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REPRESENTATIONS OF FINITE GROUPS AND
CUNTZ-KRIEGER ALGEBRAS

M.H. MANN, IAIN RAEBURN AND C.E. SUTHERLAND

We investigate the structure of the C *-algebras Op constructed by Doplicher and
Roberts from the intertwining operators between the tensor powers of a repre-
sentation p of a compact group. We show that each Doplicher-Roberts algebra is
isomorphic to a corner in the Cuntz-Krieger algebra OA of a {0,1}-matrix A — Ap

associated to p. When the group is finite, we can then use Cuntz's calculation of
the if-theory of OA to compute K.(OP).

Doplicher and Roberts have recently developed a duality theory for compact sub-
groups of SU(n, C) in which the dual object consists of a simple C*-algebra OG and
an endomorpbism of OG [3, 4]. The construction of OG is based on the concrete rep-
resentation p of G in SU(n,C) rather than the abstract group G, so we prefer to call
it Op; our work originated in an attempt to find out how the structure of Op depends
on the choice of representation. To this end we have computed the .fif-theory of Op

for finite G, by embedding it as a corner in a Cuntz-Krieger algebra OA , and using
Cuntz's calculation of K*{OA) [1]- One conclusion is that different representations of
the same finite group can give algebras which have quite different if-theory, and hence
are not even stably isomorphic or Morita equivalent.

The algebra Op is constructed from the spaces of intertwining operators between
the different tensor powers pn of p, and its structure is determined by the decompo-
sitions of pn into irreducibles, and hence by the decompositions of TT ® p for •K (= G.
The combinatorics of the situation can be summed up in a bipartite graph with G
as vertices, and our main observation is that these combinatorics are similar to those
involved in Cuntz and Krieger's construction of a C*-algebra OA from a {0,1}-matrix
A. When G is compact, A is infinite, and there are technical problems in transferring
this combinatorial similarity to the C *-algebra level; indeed, we need to appeal to both
[2] and [3] to do it. For finite groups, we can prove directly that Op is a corner in OA ,
and the simplicity of Op therefore follows from [2] alone. We shall go as far as we can
in full generality, since we are optimistic that one can extend the results of [1] to cover
infinite A, and use them to compute K»(OP) for compact G along similar lines.
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226 M.H. Mann, I. Raeburn and C.E. Sutherland [2]

We begin with a discussion of the two Doplicher-Roberts algebras °OP, Op asso-
ciated to a finite-dimensional representation p: °OP is a *-algebra, and Op its C*-
enveloping algebra. In Section 2, we associate a {0,1}-matrix Ap to p, and show how
°OP can be canonically mapped into the Cuntz-Krieger algebra OAP\ in Section 3, we
prove that, when G is finite, this mapping induces an isomorphism of Op onto a corner
POAPP in OAP- Since OAP is known to be simple [2], this implies that Op is Morita
equivalent to OAP , and in particular has the same K-theory. In our final section, we
compute K*(Op) for a few examples of finite groups, using methods which should work
whenever we have a character table for G.

One could also hope to investigate the structure of Doplicher-Roberts algebras
by realising them as the C *-algebras of locally compact groupoids whose unit spaces
are path spaces associated to the infinite diagram of Section 1, and exploiting general
properties of groupoid C*-algebras, as done for -4..F-algebras in [7]. At present, though,
it is not clear whether the appropriate groupoids for the Cuntz-Krieger algebras of
infinite {0, l}-matrices are locally compact, and hence the present approach may be
more easily adapted to compact groups. In [6], we gave a brief discussion of the groupoid
approach, and the problems involved in it.

We stress that many of the ideas and results in this paper are either well-known
or implicit in the work of Doplicher-Roberts and Cuntz-Krieger. For example, our
comments in Section 4 on computing K+[OA) are surely known to all experts. However,
we do hope a detailed presentation of this circle of ideas in a technically-straightforward
special case will be informative and useful.

This research was supported by the Australian Research Council.

1. DOPLICHER-ROBERTS ALGEBRAS

Let p be a finite-dimensional representation of a locally compact group, and for n 6
N , let pn be the n-fold tensor power of p, acting in Hp ® • • • <g> Hp = H". For each pair
m,n £ N , we denote by (pm,pn) the space of intertwining operators T : H™ —> H™\
we have chosen this notation so that the composition SoT of 5 € (pm,pn),T G (pn,pp)
lies in (pm, pP). There is a natural embedding T -> T<g)l of (pm,pn) in (pm+1,pn+1) ,
and we denote the direct limit hm(pp,pp+k) by °Ok

p. The direct sum °OP = ©fc6Z °O*
is a *-algebra in which the product of 5 6 (pm,/»n) and T € (/>*",/>*) is

\ S o (T <g> ln_p) e {P
m, p»+<—»>) if p > n,

and the adjoint of 5 G (pm,pn) is 5* G (pn,pm).
We shall refer to either °OP or its C*-enveloping algebra Op as a Doplicher-Roberts

algebra; of course, it is not immediately obvious that °OP has a C*-enveloping algebra,
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[3] Representations of finite groups 227

since a priori

||T|| = sup{||7r(T)|| : n is a *-representation of °OP}

could be infinite. To settle this, we shall describe a natural basis for each (pm,pn),
which is parametrised by paths in an infinite graph associated to p, and which will be
important in our later constructions.

We first let R be the set of (equivalence classes of) irreducible summands of the
tensor powers p n , (adding in the trivial representation 4, if necessary), and to each
element of -R we associate a specific representation 7r : G —> U(HW). We define a
bipartite graph with R as the set of vertices, and the number of edges joining iri at
the top level to 7T2 at the lower level equal to the multiplicity of 7T2 in TTi ® p. Thus,
for example, if 7T2 occurs with multiplicity 2 in if\ ® p, and multiplicity 1 in 7T3 ® p,
the graph contains

»T7,

If x is an edge from TTJ above to 7T2 below, we write s(x) = TTI and r{x) = 7T2, and we
let E denote the set of all edges. We now assign to each edge x an isometric intertwiner
Tx : Hr(z) —* Ht(x) ® Sp, in such a way that, for each TT,

Tl /T"l*/ TT /n. TT \

XTX (H* <g> Hp)

—in other words, such that the edges out of 7r give a specific decomposition of HV®HP

into irreducibles. Next we consider the infinite graph obtained by sticking infinitely
many copies of the bipartite graph below the original. We note that a sequence
Xi,X2,-- • ,xn of edges in the original graph combines to form a vertical path in the
infinite graph if and only if r(xj) = S ( Z J + I ) for all j . Each path x = {x±,X2, • • • xn}
represents an intertwiner

Tz = (TXl ® l n _ 0 o (TX2 ® l n _ 2 ) o • • • o TXn : Hr(xn) -» En
p,

where l r denotes the identity operator on H^, and the paths x with s{xi) = i provide
an explicit decomposition of if™ into irreducibles:

{paths x with <(ii)=i}
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P R O P O S I T I O N 1 . 1 . The family

{TXT; : H =m\y\= n,a(xx) = ifa) = i,r(xm) = r(yn)}

is a basis for (pm,pn), and each basis element TXT* is a partial isometry.

PROOF: Each pair of paths x, y with \x\ = m, \y\ = n and s(xi) = i = s(yi)

determines a pair of irreducible summands Tx(Hr(Xm)), Ty(Hr(yn)) of -ff™, -ff"; the

space of intertwiners of these representations is 0 unless r(xm) = r(j/n), and then

is the 1-dimensional space spanned by TXT*. Hence every intertwiner in (pm,pn)

can be uniquely expressed as a linear combination of the TXT*, as claimed. Because

each Ty is isometric, T* is a partial isometry with range space Hr(yn), and, whenever

r(xm) = r(Vn)> TXT* is also a partial isometry. D

COROLLARY 1 . 2 . For every T e °OP,

\\T\\ = sup{||7r(T)|| : n is a ^representation of °OP}

is finite.

PROOF: AS every element of °OP is a finite sum of elements of °Op, and each
of these is a direct limit, we may as well suppose that T € (pm, pn), and hence that
T can be uniquely written as a linear combination J^ ^x,yTxT*. Now an operator
S £ (pm,pn) is a partial isometry if and only if S = SS*S as operators on H™, and
hence, by definition of the *-algebra structure on °OP, if and only if 5" = SS*S in °Op.
Thus n(TxT*) is a partial isometry for every representation TT of °OP, and

which gives the Corollary. D

REMARK. Although we have not insisted that the group G be compact, as Doplicher
and Roberts do, the extra generality is spurious: if p is finite-dimensional, the intertwin-
ing spaces for the identity representation in of the compact group K = p(G) C U(Hp)
are exactly the same as those of p, and hence OlJC = Op. However, there are
non-compact groups with lots of finite-dimensional representations — for example,
SL{2, Z) = Z2 * Z3, and the integer Heisenberg group — and there could possibly
be interesting interplay between the combinatorics of the representation, the algebra
Op, and the underlying non-compact group.

2. REPRESENTING A DOPLICHER-ROBERTS ALGEBRA IN A CUNTZ-KRIEGER ALGEBRA

Again let p be a finite-dimensional representation of a locally compact group, and
resume the notation of the previous section. Define a (possibly infinite) {0,1}-matrix
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[5] Representations of finite groups 229

Ap, indexed by the set E of edges in the bipartite graph associated to p , as follows:

f 1 if r(x) = a(y)
(2-1) Ap(x,y) = \ u .

^ 0 otherwise.

THEOREM 2 . 1 . Let p be a finite-dimensional representation of a locally compact
group, and use t i e notation of Section 1. Let {Sx : x £ E} be a family of non-zero
partial isometries satisfying

let B be the *-algebra generated by {Sx}, and let

P = £ SZS*X.

Tien tiere is a *-homomorphism of the Doph'cher-Roberts algebra °Op onto the corner
PBP.

The idea is that paths in the infinite diagram of Section 1 have interpretations
in the Cuntz-Krieger algebra C*(SX), as well as the Doplicher-Roberts algebra °OP.
A sequence Xi,x2, •.. ,xn of edges in the original graph combines to form a vertical
path in the infinite graph if and only if T(XJ) — S(XJ+I) for all j , hence if and only if
Ap(xj, Xj+i) = 1 for all j , and hence exactly when the the product Sx = SXl SZJ . . . SZn

is non-zero [2, p.252]. And, parallel to Lemma 1.1, every element of B is a linear
combination of operators SXS* with r (x m ) —r(yn).

We now define <t>m<n • (pm,pn) -» B by ^ m , n ( T x r ; ) = StS*y. Notice that, since
a(x\) = a(j/i) = t, we have

sxs; = 5.15:1(s,s;)5w5; = p(sXls*xl)(sxs;)(syis*yi)p = PSXS;P,

and hence 4>m,n '• {pmiPn) ~* PBP. We claim that the maps <j>m,n are compatible with
the bonding maps (pm,pn) -» (pm+1,pn+1), in the sense that

(2.2) *m+i,» ;

To see this, we note that

Brixm)®Hp= 0 TzT;(Hr{xm)®Hp),
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so that

TXT; ® I = £ (TX® \){TZT*Z)(T;
{z:a{z)=r(xrn)=r{yn)}

{z:«(z)=r(«;m)=r(j/n)}

on the other hand,

)
z€E )

£ sx(szs*z)s;
{z:.{z)=r(xm)}

J2 (sxz)(sszy,
{z:.(z)=r(xm)}

and (2.2) follows.

We can now define (f> = ®<j> , at least as a linear map, and we have to verify that

<f> is a *-homomorphisin. Well,

6»,n(T.r;)* = (5,5;)* = sss*x = ^ ^ ( T . T ; ) ,

so 0 is certainly *-preserving. To check that <f> is multiphcative, consider TXT* 6

(/>m,^n), Tu,T* G {pp,pq), and suppose for the sake of argument that p^n. Then

; ) 0 iP_n) o ( T » T ; ) ) .

The product (T* ® lp-n}Tw is by definition the composition

(r;n ® i,_n) o (r;m_1 <g> iP-»+i) ° • • • o ( r ; ® I ^ J ) o (TW1 ® i p _o o • •

Since
0 unless Wi =

1

and we know y is a path, T*3 ( ( !£ T9l) ® l) = T^,; thus we can omit the two middle

terms in (T* ® l)Tw. By induction, we deduce that the composition is 0 unless yi = Wi

for 1 ̂  i ^ n, and then equals

(F"»+l ® l P - n - l ) O • • • O TWn = Tw.,
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say. Thus

(trr*\ai w r J ( T '®Vn)°T« '°T; if Vi = wt for 1 < i < n
{{TxTy)®lp-n)TwTz-< otherwise,

_ f TXW>T* iiyi=wiioil^i^n

y 0 otherwise.

But this is precisely the rule for cancelling 5*5,,,:

S ( c* c \ Q* / ^n z

[ 0 otherwise

{ SxSwiS* if yt = Wi for 1 ̂  i ̂  n

0 otherwise,

since r(xm) = r(yn)- Hence <j> is multiplicative, as claimed.

The algebra B is spanned by the elements of the form SXS*, which is non-zero

only if there exists z with A(xm,z) = A(yn,z) = 1, that is, only if r(xm) = r(yn).

Since
if s(xi) = t andf "S'*5* if

sxs;p = s

^ 0 o
otherwise,

it follows that

if s(xi) - i = 3(2/1) and r(xm) = r(yn)_ f sxs; if
~ \ 0 o

PS S*P
v ' n otherwise,

_ f <t>m,n{
T'Tv) i f «(*!) = L = *(yi) and r{xm) = r(yn)

y 0 otherwise.

Thus the non-zero operators of the form PSXS*P are all in the range of <j>, and since
they span PBP, the homomorphism <f> maps onto PBP.

This completes the proof of Theorem 2.1. U

COROLLARY 2 . 2 . There is a surjective homomorphism of the Doplicher-Roberts

algebra Op onto the corner PC*(SX)P.

PROOF: The algebra Op is the G*-enveloping algebra of the *-algebra °OP, so the
homomorphism <j>: °OP —> PBP C PC*(SX)P is by definition continuous, and extends
to a homomorphism of Op into PC*(SX)P. Since <j> maps °OP onto PBP, which is
dense in PC*(SX)P, and homomorphisms between C*-algebras have closed range, the
Corollary follows. u
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COROLLARY 2 . 3 . Suppose p is a representation of a compact group G in
SUn(C), for some n > 1. If {SX},P are as in TAeorem 2.1, then Op is isomorphic to
PC*(SX)P.

PROOF: By Theorem 2.12 of [3], there is a unique C*-seminorm on °OP, which is
actually a C*-norm. Since pulling back the operator norm along the homomorphism
of °OP onto PBP induces such a seminorm, we deduce that the homomorphism is iso-
metric, and extends to an isomorphism of Op onto the closure PC*(SX)P of PBP. D

REMARK 2.4.. When the group is finite, the matrix Ap is finite, and it follows from
[2] that C*(SX) = OAP is simple (see Lemma 3.1 below). As the corner Op is then
necessarily full, we can deduce from [3, Corollary 2.3], and [2] that K*(OP) = K* (OAP)
(we shall prove this again in Section 3 without appealing to [3] or requiring p(G) C SU).
In principle, we can similarly deduce from [3] and [2] that K»{OP) = K*(OAP) when
G is compact and p(G) C SU, although some care will be needed in applying [2]
because Ap is infinite if G is. However, since the calculation of K*(OA) in [1] does not
obviously apply to infinite A, further work is needed before this result can be useful,
and we defer it for now.

3. DOPLICHER-ROBERTS ALGEBRAS OF FINITE GROUPS

Our goal here is to prove that, when G is finite, the complete Doplicher-Roberts
algebra Op is isomorphic to a corner in the corresponding Cuntz-Krieger algebra OAP •

Before we can state our theorem, we need to check that the {0,1}-matrix Ap is one for
which OAP can be uniquely defined, up to isomorphism, as the C*-algebra generated
by a family of non-zero partial isometries {Sx : x £ E} satisfying

Cuntz and Krieger gave a sufficient condition (I) on the {0, l}-matrix Ap [2, p.254;
Theorem 2.13], and showed that if in addition Ap is irreducible, then OAP is simple [2,
2.14]. Both these properties of Ap reduce to standard facts about the representation
theory of finite groups:

LEMMA 3 . 1 . If p is a representation of a finite group and 1 < dim p < oo, then

Ap is irreducible and satisfies the Cuntz-Krieger condition (I).

PROOF: We may as well suppose p is faithful: if not, replace the group G by
G/ ker p. Then every irreducible representation of G is contained in some tensor power
of p [5, (4.3) and (2.9)], and hence R = G; equivalently, for each TT £ G there is a
path in the infinite diagram starting at i and finishing at ir. If nc is the contragredient
representation a —> (TT.-I ) , then i is a summand of 7r ® TTC (since the corresponding
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[9] Representations of finite groups 233

characters satisfy x-irc
 = Xir> *^ s follows from [5, p.48 and (2.9)]), and hence for any

7r 6 G there is a path from TT to t . Putting these last two observations together gives
a path joining t to itself passing through any given n, and hence paths joining any
given 7Ti to any other 7T2 . Now given x,y € E, we can use a path from r(x) to s(y) to
produce a path starting with x and finishing with y, and thus Ap is irreducible. To see
that Ap satisfies (I) we just have to produce two different paths starting and finishing
with the same edge x: for then the irreducibility of Ap implies that we can connect
any other y € E to x. But if TT has maximal dimension, dim p ^ 2 implies that n (g> p
must have at least two irreducible summands, and hence that there are at least two
edges y, z with Tt = s(y) = s(z). Now we take x to be any edge with r(x) = TT, and
joining r(y) and r(z) to s(x) gives two distinct paths starting and ending at x. D

REMARK 3.2. The result always fails if dimp = 1. For then p is an isomorphism of
G/ker p onto a finite cyclic subgroup of T , the map 7 —> jp is an automorphism of
(G/ ker p)~, and the matrix Ap is a permutation matrix, which never satisfies condition
(I). However, since p{G) is cyclic, so is G/ker / j , p must generate (G/ker / j )^ , and the
permutation matrix is irreducible.

We now fix a family {Sx : x 6 E} of non-zero partial isometries on a Hilbert space
H satisfying (3.1), view OAp as C*(SX :x£E),a.nd let

P =

Our main result is:

THEOREM 3 . 3 . Let p be a representation of a finite group with 1 < dimp < oo.
Then Op is isomorphic to the corner POAPP.

We first have to establish the algebraic version. For it, we resume the notation of
Sections 1 and 2.

LEMMA 3 . 4 . Suppose G is finite and 1 < dim p < oo. Then the homomorphism
<f> of Theorem 2.1 is an isomorphism of °OP onto PBP.

PROOF: We begin by letting

Bm,n = sp {SXS* : |z| = m, \y\ = n,r(xm) = r(yn)},

so that by definition (j>m>n maps (pm,pn) onto PBm>nP (recall that PSXS*P = SxS*y

or 0, so PBm<nP is spanned by those SXS* where s(xi) = a(i/i) = <•). In fact we claim
that the generators SXS* for Bmin are linearly independent, so that <j>m,n is a linear
isomorphism. To see why, suppose £) ^x,ySxS* = 0 in B. If |io| = m, \z\ — n

\x\=m,\y\=n
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then S^,SX = SXtWS;mSXm [2, 2.1], and hence

\x\=m,\y\=n

Thus Xw>z = 0 whenever \w\ = m, \z\ =n and r(wm) = r(zn), and the SXS* in Bmtn
are independent, as claimed.

The direct limit of the isomorphisms {(/>m,n} is an isomorphism

<j>k : °Ok = Hm (P
p,pp+k) -» PBkP = hmPBp < p + kP = \J PBPtP+kP,

p

and to show the direct sum <p = ®<j> is an isomorphism, it is enough to show that
the range PBP is the (algebraic) direct sum of the subspaces PBkP. This is a highly
nontrivial property of the algebra OAP = C*(SX), essentially established by Cuntz and
Krieger in [2, 2.8, 2.9], and is only true because the matrix Ap satisfies condition (I)
by Lemma 3.1.

As shown in [2, bottom of p.255], every X in B can be written in the form

E ( ) (
k=-M \x\=\k\ k=l \y\ = k

where Xo,Xx,Xy are all linear combinations of elements SWS* with \w\ = \z\. Since,
for example, £Z XyS* G Bk, and the recipe given in [2] shows that XyS* lies in

l»l=*
PBkP when X G PBP, our problem is to show that this expression is unique. So
suppose we have written 0 as a sum

t Zk= E (E j
k=-M k=-M \x\=\k\

If Z denotes the formal sum on the right-hand side, then Z = 0 implies Z*Z — 0, and
hence, by [2, 2.8], that the homogeneous term (Z*Z)0 £ B° vanishes. But this term is

E ( £ z:s:sx,zx) + z;z0 + E ( E zvsv)*( E
k=-M |z|=|fc| = |z'| 1=1 \y\=k \y>\=k

= E ( E z:s:sxzx) + z ; z 0 + Y ( j X
k=-M \s\=\k\ k=l \y\=k |y|=*
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Because the sum of positive operators can be 0 only if each term is 0, we can deduce
from this that Z$ = 0 and SXZX — 0 for each x, and hence that Zk = 0 for k < 0. The
same argument using ZZ* — 0 gives ZyS* — 0 for each y, so that Zk = 0 for k > 0.
We have shown that, algebraically at least, B = ©fcez-Bfc and PBP = @k€Z PBkP,

and it follows that <j> = @<f>k is an isomorphism, as required. u

PROOF OF THEOREM 3.3: Cuntz and Krieger prove the uniqueness of OA by
showing that the *-algebra B generated by the partial isometries has a unique C*-
norm ||-||B, namely that coming from its action on H. Since we know from the Lemma
that °OP is *-isomorphic to PBP, our problem is to show that the enveloping C*-
norm \\-\\c, on PBP coincides with ||-||B on PBP. We certainly have ||-||B ^ |Hlc*>
so it will be enough to show that, for any *-representation IT of PBP, there is a
•-representation r of B such that ||7r(y)|| ^ ||-r(3^)|| for Y £ PBP; if so, then

forces ll^llc* = suP{||7r(^)ll : T is a *-representation of PBP}

^ sup{||r(y)| | : T is a *-representation of B}

Given w, we intend to write down a formula for such a r, but we need to do some
background work first.

For each edge x, we choose a path a(x) starting at the vertex i and ending at
x: if s(x) = i, we insist that a(x) consists of the single edge x. We then define
Rx = S*Sa(x)' s o *na^ tf s ( x ) = li w e h a v e Rx — SXS*, and in general, Rx is a partial
isometry with initial projection RXRX ^ P. For single edges w,z we have S^,SZ = 0
unless w = z, and therefore

S*ZS;SVS2 = S:(Z

= A(y,z)SzS*,

which is 0 or SZSZ; since we know a(x) is a path, Sa(x) ^ 0 and cancellation from
the centre out shows

*-- S^x). • • • -?a(x)1 j (SaC*)! • • • Sa(X)3 " " • Sx J 5*

= SXS'X.

Thus we have
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We now define r : B -> B(HE) = ME(B(H)) by letting T(Y) be the ExE matrix
with (a;,y)-entry T(Y)X y = ir(RxYRy); because both R^RX and RyRy are dominated
by P, R^YRy lies in PBP, and we can legitimately apply TT to it. We claim T is a
*-homomorphism: it is clearly linear, equation (3.1) implies that it is multiplicative:

i.r{Y)r{Z))x>z = Zyn(

= *{Rl{YZ)Rz)

and it is easily seen to preserve adjoints:

Finally, note that because Rx — SXS* when x £ I — {x £ E : s(x) = ( } , we have P =

E R* = E K. and t e n c e for Y e PBP

Since the ranges of the partial isometries Ry are mutually orthogonal, the norm of this
sum is equal to the norm of the I x I matrix

but this is a submatrix of the ExE matrix r(Y), and hence

as required. D

COROLLARY 3 . 5 . For any representation p of a Unite group satisfying 1 <

dimp < oo, Op is a simple C *-algebra which is Morita equivalent to the corresponding

OAp.

PROOF: We have already shown that A = Ap is irreducible and satisfies condition
(I), so OA is simple by [2, Theorem 2.14]. Thus the corner POAP is full — there is
no nontrivial ideal which can contain it. This implies that the OA~POAP bimodule
OAP is an imprimitivity bimodule with the inner products

(XP,YP)POAP = PX*YP,

oA(XP,YP)=XPY*;

the fullness of POAP says precisely that the span of the range of the OA -valued inner
product is dense in OA- Thus the result follows from the Theorem. D
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4. T H E if-THEORY OF DOPLICHER-ROBERTS ALGEBRAS

We want to compute the if-theory of a Doplicher-Roberts algebra Op using Cuntz's
computation of K*(OAp) > which is isomorphic to K*(QP) because the C*-algebras are
Morita equivalent. The key result is [1, Proposition 3.1], which asserts that KO(OA)

and #1(0,4) are, respectively, the cokernel and kernel of the map 1 — A* : ZE —> ZE.
Now when we constructed Ap from the bipartite graph, we chose to use the set E of
edges rather than the set R of vertices as our index set. This has the advantage that
Ap is always a {0,1}-matrix, as opposed to an integer matrix, but the disadvantage
that E is usually a lot bigger than R, which makes calculations messier. So we want
to first show that either matrix can be used in our calculation of iif-theory. In fact this
is quite generally true: if A, B are the two matrices associated to any bipartite graph,
then 1 — A1, 1 — B* have the same kernel and cokernel, and if both are {0, l}-matrices,
they give isomorphic Cuntz-Krieger algebras. These facts are surely well-known — for
example, they are implicit in the way Cuntz and Krieger handle general integer matrices
[2, 2.16] — but we do not know where the details have been written down.

Suppose, then, that we have a bipartite graph with vertices V, edges E and range,
source maps r,s : E —» R. We define

J l
A(x,y) =

y 0 otherwise.

PROPOSITION 4 . 1 . (1)HB is a {0,1} -matrix satisfying (I), then A satisfies

(I) and OB = OA-
(2) There are isomorphisms

ker ((1 - B*) : Zv -> Z v ) S ker (( l - A*) : ZE -» ZE)

Zv/(1 - B') (Zv) a ZE/(1 - A1) (ZE).

PROOF: IS B has entries in {0,1}, paths of vertices are essentially the same as
paths of edges, and the first assertion is essentially clear. For the second, suppose Si
are partial isometries satisfying

and define Tx = S,(,x)Sr(x)SZtx) • Then certainly each Tz is a partial isometry in C*(Si),
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and

= E

since B(i,j) = 1 if and only if there is is an edge x from i to j . Thus C*(5j) = C*(TZ).
We now verify that the Tx generate OA • On the one hand,

on the other, since the 5j have mutually orthogonal ranges, we also have

so the Tj, do satisfy the Cuntz-Krieger relations for A. Thus by the Cuntz-Krieger
uniqueness theorem we have

OB = C*(Si) = C*(TX) S C?A,

giving (1).
To establish (2), we use the source and range maps to define V X E and E X V

matrices:

f 1 if s(x) = i
S(i,x)=\ K '

y 0 otherwise

f 1 if r(x) = i

0 otherwise.
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We have

and since each summand is 0 or 1,

R(x,i)S{i,y) = 1 «• R(x,i) = 1 = S{i,y)

O r(x) =i — s{y).

For each fixed pair (x, y), this can happen for exactly one i, and hence we can deduce
that RS = A. Similarly,

= #{xeE:s(x)=i,r{x)=j},

and SR = B. Of course, we also have i?*5* = B*, StRt = A*, and hence the following
standard lemma gives what we need:

LEMMA 4 . 2 . Suppose R,S are V X E,E x V matrices with entries in {0,1},
and B = RS 6 Afy(Z), 4 = S.R G MB(Z). Then the transformation S : Zv -> ZB

induces isomorphisms of ker ((1 — B) : Zv —> Zv) onto ker (1 — .4.), and coker(l — B)
= Zv/(1 - B)(ZV) onto coker(l - A).

PROOF: We first observe that, for each A ^ 0, S : R.v —* HE is an isomorphism
of the eigenspace

Ef = {v e KV : Bv = \v}

onto E£ C R B , with inverse given by \~*R. Since both R,S have integer entries, it
follows that S restricts to an isomorphism of ker(l — B) = Efp\Zv onto ker(l — A) =
Ef D ZE with inverse R. Next, we note that if z € im(l - B), say z = (1 - B)»,
then

Sz = S(l - flS)« = (1 - 5iZ)5w = (1 - A)(Sv),

so 5 does map im(l — B) into im(l — ^4), and induces a homomorphism <f> of
coker(l — B) into coker(l — A). In the same way, R induces a homomorphism iji
of coker(l — A) into coker(l — B), which we claim is an inverse for <j>. For

= SRv + im(l - 5)

= v - (v - SRv) + im(l - B)

= v+ im(l - B),

and similarly <f> o ̂  is the identity on coker (1 — A). U

This lemma completes the proof of Proposition 4.1. D
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EXAMPLE 4.3. G = S3. The character table of S3 is

e (12) (123)

i:

a:

•K:

1
1

2

1
- 1

0

1
1

- 1

The obvious representation to take for p is the 2-dimensional representation 7r: it is
faithful because

kerTT = {s £ G : Xir(«) = X*(e) = 2} = {e}

[5, (2.19)]. We trivially have i2 = t, i.® er = a, A <g> TT ~ TT, and a2 = i; the characters
of the other tensor products are given by

X*®* = XvX* = XTT, and

Xn»w = (X*)2 = Xi. + Xa + Xir.

and since the decomposition of the character determines the decomposition of the rep-
resentation [5, (2.9)], we have <r <g> n ~ n and TT2 ~ i © ir ® a. We therefore have

= 1 1 1 and 1 - BL = - 1 0 - 1 .

Since det(l - B%) = 2, ker(l - B*v) =0 and iTi(O») = # I ( 0 B J = 0. However, for
(jn,n,p) G Z3, the unique solution v of (1 — B*)v = (m,n,p) in R3 is

f — n — 'p —m — n — p —m —

2 ' 2 ' 2

which lies in Z3 if and only if m + n + p £ 2Z. Thus

(m,n,p) -+ (m + n + p) + 2Z

induces an isomorphism of K0{Ov) = Jfo(Ofix) = Z3/(l - B%)(Z3) onto Z2.

If we take for p the faithful representation it @ i, we have instead

( 1 1 0 \ / 0 - 1 0 \

1 2 1 I and 1 - B\ = I - 1 - 1 - 1 I .
0 1 1 / V 0 -1 0 /
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Thus for this choice of p,

K^OP) S K! (OBp) a ker (l - BP) 3 Z,

and the map (m,n,p) —» m — p induces an isomorphism

Ao(CpJ = A o \ U B P ) — & /V -"pj \£i )=•£>•

Alternatively, if p = n © <r, we have

( 1 - 1 - 1 '
- 1 - 1 - 1
- 1 - 1 1

Here det (l - Bp) = - 4 , so K^Op) = 0, but (l - Bp)v - (m,n,p) has solution

• — n —771 — p

and (m,n,p) —» (ro — n, —m — p) induces an isomorphism of coker (l — Bfi) = Ko(Op)
onto Z2 x Z2 .

EXAMPLE 4.4. G = A5 = P5I(2,5) = 5X(2,4). It is important in the work of
Doplicher and Roberts that the representation p is faithful and special unitary, and we
shall now discuss an example where there are several irreducible representations of this
kind — indeed, since this group has only the trivial one-dimensional representation,
a —> det7r(s) is always identically 1, and any representation is special unitary. We
write -Ki (1 ^ i ^ 5) for the irreducible representations, with TTI = i, and Xi f°r the
corresponding characters. Then the character table for As is:

1 2 3 5i 52

where ai = (l +
with p = 7r2 gives

/ O

B2 =

1

0
0

1

1

1
1
1

Xi = '

X2 :

Xs :

X4 :

Xs :

0 0
1 1

2 1
1 0
1 1

a 2

0 \
1

1

1

o)

1

4
5
3
3

= ( 1 -

1

0
1

- 1

- 1

%/5)/2.

and 1

1
1

- 1
0
0

1

- 1

0

" i

" 2

Calculating

/ 1
- 1

0
0

^ o

1

- 1

c

c

as in

- 1

0
- 1
- 1

- 1

0

*2

the

0
- 1

- 1

- 1
- 1

previous example

0
- 1

- 1

1
- 1

0 \
- 1

- 1

- 1
1 /
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The rank of 1 - B\ is 4, with

Jfi(O«») = ker (1 - B*) = {(n,n, - n .0 ,0 )} S Z.

Given m = (m,n,p,q,r) G Z5 , the equation (1 — B\)v — m has a solution in R5 only
if p = n + m, and then the solution space in R s is

it follows that

(TO, n ,p , q, r) —> (m -f- n — p, g — p mod 2, r — p mod 2)

induces an isomorphism of K0(OV2) = Zs / (1 - 5 | ) (Z S ) onto Z x Z2 x Z 2 .

Next we take p = 7T4 . This time

/ 0 0 0 1 0 \
0 1 1 0 1
0 1 1 1 1
1 0 1 1 0

Vo i i o oy

and

/ I 0 0 - 1 0 \

0 0 - 1 0 - 1

0 - 1 0 - 1 - 1

- 1 0 - 1 0 0

V o - l - l o i

We have det (1 - B\) = 4, so ker( l - B\) = 0 =

then (1 — B\)v = m has unique solution

r — p —

[OTl), and if m = (m,n,p,q,r),

In — r — p + g + rre — r + p — q — m — In

— p — 3g — 3m r — p + q + m —
4 ' 4

which hes in Z5 if and only if T — p — 3g + m + In G 4Z; thus

= Z s / ( 1 - S * ) ( Z S ) S Z/4Z.

In particular, the A"-groups of OT4 and OV2 are quite different, even though both iti

and 7T2 are faithful, irreducible, special unitary representations of A$ .
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