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For an element a of a unital Banach algebra A with dual space A', we define the
numerical range V(a) = {f(a):f eA', \\f\\ = / ( l ) = 1}, and the numerical radius v(a) =
sup{|z|:z e V(a)}. An element a is said to be Hermitian if V(a)cU, equivalently
||exp(ifa)|| = 1 (t e R). Under the condition V{h) c. [ -1 , 1], any polynomial in h attains its
greatest norm in the algebra Ea[-\, 1], generated by an element h with V(h) = [ -1, 1].

In [3] we proved that in Ea[-1,1] all elements a = (ih)m + §„, t;oeM, have
v(a) = \\a\\: on pages 39, 44 of [3] we find £ e V(hm) such that |£ - r'\ = \\hm -x'\\. Here
we extend this to any element

a = £0 + §,ift + . . . + ^-iiih)"-1 + (ih)m (1)

where m 3= 1 and §,- e R (i = 0, 1, . . ., m - 1). As in [3,6], we represent Ea[-1, 1] as a
subalgebra of the bounded linear operators on the Banach space X of entire functions /
such that | | / | |=sup{|/(z)|/exp(|Imz|):zeC} exists. If / is entire with/(z)/exp(|z|)
bounded, and f{x) is bounded for x e R, then / e X and ||/| | = sup{|/(x)| : j teR}. Then
Ea[-1, 1] is generated by h = -iD, where Df(z) =f'(z). We show that there is a
function e in X corresponding to a support functional <I> of the element a of (1) such that
e'2/(l - e2) is rational. We have $(6) = (be)(0)(b e Ea[-1, 1]), and e(z) = ®(exp(izh)),
which indicates how we can identify Ea[—1, 1]' with X.

We can also consider Ea[—1, 1] as the algebra of functions / on [—1,1] given by

f(t)= E ckexp(idkt), ckeC, dkeU, T,\ck\ finite, with | |/ | | =inf £ \ck\ over such

representations, i.e. a quotient of l\U) ([5]). The function h(t) = t corresponds to the
element h. The element a of (1) has a representation as above E ck exp(idkh) with
E \ck\ = ||a||, where e{dk) — ±1 for all k. This follows from (11), and is valid for this
polynomial in a Hermitian element of norm at most 1 in any Banach algebra ([1,4]).

Note that / e l , ^ / ' eXx—Bernstein's inequality, or equivalently, \\h\\ = 1. Define
i.e.

Tf = | 0 / (0) + |x/'(0) + . . . +/(m)(0). (2)

By Lemma 4 of [3], ||«|| = ||r|| = sup{\Tf\:f eXj, where X1 = {feX:\\f\\^l}.
This supremum is attained by an extremal function. Hence finding ||a|| is equivalent to
maximizing (2) over/ e Xt. R. Boas [2, Section 11.4] considers this—his method gives the
extremal function when it is a translate of sin z. In [3] we proved that translates of
cos Vz2 + 82, 0 =£ 6 < n/2, were enough for elements (ih)m + §0 ([3], page 39 for m even,
page 41 for m odd). Here we prove the following theorem.

THEOREM 1. Let a, T be as in (1), (2). Then \\a\\ = \\T\\ = Te for a certain eeXx
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which is real on U, and such that there exist fi^m — l and a}, bj eC, a, $U, ajt a} =£ bk

(j, k = l,2, .. . , n) such that for all zeC,

e'\z) f[ (2 - a,)(z - a,) = (1 - e\z)) f[ (z - b,f. (3)

{Allow ju = 0, i.e. e'2 = l-e2.). Further, v(a) = \\a\\.

We expect that the functional T has an extremal function e in Xx which oscillates on
U between ±1, apart from at a finite number of turning points. A theorem of
Sonin-Polya [7, p. 164] pointed out by J. Duncan suggests that e2 + q>~le'2 = 1, where the
function q> is positive on the intervals of U of constant oscillation. Lemma 2 gives a
sequence pn which converges to e: pn is the extremal of T restricted to a class of
trigonometric polynomials. Then p'2l{l -pi) is a trigonometric rational function, and a
variational argument puts a bound on the number of its factors in lowest form. The
Hadamard factorisations in X show that the limit of this sequence, e'2/(l - e2) = q>, is a
rational function multiplied by an exponential. Using the fact that Te is extremal, we
prove that q> is rational. Finally we construct g = e + if eXx with f(U) c R and |g(0)| = 1,
which is enough to give v(a) = ||a||.

For n e N, let Pn c X be the set of functions z-* Z ak exp(ikz/n) where ak e C,
and let P = \J Pn.

 k=~n

LEMMA 2. Letf eXx. Then there exists a sequence ( / X = , c P D I , such that /„ -»fas
n—><x> uniformly on compact sets.

Proof. For 0 < 6 < \, define f6, gs e X by

h(z) = / ( ( I - 2d)z)(6z)-2 sin2 6z = gd(z)/z2.

Then fs-*f as d^>0 uniformly on compact sets. Since |/a(jt)|^l (jteIR), we have
f6eX1. Thus it is enough to prove the lemma for a function feXx given by
f(z) = g(z)/z2, where geX. Given such a function, define fn{z)= E f{z + 2knji).

AreZ

(n e N). Since g is bounded on lines Im z = constant, the series converges. For |Re z\ =£ nn
we have

|/n(z)-/(z)|=£2||g||exp(|Imz|) 2 (nx(2k - 1))"2 = <*n-2exp(|Imz|),
k = l

where a = ||g||/4. Since f eXx and/„ has period 2nx, we deduce that

\fn{z)\ « ( 1 + cvn-2)exp(|Im z|)(z e C).

Therefore fneX and/„ —>f uniformly on compact sets as«^«>. Since/„ has period 2nn,
by [2, Theorem 6. 10.1], fnePn. Replacing /„ by (1 + an~2)~%, we get the required
series.

For the sequence of Lemma 2, lim /£*>(0) = / w ( 0 ) (A: = 0, 1, 2 , . . . ) , and so lim Tfn =

Tf. Hence || 7|| = sup{|T/|:/ e P D f j Let /?„ e Pn n Xx be such that

. (4)
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Since for p*(z) =pn(z), Tp* = Tpn = Tpn, by replacing pn by \{pn +/?*) we can assume
that pn is real-valued on U. Since Xt is a normal family, there is a subsequence (pn) such
that lim 7pM. = |j T|| and limpn = e eX1, with uniform convergence on compact sets.

Therefore lim Tpn = Te = \\T\\, and e is an extremal function for T.
/_«, '

If e'(0) = e"(0) = . . . =e(m)(0) = 0, then Te = Te1 where ex is a constant function,
which satisfies (3) for ju = 0. Henceforth we assume that one of e'(0), . . . , e(m)(0) is
non-zero. By taking a further subsequence, we can assume that one of p'nj(0),..., p(™\0)
is non-zero for each /.

LEMMA 3. Ifpn+ iqn (resp. e + if)e X1 for some qn e Pn (resp. f e X) with qn(U) c U
(resp. f(U) c R ) , then Tqn = 0 (resp. Tf = 0).

Proof. By (4), \Tpn + iTqn\ = \T(pn + iqn)\ =£ Tpn. Since Tpn, TqneU, we get
Tqn = 0. The second part is similar.

LEMMA 4. Let a, e be as in Theorem 1. Suppose that there exists f e X, real on R, such
thatg = e + ifeX1and \g(0)\ = 1. Then v{a) = \\a\\.

Proof. By Lemma 3, Tf = O. Put gi=g(O)g, so that gleX1 and g1(O) = l. By
Lemma 1 of [3], Tgl = (ag1)(0)eV(a). Hence v(a)^\\a\\ = Te = Tg = \Tg1\^v(a),
where the inequalities follow from the definition of v(a).

Proof of Theorem 1. If fePn is real on R, so that for some v, f(z) =

E ak exp(ikz/n) with av ± 0, we prove later that we may write
2v

f(z) — ̂  [\ sin((z — zk)/2n) (z eC),
k = \

where AeR and we may assume that -nx < Re zk«£nn. For p=pn as in (4), we
factorize p' and 1 ± p : the same V appears for each function. Since p and 1 -p2 are
non-negative on R we get for some A > 0, -nx < Re ak, Re /?* =£ TIJT, where we write n
for n,, 2v

p '2(z)(l - ^(z) )" 1 = A2 ft sin2((z - pk)/2n) I f ] sin((z - ak)/2n). (5)
*=i / k=\

If ak e R, then p(arfc) = ±1, which gives p'{ak) = 0, and we find that p'2 has a zero of
order at least that of (1 — p2) at ak. Hence by cancellation we can assume in (5) that
ak$M, and by similar reasoning that a^^/J,, for all /, k. The ak are in complex
conjugate pairs. Hence for some n, for all zeC,

p'2(z)(l -p2{z)Yl = A2 [ I sin2((z - #0/2n)[sin((z - ^)/2n)sin((z - ak)/2n)]~\ (6)

Write q(z) = k-lp'(z)l ft sin((z - Pk)l2n). Thus
k=\

2v
?(z) = (constant) f l sin((z - j8t)/2«),
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from (5). By (6),

p2(z) + q2(z)f\^m((z-<xk)/2n)sin((z-ak)/2n) = l (z e C). (7)

The function x—> u |sin((;t — ak)/2n)\2 is continuous, periodic and non-zero on R, and

hence is bounded below by some <52 > 0. Hence by (7), p2(x) + 62q2(x) =£ 1 (x e R), and
so Pn fl Xt contains the function

x-*p(x) + idq(x) si^{xl2n)co^~>{xl2n), (j = 0, 1, 2, . . . , ju).

Since one of p'(0), . . . , p(m)(0) is non-zero, from the definition of q, (at least) one of
q(0), q'(0), • • • , ^"""^(O) is non-zero.

Suppose if possible that n s*m. Choose j^m such that q(m~'XO) *0 and <7w(0) = 0
(k<m— j). By Lemma 3 and (2) we have

0 = T(9(z)sin'(z/2«)cos''--'(z/2«)) = m!9
(m-^(0)/((m - j)\(2ny):

the function to which T is applied has a leading term in zm. Hence /J =S m — 1.
By Hadamard's factorization theorem, any / e X can be written

oo

where ak are the zeros. By (6) each function p'2, 1—p2. has, counting multiplicity, at
most 2(m — 1) zeros in — rijjt < Re z =£ rijJi which the other does not have. Each zero of
e'2, (1 - e 2 ) is a limit of zeros of p'2, (1 -pi). Therefore the factorizations of e'2 and
1 + e, 1 — e give, where a, /3 e R, f$ > 0 (since e'2 and 1 — e2 are non-negative on R) and

- 1, a*, bk e C,

<p(z) = e'2(z)(l - e\z)Yl = p exp(az) f\ (z - bk)
2 ft (z - a^-^z - a,)"1, (8)

k=l

where we are defining cp. By the same argument as for p, we can assume that ak$U and
aft, dk ^ fe; for all /, k.

Since e is not constant, there is a disc A = {\z - £| < ?/}, | e U, on which |e| < 1. On
A, o(z) = sir\-\e(z)) is analytic. For zeAniR, o'(z) = e'(z)(l-e2(z)ym = rp(z),
where by (8),

ft ( z -Wf t [(z-
Since (z - aA)(z - afc) > 0, we have the usual square root here. Hence on A fl R, for some
6 e R we have

( J % ) (9)
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The right-hand side of (9) defines a function analytic in a neighbourhood of R, which
must therefore equal e.

Suppose if possible that |i/>| > 1 for all / > (or <) some (oel?. Then by (9) for certain
xn e R with |xJ->«> as M->°°, we have e(xn) = 0 and, by (8), e'(xnf = cp{xn) = tp2(xn) >
1. This contradicts Bernstein's inequality \e'(x)\ « 1 (x e R). Therefore in (8), a = 0 and
(i2^l*i- Hence by (8), <p(x)^K (xeU) for some K>0, and e2(x) + K~1e'2(x)^l
(x e R).

Equation (9) holds for any z if we integrate along a curve not through any ak or dk,
and take the square root continuously in ip. If |ty| =£ d < 1 for all large \z\, then (9) shows
that e'(z)/exp(d \z\) is bounded on C. Hence if y>0, j eN and d+jy^l, then
e'(z)s\^yzeX, and e(z) + iK~me'(z)sin! yz eXv Choose y,y such that e(m"/+1)(0)#0
and ew(0) = 0 (1 *£ k « m -j). Then by Lemma 3 and (2), 0 = T(e'(z)siri yz) # 0. Thus
|I/ / |S=<5<1 for all large \z\ is not possible, which gives jU2 = i"i and ^ ^ 1 . Since /3>1
would give |^ | > 1 for all large real x, we have )8 = 1. Equation (8) now gives us (3).

Define ak(z) = \ak\ - \ak\~
l (Reak)z {z eC, k = 1, 2,..., ju). For teU, we have

a\{t) =s (f - afc)(f - a*), w i t n equality when t = 0. Then (3) gives

\) \) n ^ ^ l (»eR), (10)

with equality when t = 0.
Since in (3) a,, aj^bk, it follows that e'(z)/ll {z-b,) is entire. Hence f(z) =

e'(z) ft <7;(z)(z - ^z)"1 e X, since e' e A' and f[ Oj(z)(z - bj)~l tends to a limit as |z|-^ ».

By (10) and since /(R) c R, \{e + if)(x)\ s l ( j t e R), and so e + if e Xx. The case t = 0 in
(10) gives |(c + if)(0)\ = 1. By Lemma 4, u(a) = ||a||.

To derive the factorization of a function in Pn given, use the Hadamard factorization,
grouping the zeros in subsets of period Inn. If the function is real on R, there is no factor
exp(/3z) "left over". This completes the proof of Theorem 1.

REMARKS. For each m there exist elements a such that in (3) we have \i = m - 1. For
example, let §,• e C be such that the element a of (1) has minimum norm. We can show
that in fact &eR. There exists <E>e '̂ such that ||*|| = 1, <&(a) = ||a||, and ®(h') = Q
(0s£/<m). The function e(z) = <J>(exp(iz/i)) is an extremal for a, with e0)(0) = 0
(0 =s/ < m). If we replace e by \(e + e*), (3) becomes

m - l

e'\z) n {z-ak){z-dk) = z2m-\\-e2{z)).
k = \

In the case m=3, this a is -i(h3 - ^h), and (9) becomes, for a certain <*,

e(z) = sin ip(t)dt, where i/;(f) = t2/[(t - a)(t + a)(t -a)(t + a)\m.
h

We require $g ip = ±n/2, and calculation with elliptic functions gives ^ — 0-73, a —
0-97 + /2.10, ||ft3-&A I]* 0-37.

We can prove (omitted) the following necessary and sufficient condition that a given
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function eeXx, real on R, is the extremal for T as in (2): for a, T given, e is in fact
unique, and not constant.

(i) e satisfies an equation of the form of (3), and
(ii) there exist sequences ck, dkeU such that for any / e X, the contour integral

where Tw denotes T with the differentiations carried out with respect to w, and contours
r—> oo, gives as the sum of the residues of the integrand (which equals 0) a fixed multiple

of Tf - E ckf(dk). Further, cke(dk) 5= 0 for all A:.
k

For ju = 1 in (3), e is a translate of cosVz2 + d2, 0 =s 0.
The functions found here are also the extremals for operators of the form

n

Tf = E Pjf(<Xj), where <*,, /3,-elR, and we require the maximum over/eAV this Thas
an extremal e with /z=£m-2 in (3). Boas [2, Theorem 11.4.1] gives this result for
Tf=f(d)-f(-d).

From (3), if e'{z) = 0 then, with at most (m - 1) exceptions, e(z) = ±1. Thus on U,
outside the interval spanned by the b/s which happen to be real, e oscillates between ±1.
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