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Abstract. We review the theory of the formation and gravitational collapse of magnetized
molecular cloud cores, leading to the birth of T Tauri stars surrounded by quasi-Keplerian disks
whose accretion is driven by the magnetorotational instability (MRI). Some loss of magnetic
flux during the collapse results typically in a dimensionless mass-to-flux ratio for the star plus
disk of λ0 ≈ 4. Most of the mass ends up in the star, while almost all of the flux and the
angular momentum ends up in the disk; therefore, a known mass for the central star implies
a computable flux in the surrounding disk. A self-contained theory of the MRI that drives the
viscous/resistive spreading in such circumstances then yields the disk radius needed to contain
the flux trapped in the disk as a function of the age t. This theory yields analytic predictions
of the distributions with distance � from the central star of the surface density Σ(�), the
vertical magnetic field Bz (�), and the (sub-Keplerian) angular rotation rate Ω(�). We discuss
the implications of this picture for disk-winds, X-winds, and funnel flows, and we summarize the
global situation by giving the energy and angular-momentum budget for the overall problem.
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1. Introduction
Contemporary star formation occurs in dense cores found in giant molecular clouds

(Shu et al. 1987; Evans 1999). Two viable but divergent opinions hold concerning the
mechanism that produces such cores. The first relies on the leakage of magnetic support
by the action of ambipolar diffusion (e.g., Mestel & Spitzer 1956; Nakano 1979; Lizano &
Shu 1989; Basu & Mouschovias 1994). The second invokes transient compression by con-
verging turbulent flows (e.g., Elmegreen 1993; Padoan 1995; Klessen, Heitsch, & MacLow
2001; Vázquez-Semadeni 2005). Recent observations show that early-stage, loosely ag-
gregated, cores in the Pipe Nebula (Lada et al. 2007) and late-stage, tightly aggregated,
cores in the Rho Oph region (André et al. 2007) are both internally quiet and have little
core-to-core relative motion. These facts demonstrate that hypersonic turbulence of the
variety embraced by the early enthusiasts plays little role in the evolution of dense cores
into stars and planetary systems. Turbulence may yet enter in initiating core formation
through its decay or in triggering the formation of the most massive stars under very
crowded conditions, but these possibilities are not of interest in the present review.

Many studies, conducted under a variety of assumptions and boundary conditions,
show that the end product of the leakage of magnetic fields from a slowly condensing,
lightly ionized, dense pocket of gas and dust by ambipolar diffusion is a gravomagneto
catastrophe, whereby the central regions of the condensing core formally tries to reach
infinite density in finite time. A useful convention is to define t = 0 as the moment of
catastrophe, with t < 0 being the condensation phase driving starless cores toward gravo-
magneto catastrophe, and t > 0 being the subsequent, inside-out, dynamical collapse to
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form a star plus disk. In a spherical coordinate system (r, θ, ϕ) with origin at the core
center, a nonlinear attractor involving magnetized isothermal support against self-gravity
apparently exists that produces solutions in which the density ρ and magnetic flux func-
tion Φ at the critical instant t = 0 approach the form of a singular isothermal toroid
(Li & Shu 1996):

ρ → a2

2πGr2 R(θ), Φ(r, θ) → 4πa2r

G1/2 φ(θ), (1.1)

where a is the isothermal sound speed and R(θ) and φ(θ) are well-defined functions of
the polar angle θ once the dimensionless mass-to-flux ratio λ along flux tubes achieves a
critical constant value λ0 for the inner regions of the core. The likely value of λ0 varies
from 2 to 1 for regions of average to high ionization-fraction (perhaps characteristic of
regions of low- and high-mass star formation; see Crutcher & Troland 2006).

The subsequent evolution for t > 0 yields a mass infall-rate onto a growing central
protostar plus disk that has the form,

Ṁ =
m0(Θ1/2a)3

(1 − λ−2
0 )G

, (1.2)

where m0 is a dimensionless coefficient of order unity and Θ � 1 is a factor accounting for
the enhancement of the effective isothermal sound speed a squared associated with the
effects of magnetic pressure and possibly turbulence. The natural development of head-
start velocities (see Lee et al. 2001; Harvey et al. 2002) and over-densities (compared to
the static singular isothermal sphere; see Harvey et al. 2001) from the previous epoch of
ambipolar diffusion yield typical values of m0 that are a factor of 2 or 3 larger than the
classical value m0 = 0.975 (Shu 1977, Adams & Shu 2007). For conditions measured in
dense molecular cloud cores, Ṁ might vary from a few times 10−6 M� yr−1 (low-mass
star formation) to ∼ 10−4-10−3 M� yr−1 (high-mass star formation).

2. Catastrophic magnetic braking if field freezing applies
Because the dynamical collapse occurs quickly compared with ambipolar diffusion,

field freezing holds as a rough approximation for the epoch t > 0. Numerical calculations
of the collapse phase using the ZEUS-2D code (Stone & Norman 1992) reveals difficul-
ties, however, some that were anticipated, and others, not (Allen, Li & Shu 2003). An
anticipated difficulty is that if gravitational collapse occurs to a virtual point because of
the absence of rotation, then the central star would end with a mass-to-flux ratio given
approximately by 2πG1/2M∗/Φ∗ ∼ λ0 ∼ 2. For a star with mass M∗ ∼ 1M� and radius
R∗ ∼ 3R�, this would imply a surface field B∗ ∼ Φ∗/πR2

∗ ∼ 107 G, about four orders of
magnitude larger than measured fields on the surfaces of T Tauri stars. Instead of being
dragged in from the interstellar medium, the observed kG fields in these stars probably
result from dynamo action.

The above difficulty was already known to Mestel & Spitzer (1956) and prompted them
to propose that ambipolar diffusion would prevent the discrepancy: the interstellar flux
would be left behind in the interstellar medium during the collapse to form a star. The
modern situation reviewed above shows that λ0 at the end of the ambipolar diffusion
epoch typically amounts to only 2, and not 104 times larger.

From observations we now know that stars of all masses form via the intermediary of
an accretion disk (for recent evidence concerning high-mass stars, see Rodŕıguez, Zapata
& Ho 2007). Accretion disks have cross-sectional areas that are much larger than stars,
so they can easily contain the same flux without having absurdly high levels of magnetic
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field. However, an unexpected surprise in the simulations of Allen, Li & Shu (2003) was
that accretion disks do not form if λ0 is anything like 2 and field freezing were to apply.
Galli et al. (2006) give an analytical demonstration that the magnetic braking associated
with the collapse to a central point, which produces a magnetic configuration that is a
so-called “split monopole,” transfers angular momentum away from the central regions
so efficiently by the radiation of torsional Alfvén waves that Keplerian disks cannot form.
High-resolution numerical simulations conducted by Fromang et al. (2006) and Price &
Bate (2007) have confirmed these results.

Fortunately, a little bit of flux slippage, perhaps due to electrical resistivity rather
than ambipolar diffusion, can go a long way toward promoting disk formation (Shu et al.
2006). From a combination of theory and observations (see Girart et al. 2006), Shu et al.
(2007) argue that an additional loss of flux by a factor of 2 on the way down to forming
a star plus disk is plausible, yielding the estimate λ0 ≈ 4 for the value appropriate
for such configurations. Using different starting configurations, Hennebelle & Fromang
(2007) find that disk formation is possible even with field freezing if λ0 = 20, but not if
λ0 = 5. Below, we adopt a value λ0 = 4 to compute the flux trapped in the circumstellar
disks of YSOs, but an uncertainty of a factor of a few exists in this estimate.

3. Mean-field MHD of accretion disks
A net magnetization of the circumstellar disks surrounding YSOs makes the MRI

(Hawley & Balbus 1991; Balbus & Hawley 1998) a natural candidate for the mechanism
of inward transport of matter and outward transport of angular momentum. Such a
process is needed to explain why objects like the mature solar system have almost all
the mass in the central stars and almost all the angular momentum in the companions
(planets) that supposedly formed out of their nebular disks. Unfortunately, no previous
MRI simulation is both global and has nonzero net flux threading the disk, perhaps
explaining why most MRI simulations give too low an effective viscosity compared to the
requirements of real systems (King, Pringle & Livio 2007; Fromang & Papaloizou 2007).

3.1. Turbulent viscosity

In the absence of relevant numerical simulations, we use mixing length theory to estimate
the transport coefficients associated with the turbulence induced by the MRI. Consider
the schematic diagram in Figure 1, adapted from Shu et al. (2007). We imagine that
accretion in the cylindrically radial direction � stretches the field lines that would oth-
erwise stick vertically through the disk so that the poloidal B has not only a vertical
component Bz , but also a radial component that reverses sign from B−

� < 0 at the lower
surface to B+

� > 0 at the upper surface. We then suppose that turbulent fluctuations
occur that occasionally create a loop that pinches and disconnects from its parent field
line (see steps 2 and 3 of top panel). Because a detached loop is easy to shear, differential
rotation would stretch the radial fluctuation δB� into a toroidal field δBϕ , where the
two fields are related (including the proper sign) by the order of magnitude estimate,

δuδBϕ ∼ δB� �
∂Ω
∂�

δ�. (3.1)

For the fluctuations most effective in transport, the velocity perturbation δu is related
to the mixing length δ� by the natural inverse correlation time, Ω,

δu ∼ Ωδ�. (3.2)
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Figure 1. Schematic diagram of scenarios by which field loops are created and destroyed by
magnetohydrodynamic turbulence when the mean field is strong: (top) in 2-D by stretch, pinch,
disconnect and (bottom) in 3-D by stretch, pinch, disconnect and twist, reconnect, relax. The
depiction is the meridional plane (�, z), except for the twist associated with differential rotation
indicated by the block arrow, which occurs out of the plane of the page. The twist in the bottom
diagram gets the fields oriented in opposite directions at the target reconnection point, which
results in the “yes” sign to proceed to steps 4 and 5. (adapted from Shu et al. 2007)

Solving for δBϕ , we get

δBϕ ∼ �

Ω
∂Ω
∂�

δB� . (3.3)

Using B+
� as the natural scale for δB� , we estimate the associated Maxwell stress as

δB� δBϕ

4π
∼ (B+

� )2

4π

�

Ω
∂Ω
∂�

. (3.4)

The above expression should be compared with the tangential momentum-transport term
usually modeled as a viscous stress:

ρν�
∂Ω
∂�

∼ Σ
2z0

ν�
∂Ω
∂�

, (3.5)

where ν is the coefficient of (turbulent) kinematic viscosity, Σ is the surface density of the
disk (gas plus dust), and z0 is its effective half-height. Comparing the two expressions,
we may identify

ν = F

[
(B+

� )2z0

2πΣΩ

]
, (3.6)

where F is a dimensionless “form factor” of order unity (or somewhat smaller) that
corrects for the uncertainties in the twiddles and an effective integration over the thickness
of the disk.

In a steady accretion disk where F is a spatial constant, the radial component of the
field at the upper surface of the disk is related to the vertical component Bz in the
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mid-plane by the equation (Shu et al. 2007):

B+
� = I�Bz , (3.7)

where I� is an integral that has a well-determined, order-unity, value once the disk flare
is specified (i.e., the power-law dependence of z0 on �, which is related to the index �).
The substitution of equation (3.7) into equation (3.6) yields the form:

ν = D
B2

z z0

2πΣΩ
, (3.8)

where D = I2
� F is an adjustable dimensionless parameter of order unity if the MRI is

fully developed. Reassuringly, equation (3.8) is the viscosity expression of Shakura &
Sunyaev (1973) if we substitute magnetic pressure in the mid-plane for gas pressure.

3.2. Turbulent resistivity
In order for accretion to occur, not only must outward angular-momentum transport
occur diffusively at an enhanced rate relative to friction at a molecular level, but so must
inward transport of matter occur by crossing stationary mean-field lines faster than the
resistive diffusion associated with knocking ions and electrons off field lines by atomic and
molecular collisions. Inward matter transport does not happen if loop dynamics involve
only the steps indicated in the top series of picturess in Figure 1. The reason follows.

Consider the matter trapped inside the magnetic loop as the latter tries to move
radially inward from the position where it disconnected from the upstream mean field
line. If only the 2D degrees of freedom are considered, this loop cannot attach onto
the downstream mean field line because its field orientation is parallel to the target
reconnection point. Magnetic reconnection will not occur under such circumstances. The
field loop in the sequence of the top panel is thus doomed to bounce (random-walk ≡
diffuse) between the mean field lines sandwiching it, until it accidentally, sooner or later,
reattaches to its original parent (upstream) field line. Although the stretching of the
field line in the azimuthal direction can diffusively transport some angular momentum
by the afore-computed Maxwell stresses, no transport of matter across field lines will
occur above and beyond what collisions at a microscopic level allow.

Consider the situation, however, if an extra 3D step of twisting the field loop occurs
out of the (meridional) plane of the page, as indicated by the block arrow in panel 3 of
the bottom sequence of pictures in Figure 1. Such a vortical twist reverses the inner and
outer field directions of the original loop, allowing the loop to attach onto the downstream
mean field line by magnetic reconnection. In the process, the enclosed matter will have
moved from the upstream field line to the downstream field line at a rate that potentially
much exceeds molecular diffusion. We may estimate the associated turbulent diffusion
coefficient (turbulent resistivity) by the following product of terms:

η = F

(
B+

� Bzz0

2πΣΩ

)(
−z0

Ω
∂Ω
∂�

)
. (3.9)

The term in the first parenthesis is the same as its bracketed counterpart in equation
(3.6) except that one factor of B+

� has been replaced by Bz . Viscous transport depends
only on there being a (B+

� )2 , whereas resistive transport via the formation of loops re-
quires the poloidal field to have mean curvature B+

� Bz . As discussed previously, however,
the creation of field loops by itself is not enough to give resistive diffusion. The created
field loops must also be able to reattach to downstream field lines, and this requires an
added step. For loops of typical vertical size z0 , the fraction of all formed loops that
will have the right orientation for the downstream reconnection can be estimated to be
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the ratio of z0 to the radial length associated with the angular shear −Ω(∂Ω/∂�)−1 .
This ratio is the term inside the second parenthesis. Finally, a dimensionless coefficient
of order unity exists in front, which must be taken to equal the same F as appears in
equation (3.6) if steady disk accretion is to be possible (Shu et al. 2007).

When equation (3.7) holds and when the rotation law of the disk is quasi-Keplerian,
−(�/Ω)(∂Ω/∂�) = 3/2, the turbulent resistivity is smaller than the turbulent viscosity,

η =
3z0

2I��
ν. (3.10)

by a factor ∼ the aspect ratio z0/� � 1 for a thin disk. First found by Lubow, Papaloizou
& Pringle (1994) via a set of arguments motivated by the desire to drive disk winds, this
result is surprising if we use a naive picture of turbulent mixing, but it is a natural
outcome when viewed via the model of “loop dynamics” depicted in Figure 1.

4. Steady-state solution
When substituted into the governing equations for a steady-state, magnetized, disk

with accretion rate Ṁd , the viscosity and resistivity expressions yield the following solu-
tions for the rotation rate Ω, surface density Σ, and vertical component of the magnetic
field Bz as functions of radial position � in a disk surrounding a star of mass M∗:

Ω(�) = f

(
GM∗

�

)1/2

, (4.1)

Σ(�) =
f

1 − f 2

(
I�

3πDA

)
Ṁd

(GM∗�)1/2 , (4.2)

Bz (�) =
(

2f

3DA

)1/2
(

GM∗Ṁ
2
d

�5

)1/4

, (4.3)

where f � 1 is a constant accounting for the partial support against stellar gravity by the
magnetic tension and A is the disk aspect ratio, A ≡ z0/�. The above results are derived
in an approximation that ignores the self-gravity of the disk relative to the gravity of the
star, and that assumes the effects of gas pressure and magnetic pressure are negligible
compared with magnetic tension force in modifying the centrifugal balance of the disk.

The disk aspect ratio is computed from the equation for vertical hydrostatic equi-
librium, which yields a relationship between A and the square of the thermal speed
a2

m ≡ kTm/m in the mid-plane of the disk of the form (see Appendix C of Shu et al.
2007):

a2
m =

1
2

[
I�(1 − f 2)A + A2] GM∗

�
. (4.4)

In principle, we should compute the mid-plane temperature Tm for a thin disk from the
condition that radiative conduction and thermal convection (if any) carry the energy of
viscous and resistive dissipation to the disk’s upper and lower surfaces where this heat
is radiated away per unit area at some effective black-body rate σT 4

e . In practice, for
quick modeling purposes, we shall assume A(�) to be given typically and empirically as
a power-law, which we will take here to be (see, e.g., D’Alessio et al. 1999):

A(�) = 0.1
( �

100 AU

)1/4
. (4.5)

With 1/4 as the power-law exponent, Shu et al. (2007) compute the self-consistent value
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for I� to be 1.742. They also argue that the plausible theoretical domain for this exponent
ranges from 1/8 to 1/2, implying that the power-law for Σ varies from Σ ∝ �−5/8 to
Σ ∝ �−1 , in agreement with the empirical findings of Andrews & Williams (2007).

In addition, we suppose that we can ascribe a fiducial age tage to a disk based on the
time it would take to completely drain the disk mass Md at the accretion rate Ṁd :∫ RΦ

0
Σ(�) 2π�d� ≡ Md(RΦ) = Ṁdtage . (4.6)

In the above we have taken the outer radius of the disk to equal the value RΦ needed to
contain the flux Φd, ∫ RΦ

0
Bz 2π�d� = Φd = 2πG1/2M∗/λ0 , (4.7)

where λ0 is the dimensionless mass-to-flux ratio brought into the system by the gravita-
tional collapse from a molecular cloud core. When the indicated integrals are performed
with the integrands given by the steady-state solutions for Σ(�) and Bz (�), we are
implicitly assuming a definite value for the total angular momentum of the system,

Jd =
∫ RΦ

0
�2ΩΣ2π�d�. (4.8)

This value will generally not equal the actual amount. At late times, the actual system
will not have enough angular momentum to maintain the system in steady state all the
way out to the flux radius RΦ, and the disk will experience time-dependent spreading.

Other problems may also arise, such as dead zones because of insufficient ionization
in the central layers (Gammie 1996). Disregarding such difficulties, in steady state, we
can write the requirement of centrifugal balance against the joint attraction of the stellar
gravity and the magnetic repulsion (due to tension) acting inside the disk as

�Ω2 =
GM∗
�2 − B+

� Bz

2πΣ
. (4.9)

Using equations (3.7), (4.1), (4.2), (4.3), (4.6), and (4.7), we now transform the above
requirement to the following formula for the departure from Keplerian rotation:

1 − f 2 =
(

0.5444
λ2

0

)
M∗

Md(RΦ)
, (4.10)

where we have specialized the numerical coefficient to the value applicable to the flaring
law (4.5). Because the star’s mass M∗ increases as the disk accretion proceeds, whereas
the disk’s mass Md(RΦ) decreases, equation (4.10) states that the departure from Ke-
plerian rotation, 1 − f 2 , increases with time. With a fixed total mass and flux for the
system, the disk becomes increasingly magnetized with time, leading to a growing role
for magnetic repulsion relative to gravitational attraction of the disk.

4.1. Four astronomical models
The four columns following the object in Table 1 gives the input parameters when we
assume that λ0 = 4 in the models for a T Tauri star, a low-mass protostar, an FU Orionis
star, and a high-mass protostar. Notice that the input values are ordinary except for the
choice D = 10−2.5 for the T Tauri model, which is to be contrasted with the more natural
selection D = 1 for the other three models. The small value for D is made so that the T
Tauri disk would not have spread to ridiculously large radii RΦ, and it can be partially
justified physically on the grounds that T Tauri stars may have dead zones.
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Table 1. Parameters of four model systems

Object M∗ Ṁd tage D f RΦ Md (RΦ ) Jd (RΦ )

(M�) (M�/yr) (yr) (AU) (M�) (M� AU km/s)

T Tauri star 0.5 1 × 10−8 3 × 106 10−2 .5 0.658 298 0.0300 5.12
Low-mass Protostar 0.5 2 × 10−6 1 × 105 1 0.957 318 0.200 51.4
FU Ori 0.5 2 × 10−4 1 × 102 1 0.386 16.5 0.0200 0.473
High-mass Protostar 25 1 × 10−4 1 × 105 1 0.957 1,520 10.0 39,700

The last four columns in Table 1 yield the output parameters of the analytic theory. A
detailed discussion of these results can be found in Shu et al. (2007). For here, we merely
note that the predicted sub-Keplerianity f = 0.658 of T Tauri disks is surprising and
extreme. If we were to make a less extreme choice for λ0 , say, λ0 = 8, the quantity 1−f 2

in equation (4.10) would decrease by a factor of 4, and f would equal (a perhaps more
acceptable) 0.926, with magnetic fields a factor of 2 lower than discussed below.

4.2. Expected magnetic fields

Figure 2 shows the magnetic field distribution from equation (4.3) when we adopt the
parameter choices of Table 1. The solid line applies to the M∗ = 0.5M� models and
the dashed line to the M∗ = 25M� model, with f chosen to be 0.386 for the former
(appropriate to FU Ori) and 0.957 for the latter (appropriate to the high-mass protostar).
The disk accretion rate Ṁd and stellar mass M∗ have been scaled according to the formula
that labels the vertical axis. The data points come from Donati et al.̃(2005) for FU Ori,
Winnberg et al.̃(1981) for V1057 Cyg, Hutawarakorn & Cohen (1999) for G35.2-0.74N,
Hutawarakorn et al.̃(2002) for W75N, and Edris et al.̃(2005) for IRAS 20126.

In general, the theoretical expectations are in line with the empirical measurements.
The agreement is impressive when we realize that the magnetic fields measured from
spectropolarimetry and the Zeeman effect in maser emission lines span almost six orders
of magnitude in field strength and over four magnitudes in spatial scale. From Figure
2, however, we see that a vast observational desert exists in the measurements made at
the extremes of this range. In this desert, there exists empirically only the meteoritic
measurement of roughly 1 G from chondritic materials that come to us presumably from
about 3 AU in the asteroid belt (Levy & Sonett 1978). Fortunately or fortuitously, this
measurement also lies on the theoretical line (see the discussion in Shu et al. 2007). Much
work awaits observers in the ALMA era to fill in the gaps of Figure 2.

5. Implications for disk winds
The expectation that strong magnetization makes the inner parts of accretion disks

sub-Keplerian in their rotation rates has important consequences for the feasibility of
disk winds. It is well-known that one criterion for a cold, magnetocentrifugally driven,
disk wind to arise is that the B field should emerge from the disk surface at an outward
angle of more than 30◦ with respect to the vertical direction (Blandford & Payne 1982).
Translated to our language, this requires B+

� /Bz > 1/
√

3, which is amply satisfied by
equation (3.7) where B+

� /Bz = I� = 1.742.
Magnetocentrifugally driven disk winds need to satisfy a second criterion, namely,

that the acoustic speed at the surface as must make up for any departure from Keplerian
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Figure 2. Scaled magnetic field Bz plotted against radial distance � in the accretion disk
from the central star.

rotation at the launch point �, a condition that Shu et al. (2007) express as

a2
s >

1
4
(1 − f 2)

GM∗
�

. (5.1)

If the departure from Keplerian rotation is zero, 1 − f 2 = 0, then even cold winds with
as = 0 can be magnetocentrifugally launched from the disk surface provided that the first
criterion B+

� /Bz > 1/
√

3 is satisfied. However, if 1− f 2 > 0, then thermal help is needed
to overcome the gravitational potential GM∗/�. The necessary coefficient is estimated
as 1/4, because Parker’s (1963) theory for the unmagnetized, non-rotating, solar wind
produces one factor of 1/2, and another 1/2 can be justified on the grounds that rotation
at Kepler speeds brings the gas within a factor of 1/2 of having enough energy to escape.

Comparison with equation (4.4) now reveals the potential problem. The first term in
that equation is smaller than the term on the right-hand side of equation (5.1) by the
factor 2I�A, which is a small number in the inner regions of the disk where A has a value
of only a few percent. The first term in equation (4.4) dominates in the case of strongly
magnetized disks where the vertical thickness of the disk is compressed more by the
gradient of the magnetic pressure associated with B2

� than it is by the vertical component
of the stellar gravity (effect of the second term). But the sound speed in the surface
layers cannot exceed the sound speed in the mid-plane, unless the disk surface is heated
externally, for example, by high-energy photons (X-rays, UV) coming from the central
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Figure 3. Interaction of a magnetized accretion disk with a strongly magnetized central star.

star. Without external heating, the criterion of equation (5.1) is in contradiction with
equation (4.4). Thus, disk winds can be magnetocentrifugally driven in the magnetically
dominant regime only if they are warm (cf. the presentation of Cabrit at this conference).
In this case the rate-limiting factor in determining the wind mass-loss rate is the stellar
photons reaching the disk surface, a condition that would make disk winds closely related
to the process of photo-evaporation (e.g., Font et al. 2004). Conversely, if the second term
in equation (4.4) dominates, then the magnetization of the disk has to be weak to make
1−f 2 < 2A2 , severely hampering the ability of the disk to drive powerful, fast, cold jets.

6. Implications for X-winds
Fast stellar jets almost certainly require an X-wind (Shu et al. 1994), and only X-winds

can make sense of the peculiar interpretation given to the He I observations by Suzan
Edwards in her presentation at this conference. The observational results reviewed by
Chris Johns-Krull at this conference similarly have no plausible explanation other than
X-wind theory. However, why does not sub-Keplerian rotation of the disk have the equally
ominous implication for X-winds that it does for disk winds?

6.1. Influence of disk fields
Equation (4.9) combined with Figure 3 supplies the answer to the last question. Equation
(4.9) states that sub-Keplerian rotation is expected only as long as the product B+

� Bz

is positive, i.e., only when the disk field makes an outward bend. But the sense of the
bend must reverse as we come to the inner edge of the disk and the accretion flow
attaches onto the stellar magnetosphere in a funnel flow onto the central star (Fig. 3).
The reversal in sign of B+

� Bz as this happens makes the disk rotation rate transition
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from sub-Keplerian values (in the disk proper), to Keplerian values (in the X-region), to
super-Keplerian values (in the forbidden region interior to the inner disk edge). Before
the latter happens, the disk (dark shade) is truncated and the matter flows onto the star
via a magnetospheric funnel (Shu et al. 1994; see also the simulations of Romanova at
this conference). The reversed pressure gradients at a sharp inner edge help with making
the transition from sub-Keplerian to super-Keplerian values.

To visualize what is going on in Figure 3, imagine the inward press of the disk field to be
resisted by the outward press of the squeezed magnetosphere (assumed to have a dipole
moment in the picture that is anti-aligned with the disk field; for a more general multipole
treatment, see Mohanty & Shu 2007). The squeezing pops open some of the previously
closed stellar fields, and these open fields become available to form the regions that are
dead or alive to the magnetocentrifugal flow (field angles at the surface of the disk less
than or greater than 30◦ from the vertical). The inward press on the stellar magnetosphere
also increases the disk rotation rate near the inner edge of the disk. Because of the added
presence of the disk fields (with comparable strengths as the compressed stellar field in
the X-region), X-winds will be better focused than the case with no disk field. Moreover,
the fraction fw of the disk accretion rate Ṁd in Figure 3 that ends up in outflow (lightly
shaded X-wind) rather than inflow (lightly shaded funnel-flow) will be less than 1/3
because of the pushing up of the trapped stellar flux toward a more vertical direction.
The lighter loading of field lines will make the terminal speeds of X–winds faster than
computed under the assumption that the disk is itself unmagnetized.

6.2. X-winds in action

The basic equations for steady, axisymmetric, X-winds were written down by Shu et al.
(1988) – all that has changed in the interim are the boundary conditions that are attached
to the two governing partial-differential equations. For a cold flow, the Grad-Shafranov
equation (Grad & Rubin 1958; Shafranov 1966) for the stream function ψ(�, z) reads:

∇ · (A∇ψ) +
1
A

(
J

�2 − 1
)

J ′

�2 +
2ββ′Veff

(β2 − �2A)2 = 0, (6.1)

where Veff = −(�2 + z2)−1/2 −�2/2 + 3/2 is the dimensionless effective potential in the
corotating frame. Bernoulli’s equation for the Alfvén discriminant A ≡ (β2ρ− 1)/�2ρ is

|∇ψ|2 +
1
A2

(
J

�2 − 1
)2

+
2�2Veff

(β2 − �2A)2 = 0. (6.2)

In the above J(ψ) and β(ψ) are functions of ψ associated, respectively, with the con-
servation of angular momentum carried in matter and field and with the freezing of gas
loaded onto the field at the base of the flow from the surface of the disk.

The difficulty with the above formulation is that equation (6.2) substituted into equa-
tion (6.1) yields a partial-differential of mixed type, changing from elliptic to hyperbolic
as the flow velocity crosses certain signal speeds (Heinemann & Olbert 1978). In the cold
limit, the relevant signal speed is the fast MHD speed, with the Alfvén surface where
A = 0 being only an apparent singularity where J(ψ) = �2 . These equations have been
attacked in various guises by Najita & Shu (1994, X-wind in the sub-Alfvénic region),
Ostriker & Shu (1995, funnel flow), Shu et al. (1995, X-wind far asymptotics), and Shang
et al. (1998, full X-wind solution by interpolation of near and far asymptotics). This piece-
meal treatment has been criticized by other workers (cf. Ferreira et al. 2006), but it has
produced global solutions of adequate accuracy for most astronomical applications.
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Nevertheless, a more systematic approach is desirable. Such an approach has been
found and implemented by Cai et al. (2007). It begins by defining an action integral:

S ≡
∫ ∫ [

A
2
|∇ψ|2 − 1

2A

(
J

�2 − 1
)2

+
Veff

β2 − �2A

]
2π�d� dz. (6.3)

The action S gives equation (6.1) when extremized with respect to variations of ψ, while it
gives equation (6.2) when extremized with respect to variations of A. Instead of attacking
the two relations as partial differential equations, we may then reduce the problem to
looking for trial functions in a variational approach. Details are given in Cai et al. (2007).
For here, we merely note that the solutions so obtained are in good agreement with the
earlier ones obtained by less sophisticated means.

7. Budget for energy and angular momentum
7.1. Photon Luminosity

To summarize the outlook of this paper, let us examine the global budget for energy
and angular momentum as the gas spirals from large distances in the disk to land in
hot-spots at the end of the funnel flow (see also Shu 1995). The hot-spot luminosity is
given dimensionally by

Lhot = (1 − fw)
GM∗Ṁd

R∗

(
1 +

R3
∗ sin2 θh

2R3
X

− 3R∗
2RX

)
, (7.1)

where θh is the mean co-latitude of the hot-spot. The term inside the parenthesis is
R∗/RX times the dimensionless specific kinetic energy of gas falling freely from rest at
the X-point in the corotating frame,

1
2
u2 =

1
r

+
1
2
�2 − 3

2
≡ −Veff , (7.2)

evaluated at the position of the hot-spot on the surface of the star, r = R∗/RX and
� = r sin θh . To get the system photon-luminosity, Lsys , the amount from the hot spot
is to be added to the amount L∗ liberated by the star and the disk-accretion luminosity:

Ld =
(
T +

1
2

)
GM∗Ṁd

RX
, (7.3)

where T is the dimensionless viscous torque just outside RX . Thus,

Lsys = L∗ + Lhot + Ld . (7.4)

7.2. Flow and Field Luminosity

In a cold gas, even in the presence of a magnetic field, the dimensionless specific energy
of the gas in the corotating frame, H ≡ |u|2/2 + Veff = 0 is a constant of motion. In an
inertial frame, H is the Jacobi constant, H = Eg − Jg , where Eg and Jg are the specific
energy and specific angular momentum of the gas measured in an inertial frame, with
Eg = 1 = Jg at the X-point where Veff = 0 by definition. Thus, the time rate of change
of the dimensionless specific energy Eg of a parcel of gas as we follow its motion is given
by the time rate of change Jg along a streamline. There is also a Poynting flux per unit
mass flux given by the analogous quantity JB . Thus, in a convention where we define the
gravitational potential energy in an inertial frame to be zero at infinity, the mechanical
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luminosity flowing out of the system in the form of an X-wind is given by

Lw = fw

(
J̄w − 3

2

)
GM∗Ṁd

RX
, (7.5)

where J̄w is the dimensionless specific angular-momentum carried on average in wind gas
and field. The constant streamline-averaged quantity J̄w = J̄ g

w + J̄B
w is the sum of two

variables where the gaseous contribution J̄ g
w starts at 1 at RX and becomes J̄w > 3/2

at infinity, whereas the field contribution J̄B
w starts at J̄w − 1 at RX and goes to zero at

infinity. Similarly, the mechanical luminosity contained in the funnel flow equals

Lfun = (1 − fw)
(

J̄∗ −
3
2

)
GM∗Ṁd

RX
. (7.6)

The constant streamline-averaged quantity J̄∗ = J̄ g
∗ + J̄B

∗ is the sum of two variables
where the gaseous contribution J̄ g

∗ starts at 1 at RX and becomes J̄∗ at the hot-spot,
whereas the field contribution J̄B

∗ starts at J̄∗−1 at RX and goes to zero at the hot spot
(if the hot-spot field is very strong).

If we add the two mechanical luminosities to the power dissipated in the disk to accrete
the gas from infinity to RX , we get

Lw + Lfun + Ld =
GM∗Ṁd

RX

[
fw J̄w + (1 − fw)J̄∗ − 1 + T

]
, (7.7)

which must equal zero since the gas and field in the star formation process starts with
zero specific energy at infinity and energy is conserved. This requires the expression in the
square bracket to vanish, which is equivalent to the conservation of angular momentum
because what leaves the X-region in the X-wind, fw J̄w , and in the funnel flow, (1−fw)J̄∗,
must come from what was originally there, 1, minus any angular momentum per unit
mass removed by the viscous torque, T . The conservation of energy is equivalent to
the conservation of angular momentum because, by the argument involving the Jacobi
integral, the only way to transfer energy (in the inertial frame) is to exert torque. In any
case, the conservation of angular momentum/energy in the X-region requires

fw =
1 − T − J̄∗

J̄w − J̄∗
. (7.8)

The fact that the sum of the three luminosities,

Lfun + Lw + Ld = 0, (7.9)

vanishes means that Lfun must be negative if Lw and Ld are positive. Mechanical power
flows out of the star because it gives up its right to rotate faster and faster if it becomes
locked to the rotation rate of the inner edge of the disk. Although this happens formally
for arbitrary T and J̄∗ as long as J̄∗ < 3/2 and T < 1 − J̄∗; in fact we expect J̄∗ and T
to be small compared to unity if the square of the stellar radius is small in comparison
to R2

X and if the MRI torque just outside RX cannot compete with wind or funnel flows
that remove or add angular momentum at dynamical rates.

The physical significance of Lfun being negative cannot be overstated. Angular mo-
mentum is transferred by the funnel flow to the inner edge of the disk, except for a small
part that is needed to keep the star locked to the disk. Otherwise, the star would begin
to rotate faster and faster, becoming highly flattened as a result. Disk truncation occurs
not by ram pressure effects (Ghosh & Lamb 1978), but by considerations of angular-
momentum transport. Funnel flows are the reason why stars are spheres and not disks.
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This fact is the ultimate tribute to the proposal made by Claude Bertout and Gibor
Basri many years ago that magnetospheric infall underlies the accretion luminosity of T
Tauri stars, not boundary-layer emission.
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