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ON THE GLOBAL DIMENSIONS OF D+M 

BY 

DAVID E. DOBBSW 

1. Introduction and notation. This note answers affirmatively a question of the 
author [4, p. 456], by producing an example of an integrally closed quasi-local 
non valuation domain of global dimension 3, each of whose overrings is a going-
down ring. Although [4, Proposition 4.5] shows that such an example cannot be 
constructed by means of restrained power series, an approach via the more general 
D+M construction succeeds. The main tool, Proposition 3.1, concerns weak 
(flat) global dimension. Together with a bound of Jensen, it leads via cardinal 
arithmetic to the desired result, Example 3.2. 

Background material on the D+M construction and weak dimension may be 
found in [8, Appendix 2] and [3, pp. 122-123], respectively. Weak dimension, 
projective dimension, weak global dimension, and global dimension are denoted 
by w.d., p.d., w.gl. dim, and gl. dim, respectively. 

To fix notation, let F be a valuation ring of the form K+M, where K is a field 
and M(y^O) is the maximal ideal of V. Let D be a proper subring of K; let ky 

viewed inside K, be the quotient field of D. Finally, set R=D+M. 

2. Shaping the example. We begin by examining the global dimensions of 
R in case k=K. 

PROPOSITION 2.1. Let k=K. Then: 

(1) Ifn=g\. dim(V) and m=g\. dim(Z>), then 

( n if n > m 

m if m > n and P-d.£>(£) < wt 
m+\ if m >n and p.d.D(K) = m. 

(2) w.gl. dim(i*)=w.gl. dim(D). 
Proof. (1) In the terminology of Greenberg [9], R is an jF-ring with F-ideal 

M if k=K. (The converse is also valid, by [8, Theorem A(h), p. 561], since RM= 
k+M in general.) Thus [9, Theorem 4.3] specializes to the assertion in (1). 

(2) (Sketch) The desired result follows by aping Greenberg's route to [9, Theorem 
4.3]: replace "projective" by "flat" as needed; use [7, Lemme] in place of [13, 
Theorem 1.1], to obtain the "flat" analogue of [9, Proposition 2.6]; note that 
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w.gl. dim(i^ikf)=w.gl. dim(K)=l, by [3, Proposition 2.9, p. 112], to eliminate the 
analogue of case (1) in the proof of [9, Theorem 4.3]; and, for the analogue of 
case (2) in the proof of [9, Theorem 4.3], use the reasoning in [11, p. 35, 11. 1-8] 
to reduce to the consideration of finitely generated ideals, for which case (b) is 
eliminated, as w.d.R/M(RMlM)=0. 

To aid in our search for a context hospitable to the desired example, it will be 
convenient to refer to any integrally closed quasi-local nonvaluation domain of 
global dimension 3, all of whose overrings are going-down rings, as a solution. 

COROLLARY 2.2. If R is a solution and D is not a solution, then kj^K. 

Proof. Deny. Note that D then inherits from R the properties of being quasi-
local, integrally closed and nonvaluation, by [8, Theorem A(c), (d), (b), (h), 
pp. 560-561]. If T is any overring of D, then T+M, being an overring of R, is 
going-down, so that [5, Corollary] implies T is also going-down. As D is not a 
solution, the process of elimination yields gl. dim(D)5é3 (=gl. dim(if)). By 
Proposition 2.1(1), gl. dim(D) is either 1 or 2. This leads to D being valuation: 
in the first case, since it would be local Dedekind; in the second case, by coherence 
and treedness, as explained in [4, pp. 442-443]. This (desired) contradiction 
completes the proof. 

The preceding result allows us to restrict attention to the case k^K. (Indeed, if 
D were a solution, why consider Rl) The final result of this section permits the 
further restriction D=k and re-explains the inadequacy of restrained power 
series for our purposes. 

PROPOSITION 2.3. If R is a solution and kj£K, then k+Misa solution and M~ M2. 

Proof. By [8, Theorem A(c), (d), p. 560], k+M is quasi-local (whether or not 
R is a solution). As R is a solution, D is integrally closed in K [8, Theorem A(b), 
p. 560]; thus, k is integrally (algebraically) closed in K, so that k+M is integrally 
closed. Moreover, each overring of k+M is going-down, since it is also an overring 
of R. Of course, k=éK forces k+M to be nonvaluation [8, Theorem A(h), p. 561]. 
Finally, since RM=k+M, we have gl. dim(fc+M)<gl. dim(i^)=3. The cases 
gl. dim(k+M)=l, 2 are ruled out as at the close of the proof of Corollary 2.2, 
and so k+M is a solution. As noted in [6, Remark 10], it follows from [6, 
Theorem 8] and the proof of [4, Proposition 4.5] that, if M^M2, then w.d.jK(M)= 
oo. In fact, w.d.^(M)<w.gl. dim(i^)<gl. dim(i?)=3, and so M=Af2, completing 
the proof. 

3. Weak dimension and the example. The comments of the preceding section 
suggest the hypotheses of the next result. 

PROPOSITION 3.1. Let D=k (T*K). If M=M2, then w.gl. dim(i*)=2 and 
gl. dim(i0>3. 

https://doi.org/10.4153/CMB-1975-115-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1975-115-3


1975] GLOBAL DIMENSIONS 659 

Proof. Let / b e a nonzero finitely generated ideal of R. By [8, Theorem A(k), 
p. 562], I=Wm+Mm, for some nonzero finite-dimensional fc-subspace W of K 
and some nonzero m in M. Let {^ : l< /<«} be any it-basis of W. If Rn is jR-free, 
the i£-module homomorphism g:Rn->I determined by g(ei)=bim is surjective, 
since M=btM. One checks readily that ker(g) consists of those sums 2 Wiei such 
that each m* is in M and 2 mJb^O. Again since M=biM, we have k e r ^ ^ A P " 1 . 
However, Mis i£-flat, as M=M2 [6, Theorem 8]. Thus, w.d.R(I) is 0 or 1 according 
as n=l or n>l. (Indeed, if/were i^-flat, it would be principal, generated by some 
m1 in M. As we can write m1=vm with v in V, it follows that W+M=(k+M)v9 

so that Wis cyclic over A:, and »=1.) Now, we can arrange «>1 since £ 5 ^ , so 
that sup{w.d.B(J):0^J9 finitely generated ideal of J R } = 1 . Then (cf. [Il , p. 35, 
11. 1-8]), w.gl. dim(R)=2. As before, k^K implies R nonvaluation, so that 
rerevisiting the close of the proof of Corollary 2.2 (and bearing in mind that 
k+M is going-down) rules out the cases gl. dim(jR)=1, 2, and completes the proof. 

EXAMPLE 3.2. Solutions exist. 

Proof. Let k be a countable field ; choose a field K^> k such that k is algebraically 
closed in K and tr. degfc(i£)=l. (For example, let K=k(x), where x is transcen
dental.) Observe that card(K)=H0. Let T be a nonzero countable subgroup of 
IR (under addition) such that r = 2 T . (For example, let T = (Q.) Subjecting K 
and r to the construction in [2, Exemple 6, p. 107] leads to a valuation ring 
V=K+ M with value group T. We claim that R=k+M is a solution. 

Before verifying the claim, recall from [2, p. 107] that the quotient field L of 
Fis the quotient field of an algebra which, as a fc-space, is free on T+. By standard 
cardinal arithmetic, one easily checks now that card(F)=X0. 

If v is the valuation associated to V, then M={b in L:t;(6)>0} and V\M= 
{b in L:v(b)=0}. Since T = 2 r , it is clear that M=M2, and Proposition 3.1 implies 
w.gl. dim(i£)=2 and gl. dim(R)>3. If each ideal of R is Xn-generated, a key 
result of Jensen-Osofsky [10, Corollary 2.47] now implies that gl. dim(R)<3+n. 
However, one upshot of the preceding paragraph is card(i£)<X0, and so we may 
certainly take n=09 giving gl. dim(R)=3. 

Finally, appeals to the now-familiar parts of [8, Theorem A, p. 560] show that 
R is quasi-local, integrally closed and nonvaluation. It remains only to show that 
each overring T of R is going-down. According to [1, Theorem 3.1], such Tare 
either valuation (hence, going-down) or of the form T=E+M, where k^E^K. 
By [5, Corollary], we need only show that each ring betweenk and Kis going-down, 
and this follows as in the proof of [4, Theorem 4.2 (iii)] since tr. degk(K)=l. The 
proof is complete. 

REMARK 3.3. In the spirit of [4, Corollary 4.4], we note that the construction 
employed in Example 3.2 actually yields a family of quasi-local noncoherent 
going-down rings of global dimension 3. (The noncoherence may be shown by 
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either [4, Proposition 2.5] or [6, Corollary 5].) By removing the condition that k 
be algebraically closed in K, we produce such rings which are not integrally closed. 
Permitting tr. degfc(X)>l results in examples with (some) overrings that are not 
going-down. Although the particular ring in Example 3.2 has (Krull) dimension 1 
and valuative dimension 2, examples exist with arbitrary finite positive dimension 
and with arbitrary larger finite valuative dimension. For instance, an example 
with dimension 2 and valuative dimension 5 may be constructed by taking K= 
k(x,y, z) and setting T = Q x Q , lexicographically ordered. 

These examples suggest that pullback descriptions, adequate for quasi-local 
rings of global dimension 2 (cf. [12], [9]), no longer suffice for global dimension 3. 
We close by raising the problem of developing enough information about non
coherent rings in order to classify the quasi-local going-down rings of global 
dimension 3. 
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