POLYNOMIALS IN A HERMITIAN ELEMENT

by M. J. CRABB and C. M. McGREGOR

(Received 15 July, 1986)

For an element a of a unital Banach algebra A with dual space A', we define the numerical range $V(a) = \{f(a): f \in A', \|f\| = f(1) = 1\}$, and the numerical radius $v(a) = \sup\{|z|: z \in V(a)\}$. An element a is said to be Hermitian if $V(a) \subseteq \mathbb{R}$, equivalently $\|\exp(ita)\| = 1$ ($t \in \mathbb{R}$). Under the condition $V(h) \subseteq [-1, 1]$, any polynomial in h attains its greatest norm in the algebra Ea[-1, 1], generated by an element h with V(h) = [-1, 1].

In [3] we proved that in Ea[-1, 1] all elements $a = (ih)^m + \xi_0$, $\xi_0 \in \mathbb{R}$, have v(a) = ||a||: on pages 39, 44 of [3] we find $\zeta \in V(h^m)$ such that $|\zeta - \tau'| = ||h^m - \tau'||$. Here we extend this to any element

$$a = \xi_0 + \xi_1 i h + \ldots + \xi_{m-1} (i h)^{m-1} + (i h)^m \tag{1}$$

where $m \ge 1$ and $\xi_i \in \mathbb{R}$ (i = 0, 1, ..., m - 1). As in [3, 6], we represent Ea[-1, 1] as a subalgebra of the bounded linear operators on the Banach space X of entire functions f such that $||f|| = \sup\{|f(z)|/\exp(|\operatorname{Im} z|): z \in \mathbb{C}\}$ exists. If f is entire with $f(z)/\exp(|z|)$ bounded, and f(x) is bounded for $x \in \mathbb{R}$, then $f \in X$ and $||f|| = \sup\{|f(x)|: x \in \mathbb{R}\}$. Then Ea[-1, 1] is generated by h = -iD, where Df(z) = f'(z). We show that there is a function e in X corresponding to a support functional Φ of the element a of (1) such that $e'^2/(1-e^2)$ is rational. We have $\Phi(b) = (be)(0)(b \in Ea[-1, 1])$, and $e(z) = \Phi(\exp(izh))$, which indicates how we can identify Ea[-1, 1]' with X.

We can also consider Ea[-1, 1] as the algebra of functions f on [-1, 1] given by $f(t) = \sum_{k=1}^{\infty} c_k \exp(id_k t), c_k \in \mathbb{C}, d_k \in \mathbb{R}, \sum |c_k|$ finite, with $||f|| = \inf \sum |c_k|$ over such representations, i.e. a quotient of $l^1(\mathbb{R})$ ([5]). The function h(t) = t corresponds to the element h. The element a of (1) has a representation as above $\sum c_k \exp(id_k h)$ with $\sum |c_k| = ||a||$, where $e(d_k) = \pm 1$ for all k. This follows from (11), and is valid for this polynomial in a Hermitian element of norm at most 1 in any Banach algebra ([1, 4]).

Note that $f \in X_1 \Rightarrow f' \in X_1$ —Bernstein's inequality, or equivalently, ||h|| = 1. Define $T \in X'$ by Tf = (af)(0), i.e.

$$Tf = \xi_0 f(0) + \xi_1 f'(0) + \ldots + f^{(m)}(0).$$
⁽²⁾

By Lemma 4 of [3], $||a|| = ||T|| = \sup\{|Tf|: f \in X_1\}$, where $X_1 = \{f \in X: ||f|| \le 1\}$. This supremum is attained by an extremal function. Hence finding ||a|| is equivalent to maximizing (2) over $f \in X_1$. R. Boas [2, Section 11.4] considers this—his method gives the extremal function when it is a translate of sin z. In [3] we proved that translates of $\cos \sqrt{z^2 + \theta^2}$, $0 \le \theta < \pi/2$, were enough for elements $(ih)^m + \xi_0$ ([3], page 39 for m even, page 41 for m odd). Here we prove the following theorem.

THEOREM 1. Let a, T be as in (1), (2). Then ||a|| = ||T|| = Te for a certain $e \in X_1$

Glasgow Math. J. 30 (1988) 171-176.

which is real on \mathbb{R} , and such that there exist $\mu \leq m-1$ and a_j , $b_j \in \mathbb{C}$, $a_j \notin \mathbb{R}$, a_j , $\bar{a}_j \neq b_k$ (j, $k = 1, 2, ..., \mu$) such that for all $z \in \mathbb{C}$,

$$e^{\prime 2}(z) \prod_{j=1}^{\mu} (z-a_j)(z-\bar{a}_j) = (1-e^2(z)) \prod_{j=1}^{\mu} (z-b_j)^2.$$
(3)

(Allow $\mu = 0$, i.e. $e'^2 = 1 - e^2$.). Further, v(a) = ||a||.

We expect that the functional T has an extremal function e in X_1 which oscillates on \mathbb{R} between ± 1 , apart from at a finite number of turning points. A theorem of Sonin-Polya [7, p. 164] pointed out by J. Duncan suggests that $e^2 + \varphi^{-1}e'^2 = 1$, where the function φ is positive on the intervals of \mathbb{R} of constant oscillation. Lemma 2 gives a sequence p_n which converges to $e: p_n$ is the extremal of T restricted to a class of trigonometric polynomials. Then $p'^2/(1-p^2_n)$ is a trigonometric rational function, and a variational argument puts a bound on the number of its factors in lowest form. The Hadamard factorisations in X show that the limit of this sequence, $e'^2/(1-e^2) = \varphi$, is a rational function multiplied by an exponential. Using the fact that Te is extremal, we prove that φ is rational. Finally we construct $g = e + if \in X_1$ with $f(\mathbb{R}) \subseteq \mathbb{R}$ and |g(0)| = 1, which is enough to give v(a) = ||a||.

For $n \in \mathbb{N}$, let $P_n \subseteq X$ be the set of functions $z \to \sum_{k=-n}^n \alpha_k \exp(ikz/n)$ where $\alpha_k \in \mathbb{C}$, and let $P = \bigcup_{n \in \mathbb{N}} P_n$.

LEMMA 2. Let $f \in X_1$. Then there exists a sequence $(f_n)_{n=1}^{\infty} \subseteq P \cap X_1$ such that $f_n \to f$ as $n \to \infty$ uniformly on compact sets.

Proof. For $0 < \delta < \frac{1}{2}$, define f_{δ} , $g_{\delta} \in X$ by $f_{\delta}(z) = f((1-2\delta)z)(\delta z)^{-2} \sin^2 \delta z = g_{\delta}(z)/z^2$.

Then $f_{\delta} \to f$ as $\delta \to 0$ uniformly on compact sets. Since $|f_{\delta}(x)| \leq 1$ $(x \in \mathbb{R})$, we have $f_{\delta} \in X_1$. Thus it is enough to prove the lemma for a function $f \in X_1$ given by $f(z) = g(z)/z^2$, where $g \in X$. Given such a function, define $f_n(z) = \sum_{k \in \mathbb{Z}} f(z + 2kn\pi)$.

 $(n \in \mathbb{N})$. Since g is bounded on lines Im z = constant, the series converges. For $|\text{Re } z| \le n\pi$ we have

$$|f_n(z) - f(z)| \le 2 ||g|| \exp(|\operatorname{Im} z|) \sum_{k=1}^{\infty} (n\pi(2k-1))^{-2} = \alpha n^{-2} \exp(|\operatorname{Im} z|),$$

where $\alpha = ||g||/4$. Since $f \in X_1$ and f_n has period $2n\pi$, we deduce that

$$|f_n(z)| \leq (1 + \alpha n^{-2}) \exp(|\operatorname{Im} z|)(z \in \mathbb{C}).$$

Therefore $f_n \in X$ and $f_n \to f$ uniformly on compact sets as $n \to \infty$. Since f_n has period $2n\pi$, by [2, Theorem 6. 10.1], $f_n \in P_n$. Replacing f_n by $(1 + \alpha n^{-2})^{-1} f_n$, we get the required series.

For the sequence of Lemma 2, $\lim_{n \to \infty} f_n^{(k)}(0) = f^{(k)}(0)$ (k = 0, 1, 2, ...), and so $\lim_{n \to \infty} Tf_n = Tf$. Hence $||T|| = \sup\{|Tf|: f \in P \cap X_1\}$. Let $p_n \in P_n \cap X_1$ be such that

$$Tp_n = \sup\{|Tf|: f \in P_n \cap X_1\}.$$
(4)

Since for $p_n^*(z) = \overline{p_n(\overline{z})}$, $Tp_n^* = \overline{Tp_n} = Tp_n$, by replacing p_n by $\frac{1}{2}(p_n + p_n^*)$ we can assume that p_n is real-valued on \mathbb{R} . Since X_1 is a normal family, there is a subsequence (p_{n_j}) such that $\lim_{j \to \infty} Tp_{n_j} = ||T||$ and $\lim_{j \to \infty} p_{n_j} = e \in X_1$, with uniform convergence on compact sets. Therefore $\lim_{j \to \infty} Tp_{n_j} = Te = ||T||$, and e is an extremal function for T.

If $e'(0) = e''(0) = \ldots = e^{(m)}(0) = 0$, then $Te = Te_1$ where e_1 is a constant function, which satisfies (3) for $\mu = 0$. Henceforth we assume that one of $e'(0), \ldots, e^{(m)}(0)$ is non-zero. By taking a further subsequence, we can assume that one of $p'_{n_j}(0), \ldots, p^{(m)}_{n_j}(0)$ is non-zero for each j.

LEMMA 3. If $p_n + iq_n$ (resp. e + if) $\in X_1$ for some $q_n \in P_n$ (resp. $f \in X$) with $q_n(\mathbb{R}) \subset \mathbb{R}$ (resp. $f(\mathbb{R}) \subset \mathbb{R}$), then $Tq_n = 0$ (resp. Tf = 0).

Proof. By (4), $|Tp_n + iTq_n| = |T(p_n + iq_n)| \le Tp_n$. Since Tp_n , $Tq_n \in \mathbb{R}$, we get $Tq_n = 0$. The second part is similar.

LEMMA 4. Let a, e be as in Theorem 1. Suppose that there exists $f \in X$, real on \mathbb{R} , such that $g = e + if \in X_1$ and |g(0)| = 1. Then v(a) = ||a||.

Proof. By Lemma 3, Tf = 0. Put $g_1 = \overline{g(0)}g$, so that $g_1 \in X_1$ and $g_1(0) = 1$. By Lemma 1 of [3], $Tg_1 = (ag_1)(0) \in V(a)$. Hence $v(a) \leq ||a|| = Te = Tg = |Tg_1| \leq v(a)$, where the inequalities follow from the definition of v(a).

Proof of Theorem 1. If $f \in P_n$ is real on \mathbb{R} , so that for some v, $f(z) = \sum_{k=-v}^{v} a_k \exp(ikz/n)$ with $a_v \neq 0$, we prove later that we may write

$$f(z) = \lambda \prod_{k=1}^{2\nu} \sin((z-z_k)/2n) \ (z \in \mathbb{C}),$$

where $\lambda \in \mathbb{R}$ and we may assume that $-n\pi < \operatorname{Re} z_k \leq n\pi$. For $p = p_{n_i}$ as in (4), we factorize p' and $1 \pm p$: the same 'v' appears for each function. Since p'^2 and $1 - p^2$ are non-negative on \mathbb{R} we get for some $\lambda > 0$, $-n\pi < \operatorname{Re} \alpha_k$, $\operatorname{Re} \beta_k \leq n\pi$, where we write n for n_j ,

$$p'^{2}(z)(1-p^{2}(z))^{-1} = \lambda^{2} \prod_{k=1}^{2\nu} \sin^{2}((z-\beta_{k})/2n) / \prod_{k=1}^{4\nu} \sin((z-\alpha_{k})/2n).$$
(5)

If $\alpha_k \in \mathbb{R}$, then $p(\alpha_k) = \pm 1$, which gives $p'(\alpha_k) = 0$, and we find that p'^2 has a zero of order at least that of $(1-p^2)$ at α_k . Hence by cancellation we can assume in (5) that $\alpha_k \notin \mathbb{R}$, and by similar reasoning that $\alpha_k \neq \beta_j$, for all j, k. The α_k are in complex conjugate pairs. Hence for some μ , for all $z \in \mathbb{C}$,

$$p'^{2}(z)(1-p^{2}(z))^{-1} = \lambda^{2} \prod_{k=1}^{\mu} \sin^{2}((z-\beta_{k})/2n) [\sin((z-\alpha_{k})/2n)\sin((z-\bar{\alpha}_{k})/2n)]^{-1}.$$
 (6)

Write $q(z) = \lambda^{-1} p'(z) / \prod_{k=1}^{\mu} \sin((z - \beta_k)/2n)$. Thus

$$q(z) = (\text{constant}) \prod_{k=\mu+1}^{2\nu} \sin((z-\beta_k)/2n),$$

from (5). By (6),

$$p^{2}(z) + q^{2}(z) \prod_{k=1}^{\mu} \sin((z - \alpha_{k})/2n) \sin((z - \bar{\alpha}_{k})/2n) = 1 \quad (z \in \mathbb{C}).$$
(7)

The function $x \to \prod_{k=1}^{\mu} |\sin((x - \alpha_k)/2n)|^2$ is continuous, periodic and non-zero on \mathbb{R} , and hence is bounded below by some $\delta^2 > 0$. Hence by (7), $p^2(x) + \delta^2 q^2(x) \le 1$ ($x \in \mathbb{R}$), and so $P_n \cap X_1$ contains the function

$$x \to p(x) + i\delta q(x) \sin^{j}(x/2n) \cos^{\mu-j}(x/2n), \quad (j = 0, 1, 2, ..., \mu).$$

Since one of $p'(0), \ldots, p^{(m)}(0)$ is non-zero, from the definition of q, (at least) one of $q(0), q'(0), \ldots, q^{(m-1)}(0)$ is non-zero.

Suppose if possible that $\mu \ge m$. Choose $j \le m$ such that $q^{(m-j)}(0) \ne 0$ and $q^{(k)}(0) = 0$ (k < m - j). By Lemma 3 and (2) we have

$$0 = T(q(z)\sin^{j}(z/2n)\cos^{\mu-j}(z/2n)) = m!q^{(m-j)}(0)/((m-j)!(2n)^{j}):$$

the function to which T is applied has a leading term in z^m . Hence $\mu \leq m - 1$.

By Hadamard's factorization theorem, any $f \in X$ can be written

$$f(z) = \beta \exp(\alpha z) z^{\lambda} \prod_{k=1}^{\infty} (1 - a_k^{-1} z) \exp(z/a_k),$$

where a_k are the zeros. By (6) each function $p'_{n_j}^2$, $1 - p_{n_j}^2$ has, counting multiplicity, at most 2(m-1) zeros in $-n_j\pi < \text{Re } z \le n_j\pi$ which the other does not have. Each zero of e'^2 , $(1-e^2)$ is a limit of zeros of $p'_{n_j}^2$, $(1-p_{n_j}^2)$. Therefore the factorizations of e'^2 and 1+e, 1-e give, where α , $\beta \in \mathbb{R}$, $\beta > 0$ (since e'^2 and $1-e^2$ are non-negative on \mathbb{R}) and μ_1 , $\mu_2 \le m-1$, a_k , $b_k \in \mathbb{C}$,

$$\varphi(z) = e^{\prime 2}(z)(1 - e^2(z))^{-1} = \beta \exp(\alpha z) \prod_{k=1}^{\mu_1} (z - b_k)^2 \prod_{k=1}^{\mu_2} (z - a_k)^{-1} (z - \bar{a}_k)^{-1}, \quad (8)$$

where we are defining φ . By the same argument as for p, we can assume that $a_k \notin \mathbb{R}$ and a_k , $\bar{a}_k \neq b_j$ for all j, k.

Since e is not constant, there is a disc $\Delta = \{|z - \xi| < \eta\}$, $\xi \in \mathbb{R}$, on which |e| < 1. On Δ , $\sigma(z) = \sin^{-1}(e(z))$ is analytic. For $z \in \Delta \cap \mathbb{R}$, $\sigma'(z) = e'(z)(1 - e^2(z))^{-1/2} = \psi(z)$, where by (8),

$$\psi(z) = \pm \beta^{1/2} \exp(\frac{1}{2}\alpha z) \prod_{k=1}^{\mu_1} (z - b_k) / \prod_{k=1}^{\mu_2} [(z - a_k)(z - \bar{a}_k)]^{1/2}$$

Since $(z - a_k)(z - \bar{a}_k) > 0$, we have the usual square root here. Hence on $\Delta \cap \mathbb{R}$, for some $\theta \in \mathbb{R}$ we have

$$e(z) = \sin\left(\theta + \int_{\xi}^{z} \psi(t) \, dt\right). \tag{9}$$

174

The right-hand side of (9) defines a function analytic in a neighbourhood of \mathbb{R} , which must therefore equal e.

Suppose if possible that $|\psi| > 1$ for all t > (or <) some $t_0 \in \mathbb{R}$. Then by (9) for certain $x_n \in \mathbb{R}$ with $|x_n| \to \infty$ as $n \to \infty$, we have $e(x_n) = 0$ and, by (8), $e'(x_n)^2 = \varphi(x_n) = \psi^2(x_n) > 0$ 1. This contradicts Bernstein's inequality $|e'(x)| \leq 1$ ($x \in \mathbb{R}$). Therefore in (8), $\alpha = 0$ and $\mu_2 \ge \mu_1$. Hence by (8), $\varphi(x) \le K$ ($x \in \mathbb{R}$) for some K > 0, and $e^2(x) + K^{-1}e^{2/3}(x) \le 1$ $(x \in \mathbb{R}).$

Equation (9) holds for any z if we integrate along a curve not through any a_k or \bar{a}_k , and take the square root continuously in ψ . If $|\psi| \le \delta < 1$ for all large |z|, then (9) shows that $e'(z)/\exp(\delta |z|)$ is bounded on C. Hence if $\gamma > 0$, $j \in \mathbb{N}$ and $\delta + j\gamma \leq 1$, then $e'(z)\sin^j \gamma z \in X$, and $e(z) + iK^{-1/2}e'(z)\sin^j \gamma z \in X_1$. Choose γ, j such that $e^{(m-j+1)}(0) \neq 0$ and $e^{(k)}(0) = 0$ $(1 \le k \le m - j)$. Then by Lemma 3 and (2), $0 = T(e'(z)\sin^j \gamma z) \ne 0$. Thus $|\psi| \le \delta < 1$ for all large |z| is not possible, which gives $\mu_2 = \mu_1$ and $\beta \ge 1$. Since $\beta > 1$ would give $|\psi| > 1$ for all large real x, we have $\beta = 1$. Equation (8) now gives us (3).

Define $\sigma_k(z) = |a_k| - |a_k|^{-1}$ (Re a_k) $z \ (z \in \mathbb{C}, k = 1, 2, ..., \mu)$. For $t \in \mathbb{R}$, we have $\sigma_k^2(t) \leq (t - a_k)(t - \bar{a}_k)$, with equality when t = 0. Then (3) gives

$$e^{2}(t) + e^{\prime 2}(t) \prod_{k=1}^{\mu} \frac{\sigma_{k}^{2}(t)}{(t-b_{k})^{2}} \leq 1 \quad (t \in \mathbb{R}),$$
(10)

with equality when t = 0.

with equality when i = 0. Since in (3) a_j , $\bar{a}_j \neq b_k$, it follows that $e'(z)/\prod_{j=1}^{\mu} (z - b_j)$ is entire. Hence $f(z) = e'(z) \prod_{j=1}^{\mu} \sigma_j(z)(z - b_j)^{-1} \in X$, since $e' \in X$ and $\prod_{j=1}^{\mu} \sigma_j(z)(z - b_j)^{-1}$ tends to a limit as $|z| \to \infty$. By (10) and since $f(\mathbb{R}) \subseteq \mathbb{R}$, $|(e+if)(x)| \leq 1$ $(x \in \mathbb{R})$, and so $e+if \in X_1$. The case t=0 in (10) gives |(e + if)(0)| = 1. By Lemma 4, v(a) = ||a||.

To derive the factorization of a function in P_n given, use the Hadamard factorization, grouping the zeros in subsets of period $2n\pi$. If the function is real on \mathbb{R} , there is no factor $\exp(\beta z)$ "left over". This completes the proof of Theorem 1.

REMARKS. For each m there exist elements a such that in (3) we have $\mu = m - 1$. For example, let $\xi_i \in \mathbb{C}$ be such that the element a of (1) has minimum norm. We can show that in fact $\xi_i \in \mathbb{R}$. There exists $\Phi \in A'$ such that $\|\Phi\| = 1$, $\Phi(a) = \|a\|$, and $\Phi(h') = 0$ $(0 \le i \le m)$. The function $e(z) = \Phi(\exp(izh))$ is an extremal for a, with $e^{(j)}(0) = 0$ $(0 \le i \le m)$. If we replace e by $\frac{1}{2}(e + e^*)$, (3) becomes

$$e^{\prime 2}(z)\prod_{k=1}^{m-1}(z-a_k)(z-\bar{a}_k)=z^{2m-2}(1-e^2(z)).$$

In the case m = 3, this *a* is $-i(h^3 - \xi_1 h)$, and (9) becomes, for a certain α ,

$$e(z) = \sin \int_0^z \psi(t) dt$$
, where $\psi(t) = t^2 / [(t - \alpha)(t + \alpha)(t - \bar{\alpha})(t + \bar{\alpha})]^{1/2}$.

We require $\int_0^{\alpha} \psi = \pm \pi/2$, and calculation with elliptic functions gives $\xi_1 \simeq 0.73$, $\alpha \simeq$ 0.97 + i2.10, $||h^3 - \xi_1 h|| = 0.37$.

We can prove (omitted) the following necessary and sufficient condition that a given

function $e \in X_1$, real on \mathbb{R} , is the extremal for T as in (2): for a, T given, e is in fact unique, and not constant.

- (i) e satisfies an equation of the form of (3), and
- (ii) there exist sequences c_k , $d_k \in \mathbb{R}$ such that for any $f \in X$, the contour integral

$$\int_{\Gamma} T_w \left(\frac{e'(w)}{w-z}\right) \frac{f(z)}{e'(z)} dz,$$
(11)

where T_w denotes T with the differentiations carried out with respect to w, and contours $\Gamma \rightarrow \infty$, gives as the sum of the residues of the integrand (which equals 0) a fixed multiple

of $Tf - \sum_{k} c_k f(d_k)$. Further, $c_k e(d_k) \ge 0$ for all k.

For $\mu = 1$ in (3), *e* is a translate of $\cos\sqrt{z^2 + \theta^2}$, $0 \le \theta$.

The functions found here are also the extremals for operators of the form $Tf = \sum_{j=1}^{n} \beta_j f(\alpha_j)$, where α_j , $\beta_j \in \mathbb{R}$, and we require the maximum over $f \in X_1$: this T has an extremal e with $\mu \le m-2$ in (3). Boas [2, Theorem 11.4.1] gives this result for $Tf = f(\delta) - f(-\delta)$.

From (3), if e'(z) = 0 then, with at most (m - 1) exceptions, $e(z) = \pm 1$. Thus on \mathbb{R} , outside the interval spanned by the b_i 's which happen to be real, e oscillates between ± 1 .

REFERENCES

1. M. Baillet, Un calcul fonctionnel de class C^1 pour les operateurs pre-hermitiens d'un espace de Banach, C.R. Acad. Sci. Paris, Ser A, **283** (1976), 891–894.

2. R. P. Boas, Entire functions (Academic Press, 1954).

3. M. J. Crabb and C. M. McGregor, Numerical ranges of powers of Hermitian elements, *Glasgow Math. J.* 28 (1986), 37-45.

4. H. Konig, A functional calculus for Hermitian elements of complex Banach algebras, Archiv der Math. 28 (1977), 422-430.

5. A. M. Sinclair, The Banach algebra generated by a Hermitian operator, Proc. London Math. Soc. (3) 24 (1972), 681-691.

6. A. M. Sinclair, The Banach algebra generated by a derivation, Operator Theory: Adv. Appl. 14 (1984), 241-250.

7. G. Szego, Orthogonal polynomials, American Math. Soc. Coll. Publ. XXIII (1959).

DEPARTMENT OF MATHEMATICS UNIVERSITY OF GLASGOW

176