r}(\boldsymbol{x}_n)} \to H^n_{\boldsymbol{\rho}},$$

where 1_r denotes the identity operator on H^r_{ρ} , and the paths x with $s(x_1) = \iota$ provide an explicit decomposition of H^n_{ρ} into irreducibles:

$$H^n_\rho = \bigoplus_{\{\text{paths } x \text{ with } s(x_1)=\iota\}} T_x T^*_x (H^n_\rho).$$

PROPOSITION 1.1. The family

$$\{T_xT_y^*: |x| = m |y| = n, s(x_1) = s(y_1) = \iota, r(x_m) = r(y_n)\}$$

is a basis for (ρ^m, ρ^n) , and each basis element $T_x T_y^*$ is a partial isometry.

PROOF: Each pair of paths x, y with |x| = m, |y| = n and $s(x_1) = \iota = s(y_1)$ determines a pair of irreducible summands $T_x(H_{r(x_m)})$, $T_y(H_{r(y_n)})$ of H_ρ^m , H_ρ^n ; the space of intertwiners of these representations is 0 unless $r(x_m) = r(y_n)$, and then is the 1-dimensional space spanned by $T_x T_y^*$. Hence every intertwiner in (ρ^m, ρ^n) can be uniquely expressed as a linear combination of the $T_x T_y^*$, as claimed. Because each T_y is isometric, T_y^* is a partial isometry with range space $H_{r(y_n)}$, and, whenever $r(x_m) = r(y_n)$, $T_x T_y^*$ is also a partial isometry.

COROLLARY 1.2. For every $T \in {}^{0}\mathcal{O}_{\rho}$,

$$||T|| = \sup \{ ||\pi(T)|| : \pi \text{ is a }^*\text{-representation of } {}^0\mathcal{O}_{\rho} \}$$

is finite.

PROOF: As every element of ${}^{0}\mathcal{O}_{\rho}$ is a finite sum of elements of ${}^{0}\mathcal{O}_{\rho}^{k}$, and each of these is a direct limit, we may as well suppose that $T \in (\rho^{m}, \rho^{n})$, and hence that T can be uniquely written as a linear combination $\sum \lambda_{x,y} T_{x} T_{y}^{*}$. Now an operator $S \in (\rho^{m}, \rho^{n})$ is a partial isometry if and only if $S = SS^{*}S$ as operators on H_{ρ}^{n} , and hence, by definition of the *-algebra structure on ${}^{0}\mathcal{O}_{\rho}$, if and only if $S = SS^{*}S$ in ${}^{0}\mathcal{O}_{\rho}$. Thus $\pi(T_{x}T_{y}^{*})$ is a partial isometry for every representation π of ${}^{0}\mathcal{O}_{\rho}$, and

$$||T|| \leq \sum |\lambda_{x,y}| ||\pi(T_xT_y^*)|| \leq \sum |\lambda_{x,y}|,$$

which gives the Corollary.

REMARK. Although we have not insisted that the group G be compact, as Doplicher and Roberts do, the extra generality is spurious: if ρ is finite-dimensional, the intertwining spaces for the identity representation ι_K of the compact group $K = \overline{\rho(G)} \subset U(H_\rho)$ are exactly the same as those of ρ , and hence $\mathcal{O}_{\iota_K} = \mathcal{O}_{\rho}$. However, there are non-compact groups with lots of finite-dimensional representations — for example, $SL(2, \mathbb{Z}) \cong \mathbb{Z}_2 * \mathbb{Z}_3$, and the integer Heisenberg group — and there could possibly be interesting interplay between the combinatorics of the representation, the algebra \mathcal{O}_{ρ} , and the underlying non-compact group.

2. Representing a Doplicher-Roberts algebra in a Cuntz-Krieger algebra

Again let ρ be a finite-dimensional representation of a locally compact group, and resume the notation of the previous section. Define a (possibly infinite) $\{0,1\}$ -matrix

Π

 A_{ρ} , indexed by the set E of edges in the bipartite graph associated to ρ , as follows:

(2.1)
$$A_{\rho}(x,y) = \begin{cases} 1 & \text{if } r(x) = s(y) \\ 0 & \text{otherwise.} \end{cases}$$

THEOREM 2.1. Let ρ be a finite-dimensional representation of a locally compact group, and use the notation of Section 1. Let $\{S_x : x \in E\}$ be a family of non-zero partial isometries satisfying

$$S_x^*S_x = \sum_{y \in E} A_{
ho}(x,y)S_yS_y^*,$$

let B be the *-algebra generated by $\{S_x\}$, and let

$$P = \sum_{\{\boldsymbol{x} \in E: \boldsymbol{s}(\boldsymbol{x}) = \iota\}} S_{\boldsymbol{x}} S_{\boldsymbol{x}}^*$$

Then there is a *-homomorphism of the Doplicher-Roberts algebra ${}^{0}\mathcal{O}_{\rho}$ onto the corner *PBP*.

The idea is that paths in the infinite diagram of Section 1 have interpretations in the Cuntz-Krieger algebra $C^*(S_x)$, as well as the Doplicher-Roberts algebra ${}^0\mathcal{O}_{\rho}$. A sequence x_1, x_2, \ldots, x_n of edges in the original graph combines to form a vertical path in the infinite graph if and only if $r(x_j) = s(x_{j+1})$ for all j, hence if and only if $A_{\rho}(x_j, x_{j+1}) = 1$ for all j, and hence exactly when the the product $S_x = S_{x_1} S_{x_2} \ldots S_{x_n}$ is non-zero [2, p.252]. And, parallel to Lemma 1.1, every element of B is a linear combination of operators $S_x S_y^*$ with $r(x_m) = r(y_n)$.

We now define $\phi_{m,n}: (\rho^m, \rho^n) \to B$ by $\phi_{m,n}(T_xT_y^*) = S_xS_y^*$. Notice that, since $s(x_1) = s(y_1) = \iota$, we have

$$S_{x}S_{y}^{*} = S_{x_{1}}S_{x_{1}}^{*}(S_{x}S_{y}^{*})S_{y_{1}}S_{y_{1}}^{*} = P(S_{x_{1}}S_{x_{1}}^{*})(S_{x}S_{y}^{*})(S_{y_{1}}S_{y_{1}}^{*})P = PS_{x}S_{y}^{*}P,$$

and hence $\phi_{m,n}: (\rho^m, \rho^n) \to PBP$. We claim that the maps $\phi_{m,n}$ are compatible with the bonding maps $(\rho^m, \rho^n) \to (\rho^{m+1}, \rho^{n+1})$, in the sense that

(2.2)
$$\phi_{m+1,n+1}((T_xT_y^*)\otimes 1) = \phi_{m,n}(T_xT_y^*).$$

To see this, we note that

$$H_{r(z_m)} \otimes H_{\rho} = \bigoplus_{\{z \in E: s(z) = r(z_m)\}} T_z T_z^* (H_{r(z_m)} \otimes H_{\rho}),$$

so that

$$T_{x}T_{y}^{*} \otimes 1 = \sum_{\{z:s(z)=r(x_{m})=r(y_{n})\}} (T_{x} \otimes 1)(T_{z}T_{z}^{*})(T_{y}^{*} \otimes 1)$$
$$= \sum_{\{z:s(z)=r(x_{m})=r(y_{n})\}} (T_{zz})(T_{yz})^{*};$$

on the other hand,

$$S_{x}S_{y}^{*} = S_{x}(S_{x_{m}}^{*}S_{x_{m}})S_{y}^{*}$$

= $S_{x}\left(\sum_{z \in E} A(x_{m}, z)S_{z}S_{z}^{*}\right)S_{y}^{*}$
= $\sum_{\{z:s(z)=r(x_{m})\}} S_{z}(S_{z}S_{z}^{*})S_{y}^{*}$
= $\sum_{\{z:s(z)=r(x_{m})\}} (S_{zz})(S_{yz})^{*},$

and (2.2) follows.

We can now define $\phi = \oplus \phi^k$, at least as a linear map, and we have to verify that ϕ is a *-homomorphism. Well,

$$\phi_{m,n}(T_xT_y^*)^* = (S_xS_y^*)^* = S_yS_x^* = \phi_{n,m}(T_yT_x^*),$$

so ϕ is certainly *-preserving. To check that ϕ is multiplicative, consider $T_x T_y^* \in (\rho^m, \rho^n)$, $T_w T_z^* \in (\rho^p, \rho^q)$, and suppose for the sake of argument that $p \ge n$. Then

$$\phi((T_xT_y^*)(T_wT_z^*)) = \phi^{(n-m)+(q-p)}(((T_xT_y^*)\otimes 1_{p-n})\circ(T_wT_z^*)).$$

The product $(T_y^* \otimes 1_{p-n})T_w$ is by definition the composition

$$\left(T_{y_{n}}^{*}\otimes 1_{p-n}\right)\circ\left(T_{y_{n-1}}^{*}\otimes 1_{p-n+1}\right)\circ\cdots\circ\left(T_{y_{1}}^{*}\otimes 1_{p-1}\right)\circ\left(T_{w_{1}}\otimes 1_{p-1}\right)\circ\cdots\circ T_{w_{p}}$$

Since

$$T_{y_1}^* T_{w_1} = \left\{ egin{array}{cc} 0 & ext{unless } w_1 = y_1 \ T_{y_1}^* T_{y_1} = 1 & ext{if } w_1 = y_1, \end{array}
ight.$$

and we know y is a path, $T_{y_2}^*((T_{y_1}^*T_{y_1})\otimes 1) = T_{y_2}^*$; thus we can omit the two middle terms in $(T_y^*\otimes 1)T_w$. By induction, we deduce that the composition is 0 unless $y_i = w_i$ for $1 \leq i \leq n$, and then equals

$$(T_{w_{n+1}}\otimes 1_{p-n-1})\circ\cdots\circ T_{w_n}=T_{w'},$$

say. Thus

$$\begin{split} \big(\big(T_xT_y^*\big)\otimes 1_{p-n}\big)T_wT_z^* &= \begin{cases} (T_x\otimes 1_{p-n})\circ T_{w'}\circ T_z^* & \text{if } y_i = w_i \text{ for } 1\leqslant i\leqslant n\\ 0 & \text{otherwise,} \end{cases}\\ &= \begin{cases} T_{xw'}T_z^* & \text{if } y_i = w_i \text{ for } 1\leqslant i\leqslant n\\ 0 & \text{otherwise.} \end{cases} \end{split}$$

But this is precisely the rule for cancelling $S_y^* S_w$:

$$S_x(S_y^*S_w)S_z^* = \begin{cases} S_x(S_{y_n}^*S_{y_n})S_{w'}S_z^* & \text{if } y_i = w_i \text{ for } 1 \leq i \leq n \\ 0 & \text{otherwise} \end{cases}$$
$$= \begin{cases} S_xS_{w'}S_z^* & \text{if } y_i = w_i \text{ for } 1 \leq i \leq n \\ 0 & \text{otherwise,} \end{cases}$$

since $r(x_m) = r(y_n)$. Hence ϕ is multiplicative, as claimed.

The algebra B is spanned by the elements of the form $S_x S_y^*$, which is non-zero only if there exists z with $A(x_m, z) = A(y_n, z) = 1$, that is, only if $r(x_m) = r(y_n)$. Since

$$PS_xS_y^*P = \begin{cases} S_xS_y^* & \text{if } s(x_1) = \iota \text{ and } s(y_1) = \iota \\ 0 & \text{otherwise,} \end{cases}$$

it follows that

$$PS_x S_y^* P = \begin{cases} S_x S_y^* & \text{if } s(x_1) = \iota = s(y_1) \text{ and } r(x_m) = r(y_n) \\ 0 & \text{otherwise,} \end{cases}$$
$$= \begin{cases} \phi_{m,n}(T_x T_y^*) & \text{if } s(x_1) = \iota = s(y_1) \text{ and } r(x_m) = r(y_n) \\ 0 & \text{otherwise.} \end{cases}$$

Thus the non-zero operators of the form $PS_xS_y^*P$ are all in the range of ϕ , and since they span PBP, the homomorphism ϕ maps onto PBP.

This completes the proof of Theorem 2.1.

COROLLARY 2.2. There is a surjective homomorphism of the Doplicher-Roberts algebra \mathcal{O}_{ρ} onto the corner $PC^*(S_x)P$.

PROOF: The algebra \mathcal{O}_{ρ} is the C^* -enveloping algebra of the *-algebra ${}^{0}\mathcal{O}_{\rho}$, so the homomorphism $\phi : {}^{0}\mathcal{O}_{\rho} \to PBP \subset PC^*(S_x)P$ is by definition continuous, and extends to a homomorphism of \mathcal{O}_{ρ} into $PC^*(S_x)P$. Since ϕ maps ${}^{0}\mathcal{O}_{\rho}$ onto PBP, which is dense in $PC^*(S_x)P$, and homomorphisms between C^* -algebras have closed range, the Corollary follows.

۵

COROLLARY 2.3. Suppose ρ is a representation of a compact group G in $SU_n(\mathbb{C})$, for some n > 1. If $\{S_x\}, P$ are as in Theorem 2.1, then \mathcal{O}_{ρ} is isomorphic to $PC^*(S_x)P$.

PROOF: By Theorem 2.12 of [3], there is a unique C^* -seminorm on ${}^0\mathcal{O}_{\rho}$, which is actually a C^* -norm. Since pulling back the operator norm along the homomorphism of ${}^0\mathcal{O}_{\rho}$ onto *PBP* induces such a seminorm, we deduce that the homomorphism is isometric, and extends to an isomorphism of \mathcal{O}_{ρ} onto the closure $PC^*(S_x)P$ of *PBP*.

REMARK 2.4.. When the group is finite, the matrix A_{ρ} is finite, and it follows from [2] that $C^*(S_z) = \mathcal{O}_{A_{\rho}}$ is simple (see Lemma 3.1 below). As the corner \mathcal{O}_{ρ} is then necessarily full, we can deduce from [3, Corollary 2.3], and [2] that $K_*(\mathcal{O}_{\rho}) \cong K_*(\mathcal{O}_{A_{\rho}})$ (we shall prove this again in Section 3 without appealing to [3] or requiring $\rho(G) \subset SU$). In principle, we can similarly deduce from [3] and [2] that $K_*(\mathcal{O}_{\rho}) \cong K_*(\mathcal{O}_{A_{\rho}})$ when G is compact and $\rho(G) \subset SU$, although some care will be needed in applying [2] because A_{ρ} is infinite if G is. However, since the calculation of $K_*(\mathcal{O}_A)$ in [1] does not obviously apply to infinite A, further work is needed before this result can be useful, and we defer it for now.

3. DOPLICHER-ROBERTS ALGEBRAS OF FINITE GROUPS

Our goal here is to prove that, when G is finite, the complete Doplicher-Roberts algebra \mathcal{O}_{ρ} is isomorphic to a corner in the corresponding Cuntz-Krieger algebra $\mathcal{O}_{A_{\rho}}$. Before we can state our theorem, we need to check that the $\{0,1\}$ -matrix A_{ρ} is one for which $\mathcal{O}_{A_{\rho}}$ can be uniquely defined, up to isomorphism, as the C^* -algebra generated by a family of non-zero partial isometries $\{S_x : x \in E\}$ satisfying

$$(3.1) S_x^* S_x = \sum_{y \in E} A_\rho(x,y) S_y S_y^*$$

Cuntz and Krieger gave a sufficient condition (I) on the $\{0,1\}$ -matrix A_{ρ} [2, p.254; Theorem 2.13], and showed that if in addition A_{ρ} is irreducible, then $\mathcal{O}_{A_{\rho}}$ is simple [2, 2.14]. Both these properties of A_{ρ} reduce to standard facts about the representation theory of finite groups:

LEMMA 3.1. If ρ is a representation of a finite group and $1 < \dim \rho < \infty$, then A_{ρ} is irreducible and satisfies the Cuntz-Krieger condition (I).

PROOF: We may as well suppose ρ is faithful: if not, replace the group G by $G/\ker\rho$. Then every irreducible representation of G is contained in some tensor power of ρ [5, (4.3) and (2.9)], and hence $R = \hat{G}$; equivalently, for each $\pi \in \hat{G}$ there is a path in the infinite diagram starting at ι and finishing at π . If π_c is the contragredient representation $s \to (\pi_{s}^{-1})^t$, then ι is a summand of $\pi \otimes \pi_c$ (since the corresponding

characters satisfy $\chi_{\pi_c} = \overline{\chi}_{\pi}$, this follows from [5, p.48 and (2.9)]), and hence for any $\pi \in \widehat{G}$ there is a path from π to ι . Putting these last two observations together gives a path joining ι to itself passing through any given π , and hence paths joining any given π_1 to any other π_2 . Now given $x, y \in E$, we can use a path from r(x) to s(y) to produce a path starting with x and finishing with y, and thus A_{ρ} is irreducible. To see that A_{ρ} satisfies (I) we just have to produce two different paths starting and finishing with the same edge x: for then the irreducibility of A_{ρ} implies that we can connect any other $y \in E$ to x. But if π has maximal dimension, dim $\rho \ge 2$ implies that $\pi \otimes \rho$ must have at least two irreducible summands, and hence that there are at least two edges y, z with $\pi = s(y) = s(z)$. Now we take x to be any edge with $r(x) = \pi$, and joining r(y) and r(z) to s(x) gives two distinct paths starting and ending at x.

REMARK 3.2. The result always fails if dim $\rho = 1$. For then ρ is an isomorphism of $G/\ker\rho$ onto a finite cyclic subgroup of T, the map $\gamma \to \gamma\rho$ is an automorphism of $(G/\ker\rho)^{\uparrow}$, and the matrix A_{ρ} is a permutation matrix, which never satisfies condition (I). However, since $\rho(G)$ is cyclic, so is $G/\ker\rho$, ρ must generate $(G/\ker\rho)^{\uparrow}$, and the permutation matrix is irreducible.

We now fix a family $\{S_x : x \in E\}$ of non-zero partial isometries on a Hilbert space H satisfying (3.1), view \mathcal{O}_{A_c} as $C^*(S_x : x \in E)$, and let

$$P = \sum_{\{x \in E: s(x)=i\}} S_x S_x^*.$$

Our main result is:

THEOREM 3.3. Let ρ be a representation of a finite group with $1 < \dim \rho < \infty$. Then \mathcal{O}_{ρ} is isomorphic to the corner $P\mathcal{O}_{A_{\rho}}P$.

We first have to establish the algebraic version. For it, we resume the notation of Sections 1 and 2.

LEMMA 3.4. Suppose G is finite and $1 < \dim \rho < \infty$. Then the homomorphism ϕ of Theorem 2.1 is an isomorphism of ${}^{0}\mathcal{O}_{\rho}$ onto PBP.

PROOF: We begin by letting

$$B_{m,n} = \mathrm{sp} \ \{S_x S_y^* : |x| = m, |y| = n, r(x_m) = r(y_n)\},$$

so that by definition $\phi_{m,n}$ maps (ρ^m, ρ^n) onto $PB_{m,n}P$ (recall that $PS_xS_y^*P = S_xS_y^*$ or 0, so $PB_{m,n}P$ is spanned by those $S_xS_y^*$ where $s(x_1) = s(y_1) = \iota$). In fact we claim that the generators $S_xS_y^*$ for $B_{m,n}$ are linearly independent, so that $\phi_{m,n}$ is a linear isomorphism. To see why, suppose $\sum_{|x|=m,|y|=n} \lambda_{x,y}S_xS_y^* = 0$ in B. If |w| = m, |z| = n then $S_w^* S_x = \delta_{x,w} S_{x_m}^* S_{x_m}$ [2, 2.1], and hence

$$S_w^* \Big(\sum_{|\boldsymbol{x}|=\boldsymbol{m}, |\boldsymbol{y}|=\boldsymbol{n}} \lambda_{\boldsymbol{x}, \boldsymbol{y}} S_{\boldsymbol{x}} S_{\boldsymbol{y}}^* \Big) S_{\boldsymbol{z}} = \lambda_{w, \boldsymbol{z}} S_{w_m}^* S_{w_m} S_{\boldsymbol{z}_n}^* S_{\boldsymbol{z}_n}.$$

Thus $\lambda_{w,z} = 0$ whenever |w| = m, |z| = n and $r(w_m) = r(z_n)$, and the $S_x S_y^*$ in $B_{m,n}$ are independent, as claimed.

The direct limit of the isomorphisms $\{\phi_{m,n}\}$ is an isomorphism

$$\phi^{k}: {}^{0}\mathcal{O}_{\rho}^{k} = \lim_{\longrightarrow} (\rho^{p}, \rho^{p+k}) \to PB^{k}P = \lim_{\longrightarrow} PB_{p,p+k}P = \bigcup_{p} PB_{p,p+k}P,$$

and to show the direct sum $\phi = \oplus \phi^k$ is an isomorphism, it is enough to show that the range *PBP* is the (algebraic) direct sum of the subspaces *PB^kP*. This is a highly nontrivial property of the algebra $\mathcal{O}_{A_{\rho}} = C^*(S_x)$, essentially established by Cuntz and Krieger in [2, 2.8, 2.9], and is only true because the matrix A_{ρ} satisfies condition (I) by Lemma 3.1.

As shown in [2, bottom of p.255], every X in B can be written in the form

$$\sum_{k=-M}^{-1} \left(\sum_{|x|=|k|} S_x X_x \right) + X_0 + \sum_{k=1}^{N} \left(\sum_{|y|=k} X_y S_y^* \right),$$

where X_0, X_x, X_y are all linear combinations of elements $S_w S_x^*$ with |w| = |z|. Since, for example, $\sum_{|y|=k} X_y S_y^* \in B^k$, and the recipe given in [2] shows that $X_y S_y^*$ lies in PB^kP when $X \in PBP$, our problem is to show that this expression is unique. So suppose we have written 0 as a sum

$$\sum_{k=-M}^{N} Z_{k} = \sum_{k=-M}^{-1} \left(\sum_{|x|=|k|} S_{x} Z_{x} \right) + Z_{0} + \sum_{k=1}^{N} \left(\sum_{|y|=k} Z_{y} S_{y}^{*} \right).$$

If Z denotes the formal sum on the right-hand side, then Z = 0 implies $Z^*Z = 0$, and hence, by [2, 2.8], that the homogeneous term $(Z^*Z)_0 \in B^0$ vanishes. But this term is

$$\sum_{k=-M}^{-1} \left(\sum_{|\mathbf{x}|=|k|=|\mathbf{x}'|} Z_{\mathbf{x}}^* S_{\mathbf{x}}^* Z_{\mathbf{x}'} \right) + Z_0^* Z_0 + \sum_{k=1}^{N} \left(\sum_{|\mathbf{y}|=k} Z_{\mathbf{y}} S_{\mathbf{y}}^* \right)^* \left(\sum_{|\mathbf{y}'|=k} Z_{\mathbf{y}'} S_{\mathbf{y}'}^* \right)$$
$$= \sum_{k=-M}^{-1} \left(\sum_{|\mathbf{x}|=|k|} Z_{\mathbf{x}}^* S_{\mathbf{x}}^* S_{\mathbf{x}} Z_{\mathbf{x}} \right) + Z_0^* Z_0 + \sum_{k=1}^{N} \left(\sum_{|\mathbf{y}|=k} Z_{\mathbf{y}} S_{\mathbf{y}}^* \right)^* \left(\sum_{|\mathbf{y}|=k} Z_{\mathbf{y}} S_{\mathbf{y}}^* \right).$$

Because the sum of positive operators can be 0 only if each term is 0, we can deduce from this that $Z_0 = 0$ and $S_x Z_x = 0$ for each x, and hence that $Z_k = 0$ for k < 0. The same argument using $ZZ^* = 0$ gives $Z_y S_y^* = 0$ for each y, so that $Z_k = 0$ for k > 0. We have shown that, algebraically at least, $B = \bigoplus_{k \in \mathbb{Z}} B^k$ and $PBP = \bigoplus_{k \in \mathbb{Z}} PB^k P$, and it follows that $\phi = \bigoplus \phi^k$ is an isomorphism, as required.

PROOF OF THEOREM 3.3: Cuntz and Krieger prove the uniqueness of \mathcal{O}_A by showing that the *-algebra *B* generated by the partial isometries has a unique C^* norm $\|\cdot\|_B$, namely that coming from its action on *H*. Since we know from the Lemma that ${}^0\mathcal{O}_{\rho}$ is *-isomorphic to *PBP*, our problem is to show that the enveloping C^* norm $\|\cdot\|_{C^*}$ on *PBP* coincides with $\|\cdot\|_B$ on *PBP*. We certainly have $\|\cdot\|_B \leq \|\cdot\|_{C^*}$, so it will be enough to show that, for any *-representation π of *PBP*, there is a *-representation τ of *B* such that $\|\pi(Y)\| \leq \|\tau(Y)\|$ for $Y \in PBP$; if so, then

forces

$$\begin{split} \|Y\|_{B} &= \|\mathrm{id} \oplus \tau(Y)\| = \sup\{\|Y\|_{B}, \|\tau(Y)\|\}\\ \|Y\|_{C^{*}} &= \sup\{\|\pi(Y)\| : \pi \text{ is a }^{*}\text{-representation of } PBP\}\\ &\leq \sup\{\|\tau(Y)\| : \tau \text{ is a }^{*}\text{-representation of } B\}\\ &\leq \|Y\|_{B}. \end{split}$$

Given π , we intend to write down a formula for such a τ , but we need to do some background work first.

For each edge x, we choose a path $\alpha(x)$ starting at the vertex ι and ending at x: if $s(x) = \iota$, we insist that $\alpha(x)$ consists of the single edge x. We then define $R_x = S_x S^*_{\alpha(x)}$, so that if $s(x) = \iota$, we have $R_x = S_x S^*_x$, and in general, R_x is a partial isometry with initial projection $R^*_x R_x \leq P$. For single edges w, z we have $S^*_w S_z = 0$ unless w = z, and therefore

$$S_z^* S_y^* S_y S_z = S_z^* (\sum_w A(y, w) S_w S_w^*) S_z$$
$$= A(y, z) S_z S_z^*,$$

which is 0 or $S_z S_z^*$; since we know $\alpha(x)$ is a path, $S_{\alpha(x)} \neq 0$ and cancellation from the centre out shows

$$R_{\mathbf{x}}R_{\mathbf{x}}^{*} = S_{\mathbf{x}}\left(S_{\mathbf{x}}^{*}\cdots S_{\alpha(\mathbf{x})_{j}}^{*}\cdots S_{\alpha(\mathbf{x})_{1}}^{*}\right)\left(S_{\alpha(\mathbf{x})_{1}}\cdots S_{\alpha(\mathbf{x})_{j}}\cdots S_{\mathbf{x}}\right)S_{\mathbf{x}}^{*}$$
$$= S_{\mathbf{x}}(S_{\mathbf{x}}^{*}S_{\mathbf{x}})S_{\mathbf{x}}^{*}$$
$$= S_{\mathbf{x}}S_{\mathbf{x}}^{*}.$$

Thus we have

(3.1)
$$1 = \sum_{x \in E} S_x S_x^* = \sum_{x \in E} R_x R_x^*.$$

We now define $\tau: B \to B(H^E) = M_E(B(H))$ by letting $\tau(Y)$ be the $E \times E$ matrix with (x, y)-entry $\tau(Y)_{x,y} = \pi(R_x^*YR_y)$; because both $R_x^*R_x$ and $R_y^*R_y$ are dominated by P, $R_x^*YR_y$ lies in PBP, and we can legitimately apply π to it. We claim τ is a *-homomorphism: it is clearly linear, equation (3.1) implies that it is multiplicative:

$$\begin{aligned} \left(\tau(Y)\tau(Z)\right)_{x,z} &= \sum_{y} \pi(R_{z}^{*}YR_{y})\pi\left(R_{y}^{*}ZR_{z}\right) \\ &= \pi\left(R_{z}^{*}Y\left(\sum_{y}R_{y}R_{y}^{*}\right)ZR_{z}\right) \\ &= \pi(R_{z}^{*}(YZ)R_{z}) \\ &= \tau(YZ)_{z,z}, \end{aligned}$$

and it is easily seen to preserve adjoints:

$$(\tau(Y)^*)_{x,z} = (\tau(Y)_{z,x})^* = \pi(R_z^*YR_x)^* = \pi(R_x^*Y^*R_z) = \tau(Y^*)_{x,z}.$$

Finally, note that because $R_x = S_x S_x^*$ when $x \in I = \{x \in E : s(x) = \iota\}$, we have $P = \sum_{x \in I} R_x = \sum_{x \in I} R_x^*$, and hence for $Y \in PBP$

$$\pi(Y) = \sum_{x,y \in I} \pi(R_x^*YR_y).$$

Since the ranges of the partial isometries R_y are mutually orthogonal, the norm of this sum is equal to the norm of the $I \times I$ matrix

$$(\pi(R_x^*YR_y))_{x,y\in I}\in M_I(B(H));$$

but this is a submatrix of the $E \times E$ matrix $\tau(Y)$, and hence

$$\|\pi(Y)\| = \left\| \left(\pi(R_x^*YR_y) \right)_{x,y \in I} \right\| \leq \|\tau(Y)\|,$$

as required.

COROLLARY 3.5. For any representation ρ of a finite group satisfying $1 < \dim \rho < \infty$, \mathcal{O}_{ρ} is a simple C*-algebra which is Morita equivalent to the corresponding $\mathcal{O}_{A_{\rho}}$.

PROOF: We have already shown that $A = A_{\rho}$ is irreducible and satisfies condition (I), so \mathcal{O}_A is simple by [2, Theorem 2.14]. Thus the corner $P\mathcal{O}_A P$ is full — there is no nontrivial ideal which can contain it. This implies that the $\mathcal{O}_A - P\mathcal{O}_A P$ bimodule $\mathcal{O}_A P$ is an imprimitivity bimodule with the inner products

$$\langle XP, YP \rangle_{P\mathcal{O}_{A}P} = PX^{*}YP,$$

 $\mathcal{O}_{A}\langle XP, YP \rangle = XPY^{*};$

the fullness of $P\mathcal{O}_A P$ says precisely that the span of the range of the \mathcal{O}_A -valued inner product is dense in \mathcal{O}_A . Thus the result follows from the Theorem.

Π

[12]

Representations of finite groups

4. THE K-THEORY OF DOPLICHER-ROBERTS ALGEBRAS

We want to compute the K-theory of a Doplicher-Roberts algebra \mathcal{O}_{ρ} using Cuntz's computation of $K_*(\mathcal{O}_{A_{\rho}})$, which is isomorphic to $K_*(\mathcal{O}_{\rho})$ because the C^* -algebras are Morita equivalent. The key result is [1, Proposition 3.1], which asserts that $K_0(\mathcal{O}_A)$ and $K_1(\mathcal{O}_A)$ are, respectively, the cokernel and kernel of the map $1 - A^t : \mathbb{Z}^E \to \mathbb{Z}^E$. Now when we constructed A_{ρ} from the bipartite graph, we chose to use the set E of edges rather than the set R of vertices as our index set. This has the advantage that A_{ρ} is always a $\{0,1\}$ -matrix, as opposed to an integer matrix, but the disadvantage that E is usually a lot bigger than R, which makes calculations messier. So we want to first show that either matrix can be used in our calculation of K-theory. In fact this is quite generally true: if A, B are the two matrices associated to any bipartite graph, then $1 - A^t$, $1 - B^t$ have the same kernel and cokernel, and if both are $\{0,1\}$ -matrices, they give isomorphic Cuntz-Krieger algebras. These facts are surely well-known — for example, they are implicit in the way Cuntz and Krieger handle general integer matrices [2, 2.16] — but we do not know where the details have been written down.

Suppose, then, that we have a bipartite graph with vertices V, edges E and range, source maps $r, s : E \to R$. We define

$$B(i,j) = \#\{x \in E : s(x) = i, r(x) = j\}$$
$$A(x,y) = \begin{cases} 1 & \text{if } r(x) = s(y) \\ 0 & \text{otherwise.} \end{cases}$$

PROPOSITION 4.1. (1) If B is a $\{0,1\}$ -matrix satisfying (I), then A satisfies (I) and $\mathcal{O}_B \cong \mathcal{O}_A$.

(2) There are isomorphisms

$$\begin{split} &\ker\left(\left(1-B^t\right):\mathbf{Z}^V\to\mathbf{Z}^V\right)\cong \ker\left(\left(1-A^t\right):\mathbf{Z}^E\to\mathbf{Z}^E\right)\\ &\mathbf{Z}^V/(1-B^t)(\mathbf{Z}^V)\cong\mathbf{Z}^E/(1-A^t)(\mathbf{Z}^E). \end{split}$$

PROOF: If B has entries in $\{0,1\}$, paths of vertices are essentially the same as paths of edges, and the first assertion is essentially clear. For the second, suppose S_i are partial isometries satisfying

$$S_i^*S_i = \sum_{j \in V} B(i,j)S_jS_j^*,$$

and define $T_{z} = S_{s(z)}S_{r(z)}S_{r(z)}^{*}$. Then certainly each T_{z} is a partial isometry in $C^{*}(S_{i})$,

and

$$S_{i} = S_{i}S_{i}^{*}S_{i} = \sum_{j \in V} B(i,j)S_{i}S_{j}S_{j}^{*}$$
$$= \sum_{\{j:B(i,j)=1\}} S_{i}S_{j}S_{j}^{*}$$
$$= \sum_{\{z:s(z)=i\}} S_{s(z)}S_{r(z)}S_{r(z)}^{*},$$

since B(i, j) = 1 if and only if there is is an edge x from i to j. Thus $C^*(S_i) = C^*(T_x)$. We now verify that the T_x generate \mathcal{O}_A . On the one hand,

$$\sum_{y \in E} A(x, y) T_y T_y^* = \sum_{\{y: s(y) = r(x)\}} S_{s(y)} \left(S_{r(y)} S_{r(y)}^* \right)^2 S_{s(y)}^*$$
$$= S_{r(x)} \left(\sum_{\{y: s(y) = r(x)\}} S_{r(y)} S_{r(y)}^* \right) S_{r(x)}^*$$
$$= S_{r(x)} \left(\sum_{\{j: B(r(x), j) = 1\}} S_j S_j^* \right) S_{r(x)}^*$$
$$= S_{r(x)} \left(S_{r(x)}^* S_{r(x)} \right) S_{r(x)}^*$$
$$= S_{r(x)} S_{r(x)}^*$$

on the other, since the S_i have mutually orthogonal ranges, we also have

$$T_{x}^{*}T_{x} = S_{r(x)}S_{r(x)}^{*}\left(S_{s(x)}^{*}S_{s(x)}\right)S_{r(x)}S_{r(x)}^{*}$$

= $S_{r(x)}S_{r(x)}^{*}\left(\sum_{\{j:B(s(x),j)=1\}}S_{j}S_{j}^{*}\right)S_{r(x)}S_{r(x)}^{*}$
= $S_{r(x)}S_{r(x)}^{*}$,

so the T_x do satisfy the Cuntz-Krieger relations for A. Thus by the Cuntz-Krieger uniqueness theorem we have

$$\mathcal{O}_B \cong C^*(S_i) = C^*(T_x) \cong \mathcal{O}_A,$$

giving (1).

To establish (2), we use the source and range maps to define $V \times E$ and $E \times V$ matrices:

$$S(i, x) = \begin{cases} 1 & \text{if } s(x) = i \\ 0 & \text{otherwise} \end{cases}$$

 $R(x, i) = \begin{cases} 1 & \text{if } r(x) = i \\ 0 & \text{otherwise.} \end{cases}$

238

We have

$$(RS)(x,y) = \sum_i R(x,i)S(i,y)$$

and since each summand is 0 or 1,

$$R(x,i)S(i,y) = 1 \Leftrightarrow R(x,i) = 1 = S(i,y)$$
$$\Leftrightarrow r(x) = i = s(y).$$

For each fixed pair (x, y), this can happen for exactly one *i*, and hence we can deduce that RS = A. Similarly,

$$(SR)(i,j) = \sum_{x} S(i,x)R(x,j)$$

= #{x \in E : S(i,x) = 1 = R(x,j)}
= #{x \in E : s(x) = i,r(x) = j},

and SR = B. Of course, we also have $R^tS^t = B^t$, $S^tR^t = A^t$, and hence the following standard lemma gives what we need:

LEMMA 4.2. Suppose R, S are $V \times E, E \times V$ matrices with entries in $\{0, 1\}$, and $B = RS \in M_V(\mathbb{Z})$, $A = SR \in M_E(\mathbb{Z})$. Then the transformation $S : \mathbb{Z}^V \to \mathbb{Z}^E$ induces isomorphisms of ker $((1 - B) : \mathbb{Z}^V \to \mathbb{Z}^V)$ onto ker (1 - A), and coker (1 - B) $= \mathbb{Z}^V/(1 - B)(\mathbb{Z}^V)$ onto coker (1 - A).

PROOF: We first observe that, for each $\lambda \neq 0$, $S: \mathbb{R}^V \to \mathbb{R}^E$ is an isomorphism of the eigenspace

$$E^B_\lambda = \{v \in \mathbf{R}^V : Bv = \lambda v\}$$

onto $E_{\lambda}^{A} \subset \mathbf{R}^{E}$, with inverse given by $\lambda^{-1}R$. Since both R, S have integer entries, it follows that S restricts to an isomorphism of ker $(1-B) = E_{1}^{B} \cap \mathbf{Z}^{V}$ onto ker $(1-A) = E_{1}^{A} \cap \mathbf{Z}^{E}$ with inverse R. Next, we note that if $z \in im(1-B)$, say z = (1-B)v, then

$$Sz = S(1 - RS)v = (1 - SR)Sv = (1 - A)(Sv),$$

so S does map im(1-B) into im(1-A), and induces a homomorphism ϕ of coker(1-B) into coker(1-A). In the same way, R induces a homomorphism ψ of coker(1-A) into coker(1-B), which we claim is an inverse for ϕ . For

$$\psi \circ \phi(v + im(1 - B)) = SRv + im(1 - B)$$

= $v - (v - SRv) + im(1 - B)$
= $v + im(1 - B)$,

and similarly $\phi \circ \psi$ is the identity on coker (1 - A).

This lemma completes the proof of Proposition 4.1.

[15]

0

EXAMPLE 4.3. $G = S_3$. The character table of S_3 is

	е	(12)	(123)		
ι:	1	1	1		
σ:	1	$^{-1}$	1		
π:	2	0	-1		

The obvious representation to take for ρ is the 2-dimensional representation π : it is faithful because

$$\ker \pi = \{s \in G : \chi_{\pi}(s) = \chi_{\pi}(e) = 2\} = \{e\}$$

[5, (2.19)]. We trivially have $\iota^2 = \iota$, $\iota \otimes \sigma = \sigma$, $\iota \otimes \pi \sim \pi$, and $\sigma^2 = \iota$; the characters of the other tensor products are given by

$$\chi_{\sigma\otimes\pi} = \chi_{\sigma}\chi_{\pi} = \chi_{\pi}, \quad ext{and}$$

 $\chi_{\pi\otimes\pi} = (\chi_{\pi})^2 = \chi_{\iota} + \chi_{\sigma} + \chi_{\pi},$

and since the decomposition of the character determines the decomposition of the representation [5, (2.9)], we have $\sigma \otimes \pi \sim \pi$ and $\pi^2 \sim \iota \oplus \pi \oplus \sigma$. We therefore have

$$B_{\pi} = egin{pmatrix} 0 & 1 & 0 \ 1 & 1 & 1 \ 0 & 1 & 0 \end{pmatrix} \quad ext{and} \quad 1 - B^t_{\pi} = egin{pmatrix} 1 & -1 & 0 \ -1 & 0 & -1 \ 0 & -1 & 1 \end{pmatrix}.$$

Since det $(1 - B_{\pi}^t) = 2$, ker $(1 - B_{\pi}^t) = 0$ and $K_1(\mathcal{O}_{\pi}) \cong K_1(\mathcal{O}_{B_{\pi}}) = 0$. However, for $(m, n, p) \in \mathbb{Z}^3$, the unique solution v of $(1 - B^t)v = (m, n, p)$ in \mathbb{R}^3 is

$$v=\left(\frac{m-n-p}{2},\frac{-m-n-p}{2},\frac{-m-n+p}{2}\right),$$

which lies in \mathbb{Z}^3 if and only if $m + n + p \in 2\mathbb{Z}$. Thus

$$(m, n, p) \rightarrow (m + n + p) + 2\mathbf{Z}$$

induces an isomorphism of $K_0(\mathcal{O}_{\pi}) \cong K_0(\mathcal{O}_{B_{\pi}}) \cong \mathbb{Z}^3/(1-B_{\pi}^t)(\mathbb{Z}^3)$ onto \mathbb{Z}_2 .

If we take for ρ the faithful representation $\pi \oplus \iota$, we have instead

$$B_{
ho} = egin{pmatrix} 1 & 1 & 0 \ 1 & 2 & 1 \ 0 & 1 & 1 \end{pmatrix} \quad ext{and} \quad 1 - B_{
ho}^t = egin{pmatrix} 0 & -1 & 0 \ -1 & -1 & -1 \ 0 & -1 & 0 \end{pmatrix}.$$

Thus for this choice of ρ ,

$$K_1(\mathcal{O}_{\rho}) \cong K_1(\mathcal{O}_{B_{\rho}}) \cong \ker \left(1 - B_{\rho}^t\right) \cong \mathbf{Z},$$

and the map $(m, n, p) \rightarrow m - p$ induces an isomorphism

$$K_0(\mathcal{O}_{\rho}) \cong K_0(\mathcal{O}_{B_{\rho}}) \cong \mathbf{Z}^3/(1-B_{\rho}^t)(\mathbf{Z}^3) \cong \mathbf{Z}.$$

Alternatively, if $\rho = \pi \oplus \sigma$, we have

Here det $(1 - B_{\rho}^t) = -4$, so $K_1(\mathcal{O}_{\rho}) = 0$, but $(1 - B_{\rho}^t)v = (m, n, p)$ has solution

$$v=igg(rac{m-n}{2},rac{-m-p}{2},p-nigg),$$

and $(m, n, p) \to (m - n, -m - p)$ induces an isomorphism of coker $(1 - B_{\rho}^{t}) \cong K_{0}(\mathcal{O}_{\rho})$ onto $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

EXAMPLE 4.4. $G = A_5 \cong PSL(2,5) \cong SL(2,4)$. It is important in the work of Doplicher and Roberts that the representation ρ is faithful and special unitary, and we shall now discuss an example where there are several irreducible representations of this kind — indeed, since this group has only the trivial one-dimensional representation, $s \to \det \pi(s)$ is always identically 1, and any representation is special unitary. We write π_i $(1 \le i \le 5)$ for the irreducible representations, with $\pi_1 = \iota$, and χ_i for the corresponding characters. Then the character table for A_5 is:

	1	2	3	51	5 ₂
$\chi_1 = \iota$:	1	1	1	1	1
χ_2 :	4	0	1	-1	-1
χ 3:	5	1	-1	0	0
χ_4 :	3	-1	0	$oldsymbol{lpha}_1$	α_2
χ_5 :	3	-1	0	α_2	α_1

where $\alpha_1 = (1 + \sqrt{5})/2$, $\alpha_2 = (1 - \sqrt{5})/2$. Calculating as in the previous example with $\rho = \pi_2$ gives

	/0	1	0	0	0)			$\begin{pmatrix} 1 \end{pmatrix}$	-1	0	0	0 \
	1	1	1	1	1			-1	0	-1	-1	-1
$B_2 = \frac{1}{2}$	0	1	2	1	1	and	$1 - B_2^t =$	0	-1	-1	-1	-1
	0	1	1	0	1			0	-1	-1	1	-1
	0/	1	1	1	0/			0	-1	-1	-1	1/

[17]

The rank of $1 - B_2^t$ is 4, with

$$K_1(\mathcal{O}_{\pi_2}) \cong \ker \left(1 - B_2^t\right) = \{(n, n, -n, 0, 0)\} \cong \mathbb{Z}.$$

Given $\mathbf{m} = (m, n, p, q, r) \in \mathbb{Z}^5$, the equation $(1 - B_2^t)v = \mathbf{m}$ has a solution in \mathbb{R}^5 only if p = n + m, and then the solution space in \mathbb{R}^5 is

$$\{t(1,1,-1,0,0)+\left(m,0,rac{-q-r}{2},rac{q-p}{2},rac{r-p}{2}
ight)\};$$

it follows that

$$(m,n,p,q,r) \rightarrow (m+n-p,q-p \mod 2,r-p \mod 2)$$

induces an isomorphism of $K_0(\mathcal{O}_{\pi_2}) \cong \mathbb{Z}^5/(1-B_2^t)(\mathbb{Z}^5)$ onto $\mathbb{Z} \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Next we take $\rho = \pi_4$. This time

$$B_4 = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix} \qquad \text{and} \qquad 1 - B_4^t = \begin{pmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & -1 \\ 0 & -1 & 0 & -1 & -1 \\ -1 & 0 & -1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 1 \end{pmatrix}$$

We have det $(1 - B_4^t) = 4$, so ker $(1 - B_4^t) = 0 = K_1(\mathcal{O}_{\pi_4})$, and if $\mathbf{m} = (m, n, p, q, r)$, then $(1 - B_4^t)v = \mathbf{m}$ has unique solution

$$igg(rac{r-p-3q+m+2n}{4},rac{-r-p+q+m}{2},rac{-r+p-q-m-2n}{4},\ rac{r-p-3q-3m+2n}{4},rac{r-p+q+m-2n}{4}igg)$$

which lies in \mathbb{Z}^5 if and only if $r - p - 3q + m + 2n \in 4\mathbb{Z}$; thus

$$K_0(\mathcal{O}_{\pi_4}) \cong K_0(\mathcal{O}_{B_4}) \cong \mathbf{Z}^5/(1-B_4^t)(\mathbf{Z}^5) \cong \mathbf{Z}/4\mathbf{Z}.$$

In particular, the K-groups of \mathcal{O}_{π_4} and \mathcal{O}_{π_2} are quite different, even though both π_4 and π_2 are faithful, irreducible, special unitary representations of A_5 .

References

 J. Cuntz, 'A class of C*-algebras and topological Markov chains II: reducible chains and the Ext-functor for C*-algebras', Invent. Math. 63 (1981), 25-40.

- J. Cuntz and W. Krieger, 'A class of C*-algebras and topological Markov chains', Invent. Math. 56 (1980), 251-268.
- [3] S. Doplicher and J.E. Roberts, 'Duals of compact Lie groups realised in the Cuntz algebras and their actions on C*-algebras', J. Funct. Anal. 74 (1987), 96-120.
- [4] S. Doplicher and J.E. Roberts, 'Endomorphisms of C*-algebras, cross products and duality for compact groups', Ann. of Math. 130 (1989), 75-119.
- [5] I.M. Isaacs, Character theory of finite groups (Academic Press, New York, 1976).
- [6] M.H. Mann, I. Raeburn and C.E. Sutherland, Representations of compact groups, Cuntz-Krieger algebras, and groupoid C*-algebras, Proc. Centre Math. Appl. Austral. Nat. Univ. (to appear).
- [7] G.Y.-L. Shiu and C.E. Sutherland, 'Groupoid models for AF-algebras', (submitted).

M.H. Mann School of Mathematics University of New South Wales PO Box 1 Kensington NSW 2033 Australia

C.E. Sutherland School of Mathematics University of New South Wales PO Box 1 Kensington NSW 2033 Australia I. Raeburn Department of Mathematics University of Newcastle Newcastle NSW 2308 Australia