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ASYMPTOTIC EQUIVALENCE OF A LINEAR AND
NONLINEAR SYSTEM WITH IMPULSE EFFECT

by P. S. SIMEONOV and D. D. BAINOV

(Received 17th July 1986)

1. Introduction

The present paper deals with the problem of asymptotic equivalence of the system
with impulse effect

^ \ t (1)

and

^ (tk)), (2)

where x,y:I^R"; g:I->R"; f:IxR"-*R"; bk:R"->R'1; / = [0, oo); R" is the n-dimensional
Euclidean space with a norm |-|; A and B are constant matrices; the moments {tk}
constitute an increasing sequence 0 < tt < • • • < tk < • • •, limt_.„, tk = oo.

The systems with impulse effect of type (1) are characterized by the fact that at the
moments {tk} under the action of instant effect (impulse), the mapping point (t,x) jumps
from the position (tk,x(tk)) into the position (tk,x(tk) + Ax(tk)). It is also supposed that at
the moments of impulse effect {tk} the solutions of systems (1) and (2) are left
continuous, i.e. x(tk—0) = x(tk), Ax\t=,k = x(tk + 0) — x(tk).

We shall make use of the following definition for asymptotic equivalence.

Definition 1. The systems (1) and (2) are said to be asymptotically equivalent if there
is a one-to-one correspondence between their solutions such that

\im\x(t)-y(t)\=0, (3)
|-»OO

for the corresponding solutions x(t) and y(t).
The main theorem of this paper is an analogue of the theorem of Brauer [1] for

asymptotic equivalence of systems without impulse effect.

2. Preliminary remarks

Fur the r on the following no ta t ion is used: i(t,s)—the n u m b e r of the poin ts tk inside
the interval (t,s); ||/4|| = sup)j(.| = t \Ax\—the n o r m of the mat r ix A=(aij)

n
1; £ - t h e uni t nxn
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matrix; 0m—the zero mxm matrix; diag(Al,A2)—the quasidiagonal n x n matrix with
blocks A i and A2.

In the proof of our main result we shall use the following lemma.

Lemma 1 [2] . Let the following conditions be fulfilled:

1. The function u:I-*I is piecewise continuous on I being left continuous at the points of
discontinuity {tk}, and 0<tl<--<tk<--, \imk_xtk = co.

2. The function X.I-+R is continuous on I and the numbers dk, k = 0,l,...,are non-
negative.

3. For tel the inequality

u(t) ^ d0 + J X(s)u(s) ds+ YJ dku(tk)
o o < tk < t

holds.
Then for tel the following inequality holds

(t \

u(t)^d0 f ] (l+<4)exp($X{s)ds .

Denote by (A) the following set of conditions:
Al. All solutions of system (1) are bounded on /.
A2. Constants Q>0 and p > 0 exist such that

\i(to,t)-p(t-to)\^Q, for O^t0^

A3. The function g:I->R" is continuous on /.
A4. det(£ + B)=̂ =0 and the matrices A and B commute.
A5. The inverse functions hk

l of the functions hk:R"-+R", hk(y) =
k= 1,2,..., exist.

A6. The functions f:lxRn^R" and bk:R"^R", /c= 1,2,... are continuous on their
domains and a non-negative continuous function A:/->/ and non-negative constants fik,
k=l,2,... exist, such that

\f(t,y)\SW\y\, for tel and yeR", (4)

\f(t,y)~f(t,z)\^X(t)\y-z\ for tel and y,zeRn, (5)

\bk(y)\SPk\y\, for yeR\ fe=l,2,..., (6)

\bk(y)-bk(z)\^pk\y-z\, for y,zeR", fc=l,2,.., (7)

]k{s)ds+ f pk^L<oo. (8)
o t=i
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3. Main results

Theorem 1. Let the conditions (A) be fulfilled. Then the systems (1) and (2) with
impulse effect are asymptotically equivalent.

Proof. Let x{t) = x(t;to,xo) be a solution of (1) such that x(£o + 0) = xo, and y(t) =
y(t;to,xo)—a solution of (2) such that y(to + 0) = xo.

We are going to show that for t0 sufficiently large, there exists a one-to-one
correspondence between the initial states x0 and y0 which in turn generates a one-to-
one correspondence between the solutions x(t) and y(i) of systems (1) and (2). Further
on we shall demonstrate that for each two corresponding solutions the relation (3)
holds.

The general solution X of the linear non-homogeneous system (1) has the form

X = n + Z, (9)

where n is any solution of (1) and Z is the general solution of the linear homogeneous
system

dz . '
—=Az, t±tk; Az,= , = Bz(tk). (10)
dt

It follows from Al and (9) that all solutions of (10) are bounded. Since the matrices A
and B commute, then according to [2] the solution z(t) = z(t;to,xo) of (10) has the form

z(t) = (E + B)H"'-')eA{'~'0), for t > t 0 ,

or

z\ij — \LL "T D) e ZQ, ior r->tQ, ( i i |

where A = A + p In (£ + B).
Bearing in mind the boundedness of the solution z(i) and condition A2, it follows

from (11) that the matrix eA""'0) is bounded for 0 ^ r o ^ £ < o o . Hence the matrix A has
the structure A = S~l diag(A_, A0)S, where A_ is a qxq Jordan matrix whose
eigenvalues A, have negative real parts R e i , < — a < 0 , i=l,...,q; Ao is a rxr Jordan
matrix whose eigenvalues fit have zero real parts and simple elementary divisors,

— 0, j = l , . . . ,

Introduce the matrix functions

r(£ + B ) S d i a g ( e ' - s ) , e A o ( ' - s ) ) S , t>s;

f(£ + B ) S d i a g ( e ' - s > , O r ) S , t>s;
('S) | (£ + B)- i ( ' ' s ) + p ( s - ' )S-1diag(eA-"- s )O)5 t£s; ( '

C (t x = f ( £ + S ) ^ d i a g ( O , , e A o ( ' - s ) ) S , t>s;
o(>> j ( £ + 0)- ' ' " - s ) + ' ( s -"S-1diagOeA°( ' - J ) )S t£s ( '
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An immediate verification shows that

G(t,s) = G_(M) + G0(t,s), (14)

G{t,t) = E, for tel, (15)

G(tk + O,tk) = E, (16)

k,s), for s<tk, (17)

^ = AU for tHt. (18)

where U is any of the matrices G, G- or Go.
Then the solution x(t) of (1) is of the form

x{t) = G(t, to)xo + J G(t, s)g(s) ds. (19)
'o

Using (15)-(18) we see that the solution y{t) of (2) satisfies, for t>t0, the equation

£ G(t, tk)bk(y(tk)). (20)

Bearing in mind the structure of the matrix A, A2, (12) and (13), the following
estimates for the matrices G-, Go and G can be obtained

||G_(t,s)||^aexp(-a(t-s)), for O^s^Koo, (21)

||Go(t,s)||ga, for tel.se I, (22)

||G(t,s)||^a, for O^s^t<oo, (23)

where the constant a > 0 does not depend on s and t.
The inequalities (4), (6), (21) and (23) together with (19), (20) yield the estimate

\y(t)-x(t)\^a\yo-xo\ + \al(s)\y(s)\ds+ £ apk\y(tk)\. (24)
'o ' o * ' * * '

Let c = supIe/|x(t)|. Then it follows from (23)

-xo\ + \al(s)\y(s)\ds+ £ apk\y(tk)\. (25)
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Applying Lemma 1 to (25) one obtains

<tk<

(c + a\yo-xQ\)exp(\aA(s)ds + £
V'o <<,«*

(c + a\yo-xo\)exp(a(\k(s)ds +
V V o 'o*

Therefore, each solution of (2) is bounded and, in view of A3, A5 and A6, is defined
on /.

If y(t) = y(t;to,yo) is a solution of (2), then similar arguments yield the estimate

\y(t)-y(t)\^M\yo-yo\ (M = aexp(aL)). (26)

It is easy to see that the following relations hold:

Go(t,s) = G(t,to)Go(to,s), for t>to,s>to,t±tk,s±tk, (27)

0(t0,tk), for toel and fc=l,2 (28)

where co equals — 1, 1 or 0 depending on the mutual deployment of t0, tk and t.
It follows from (22) that the matrix

0(to,tk) (29)

can be estimated as

\\F(to,tk)\\^N, (30)

where the constant N > 0 does not depend on t0 and tk.
Introduce the mapping

yoi->xo, xo = yo + S,o(yo), (31)

where

S,0(y0) = ]G0(t0,s)f(s,y(s))ds+ X F(to,tk)bk(y(tk)). (32)
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Now from the boundedness of y(t), the estimates (23), (30) and conditions (4), (6) and
(8) one is able to conclude that for each fixed t0 e / the mapping S,o{yo) is defined for all
yoeR\

Let x0 e R" be fixed and consider the mapping

U,o:R^R", U,0(y0) = yQ-Sto(y0).

Using conditions (5), (7) and the estimates (23), (30) and (26) we obtain

- fol- (33)

It follows from (33) and (8) that for t0 sufficiently large the mapping U,o is contractive
and has a unique fixed point yoeRn, U,o(y0) = y0, i.e. the mapping (31) is one-to-one. Let
us fix such a t0.

Since the solutions of (1) and (2) are uniquely determined by the initial conditions x0

and ya, then the mapping (31) generates a one-to-one correspondence between the
solutions x(t) = x(t;to,xo) and y(t) = y(t; t0, y0) of these systems.

Now (19), (20), (31), (14), (27)-<29) and (32) yield the following relation between two
corresponding solutions

\ G-{t,tk)bk(y(tk))

- J G0(t, s)f(s, y(s)) ds-Y. G0(t, tk)bk(y(tk)). (34)

Let /C = sup(e/|>>(f)|. Then, using (34), (21), (22), (4) and (6) one obtains the estimate

\y(t)—x(t)\^Kal Jexp( — ct(t — s))A(s)ds + £ exp(-a.(t — tk))Pk

\'o •o<tk<t

+ [ l{s)ds+Y pk). (35)

It follows from (8) that

I — tx> \ t t S tk /

Let t > 2t0. Then

}exp(-o(t-sMs)ds+ £ exp(-a(t-t*))&
'o < o < 1 * < 1

/ (XfN/00 oo \ oo
<exp - — f A(s)ds+ Y pk + f A(s)ds+ Y 8t. (37)2 *=1 / 1/2 1/2S1,
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With (36) in mind the estimates (35) and (37) yield l i m , ^ |_y(t)-x(r)| = O.
Thus, Theorem 1 is proved.

Remark 1. In the case when the system (2) is linear (f(t, y) = P(t)y, bk(y) = Pky; P(t)
and Pk,k=l,2,... are nxn matrices) Theorem 1 remains valid if A1-A4 hold and A5,
A6 are replaced by

A5'.
A6'. The matrix function P(t) is continuous on / and

£
* = 1

Remark 2. The analysis of the proof of Theorem 1 shows that the Lipschitz
conditions (5) and (7) are used only when establishing the uniqueness and continuity of
the solutions of (2) as well as the existence of the inverse mapping of (31). These
conditions together with (8) restrict the application of Theorem 1. If one omits the
invertibility of the mapping (31), then the following result takes place.

Theorem 2. Let the following conditions be fulfilled:

1. The conditions A1-A5 hold.
2. The functions f(t,y) and bk(y), k=l,2,... are continuous on their domains and there

exist a non-negative continuous function X:l-*I and constants Pk^0, k = 1,2,..., such that

\f(t,y)\£Ht)\y\, for tel and yeR",

Hy)\^pk\y\, for yeR",

3. The function f{t,x) is locally Lipschitzian in y in the domain I x R".
Then for each solution y(t) of (2) there exists a solution x(t) of (1) such that
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