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D Y N A M I C S OF SLOWLY G R O W I N G E N T I R E F U N C T I O N S

I.N BAKER

Dedicated to George Szekeres on his 90th b i r thday

For a transcendental entire function / let M(r) denote the maximum modulus of
f(z) for \z\ = r. Then A{r) = log M(7-)/logr tends to infinity with r. Many prop-
erties of transcendental entire functions with sufiBciently small A(r) resemble those
of polynomials. However the dynamical properties of iterates of such functions may
be very different. For instance in the stable set F(f) where the iterates of / form a
normal family the components are preperiodic under / in the case of a polynomial;
but there are transcendental functions with arbitrarily small A(r) such that F(f)
has nonpreperiodic components, so called wandering components which are bounded
rings in which the iterates tend to infinity. One might ask if all small functions axe
like this.

A striking recent result of Bergweiler and Eremenko shows that there are arbitrar-
ily small transcendental entire functions with empty stable set—a thing impossible for
polynomials. By extending the technique of Bergweiler and Eremenko, an arbitrarily
small transcendental entire function is constructed such that F is nonempty, every
component G of F is bounded, simply-connected and the iterates tend to zero in G.
Zero belongs to an invariant component of F, so there are no wandering components.
The Julia set which is the complement of F is connected and contains a dense sub-
set of "buried" points which belong to the boundary of no component of F. This
behaviour is impossible for a polynomial.

I.* INTRODUCTION AND RESULTS

For an entire function / , which will always be assumed to be different from a linear
polynomial, we denote the n-th iterate by / " , n 6 N, and the Fatou set, which is the
maximal open set in which {/"} is a normal family, by F(f). The complement of F(f)
in C is the Julia set in J(f). The Julia set is non-empty, perfect and has the property of
complete invariance under / , that is z g J(f) if and only if f(z) € J(f), see [15].

M(r,f) — max{|/(z)j : \z\ — r] measures the growth of/. If log M(r,f) — O(logr)
as r —> oo, then / is a polynomial. Since logM(r, / ) is a convex increasing function of
log r the claim that there are transcendental entire functions of arbitrarily slow growth
with a property P is the assertion that for a given function A(r) which is positive and
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368 I.N. Baker [2]

increases to oo as r —¥ oo on R .̂, there is a transcendental entire function such that /
has the property P and satisfies

(1) logM(r,f) <A{r)\ogr, r > r0.

Sufficiently slowly growing transcendental entire functions share many properties
with polynomials, for example such functions are large outside small neighbourhoods of
their zeros (see for example, [16]). Thus it is natural to compare the iteration theory for
these two classes. We survey some results of this comparison and add to their number in
Theorem 1.

For a polynomial / the Fatou set F(f) has a component F^, which includes a neigh-
bourhood of oo, and is completely invariant, multiply-connected in C, where / " —» oo.
All other components of F(f) are simply-connected and their union together with J ( / )
is called the filled Julia set K(f) (= F£,). Thus K(f) is bounded. For transcendental
entire functions, however, J is unbounded by Picard's theorem.

MULTIPLY-CONNECTED FATOU COMPONENTS. The maximum modulus theorem implies

that in any multiply-connected component G of F(f) the iterates / " —> oo. Examples
of transcendental entire functions with this property were constructed in [2] and it was
shown later, in [4], that G could be assumed bounded.

WANDERING FATOU COMPONENTS. For each component G of F(f) the image fn{G) lies
in some component Gn. If all Gn are different, G is a "wandering component", otherwise
G is "preperiodic". The behaviour of iterates in a preperiodic component falls into a
small number of reasonably well-understood cases. For this reason Sullivan's proof [25]
that .fjpr rational functions there are no wandering components gave a great impetus to
rational dynamics. For transcendental entire functions, however, wandering components
can occur, and occur among the examples of [2, 4] above.

THEOREM A. [3, 4, 6, 7, 17] If f is a transcendental entire function and G is a
multiply-connected component of F(f) then G is bounded and wandering, and fn —> oo
in G. There are examples of arbitrarily slow growth.

In Theorem A, if Gn is the Fatou component which contains /"(G), then, for large
n, Gn+i is contained in the unbounded component of {Gn)

c.

For transcendental entire functions many other types of wandering components may
occur. For simply-connected types see for example, [6, 14].

BOUNDED FATOU COMPONENTS. For small transcendental entire functions the argument
of [5, pp 493-4] shows:

THEOREM B. If f is a transcendental entire function and for some 1 < p < 3,

(2) logM{r,f) = O{(logr)p} as r -» oo,

then there is a sequence Rn such that Rn+i = M(Rn,f), which tends to oo as n —> oo,

and no component ofF(f) can meet both C(0, Rn) and C(0, -R^+1), where C(0, r) = {z :

|z |=r}.
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[3] Dynamics of slowly growing entire functions 369

Thus all Fatou components of / are bounded. Stallard [25] has improved (2) to

0 6 ( 0 , 1 ) , r>r0

and further improvements are possible if one puts regularity conditions on the growth
[1, 23].

FUNCTIONS WITH J - C. For polynomials J jt C. Fatou [15] conjectured that J(ez) =

C, first proved by Misiurewicz [19]. Can J(f) = C hold for / of arbitrarily small growth?
Recently Bergweiler and Eremenko gave the answer.

THEOREM C . [10] Tiere are transcendental entire functions of arbitrarily slow
growth such that J(f) — C.

E X A M P L E S WITH J ^ C. The only very small functions whose iteration has been dis-
cussed seem to be those constructed to prove Theorems A and C (Theorem B is proved
by contradiction arising from the existence of an unbounded component). This raises the
question: Are there transcendental entire functions of arbitrarily slow growth such that
J ^ C and all Fatou components are simply-connected, or more generally such that oo
is not a limit function of iterates in any Fatou component?

THEOREM 1 . There is a transcendental entire function of arbitrarily slow growth
such that

(i) zero is an attracting Gxed point (so J ^ C),

(ii) every component G of F(f) is simply-connected and bounded,

(iii) / " -> 0 in G and
(iv) J(f) is a connected subset ofC

In fact statement (iv) follows from (ii) by Theorem 2 in [20]. However, the only
explicitly given example of transcendental entire functions with connected </(/) seems to
be sinz [12].

Theorem 1 also shows that it is not necessary for a small transcendental entire
functions with J(f) ^ C to have a wandering domain.

One may ask whether there are arbitrarily small transcendental entire functions such
that all Fatou components are simply-connected and / —> oo in at least one component.
RESIDUAL JULIA SETS. The residual Julia set Jr(f) consists of those points in J(f)
which do not lie on the boundary of any component of Jc — F(f). Such points are also
called "buried" and a component of J(f) which consists entirely of buried points is a
"buried component". If F(f) has a completely invariant component G, then •/(/) = dG
and there can be no buried points. This is the case for polynomials. If Jr(f) # 0, then
it is residual in J(f) in the sense of category theory [8, 12, 21, 22].

THEOREM D. [12] If f is a transcendental entire function such that F(f) has
a multiply-connected component, then J(f) has an everywhere dense set of singleton
components, which are buried components of J(f).

The singletons in Theorem D are in fact limits of a shrinking "nest" of different
small multiply-connected Fatou component. By Theorem A, / may have arbitrarily slow
growth.

https://doi.org/10.1017/S000497270001947X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270001947X


370 I.N. Baker [4]

What of / in Theorem 1? Here J(f) is connected so there is no buried component of
J(f). If K is any Fatou component and H is the component which contains 0, for large
n we have fn(K) C H, which shows that j (J fn{K) \ has bounded closure. It is shown

in [13] that (for any transcendental / ) J(f) contains points z such that fn(z) —>• oo.
Clearly such points are in J r ( / ) . Similarly we may show that any periodic point in J
which does not belong to dH (and such points are dense in J{f)) is in JT(f)-

The proof of Theorem 1 follows very closely that of Theorem C by Bergweiler and
Eremenko [10] with some small changes and some further development to suit our differ-
ent goal.

2. THE MAIN LEMMA

The main work in the inductive construction used to prove Theorem 1 is done by
the following lemma.

We shall use D(0, R) for the open disc of radius R, U(R) for {z : \z\ > R} and for
0 < r < s, the annulus {z : r < \z\ < s} will be denoted by A(r, s).

LEMMA 1. Let P be a polynomial of degree d > 2 and such that P(0) = 0, P(l) =
1, P'(0) = 0 and P"(0) ^ 0. Suppose that there are {d - 1) critical points c, ofP, with
c\ = 0, such that the P orbits ofd, i > 1, tend to oo.

Suppose further that e > 0, R > 0 and points zit 1 ^ i ^ k are given such that
Zi € K(P), l^i^k-1, while zk € F ^ P ) = K{P)C, and

K(P) U {zk,cu.. .,Cd-i} C D(0,R/2).

Then there exists a polynomial Q of degree (d + 1) such that

(i) Q(0) = 0, Q(l) = 1, Q'(0) = 0 and Q"(0) ^ 0;

(ii) One critical point of Q is ĉ  = 0 while the remaining d critical points cj
have Q orbits which tend to oo, the orbit of Cd lies in U(2R); indeed if
\Pn(ci)\ > T + e, where 0 < T < R, holds for n ^ n0, then |Q™(ci)j > T
for n^ no;

(iii) There are points z'it 1 ^ i ^ k, with \zt - z[\ < e, 1 ^ i < k, whose Q orbits
lie in K{Q);

(iv) For i < k, \Pn{zi) - Qn{zi)\ < e for all n. IfPm{Zi) = 0, then Qm{z'i) = 0.

The Q orbit of zk terminates in zero and contains a point in U(R);

(v) \P(z)-Q{z)\<eforzeD{0,R);

(vi) Jfoi , . . . ,a r are the zeros of P of multiplicities mi, . . .mr, then Q has an

rrij fold zero in each disc \z — a_,| < e and a single zero in {2 : \z\ > 2R};

(vii) There is a point of J{Q) in D{zk,2e).

PRELIMINARIES. We require some ideas about quasiconformal surgery as introduced in
dynamics by Douady and Hubbard [11] and Shishikura [24].

A homeomorphism <f> of a domain D to a domain D' is quasiconformal if it is abso-
lutely continuous on almost all horizontal and vertical lines and if the complex dilatation
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[5] Dynamics of slowly growing entire functions 371

\i = n<t,{z) defined almost everywhere in D by ^(z) = <hl<Pz satisfies HMH^, < 1. Two

quasiconformal maps 4>\ of D with the same \i almost everywhere differ by a conformal

m a p f '• 4>\ — } o 4>2-

If in the above we drop the requirement that <j> be a homeomorphism, the map is
called quasiregular.

LEMMA 2. [10] For every 6 > 0 and R > 0 there exists 77 > 0 such that every
quasiconformal homeomorphism <j>: C -> C which fixes 0, l,oo and such that H/xll,*, < V
holds, satisfies \<j>(z) - z\ < 8 for z 6 D(0, R).

LEMMA 3. [10] For every positive integer d and r\ > 0, there exists 7 € (0,1/2)
with the following property: Let hi, h2 be holomorphic functions in theannulusA(r/2,4r)
with \hi\ ^ 7. Then if we set

the map <p(z) = zd{\ + h(z)) is a quasiregular local homeomorphism A(r, 2r) —> C with
boundary values

<j>(z) = zd{\ + hi(z)), \z\ = r,

Further, the complex dilatation /j. of <p satisfies || \x ||oo< 77. In fact 7 depends only on d,

r\ and is independent ofr, r ^ 1. We note also that \h(z)\ < 27 in A(r, 2r).

3. P R O O F OF LEMMA 1

First one constructs a quasiregular map 5 of C which has most of the properties
desired for Q, which agrees with P in some D(Q, r) and with a polynomial of degree
[d+1) in U[2r), with SnA(r, 2r) C U(2r) for all n. This will permit us to find a suitable
quasiconformal conjugation ("change of conformal structure") which converts 5 to the
desired Q.

CONSTRUCTION OF S. Following [10] note that the Green's function U for F^P) with
pole 00 (so U(z) = log\z\ + 0(1) as 2 —> 00) satisfies

(3) U(z) = lim d~nlog |Pn(z) |.

Thus U(zk) > 0 and U(CJ) > 0, 2 ^ j ^ d — 1, and we can assume, by making a small

change of zk if necessary, that

This implies that there is a constant a > Osuch that jf/(z*) — c^C/fcj)! > a, 2 ^ j ^ d— 1,
p € Z and so

(5) \dTU(zk) - d"U(cj)\ >ad", 2 < j ^ d - 1, q € Z, n e Z+.
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From (3) we see that for a fixed j and large n the minimum over p of log{[P"(.2*)/|Pp(c7)|}

is achieved for some large value p and ~ ^Ufa) — dPU(cj)\ > ad". Hence

(6) min I log \Pn{zk)/P
p{cj)\\ -> oo as n -> oo.

Similarly

(7) min \Pn(zk)/P
j(zk)\-loo as n-> oo.

We choose 6 > 0 so that <5 < e/2 and that |z - z'\ <6 implies \P(z) - P{z')\ < e/2 for
all z, z' in D(0,R + e). We then choose 77 to satisfy Lemma 2 in £>(0, i?') which includes
D(0, i? + e) and P(£>(0, .R + e)), and a 7 € (0,1/2) for which Lemma 3 holds. Choose n
so large that with r defined by

(8)

and P(z) = ezd + Oiz"1'1) for large z, we have

(9) r>R>l, Ser>2, e(\Pn(zk)\
1/2 - d) > 2,

(10) erd(l - 27) :

(11) ' (l-7/2)|Pn(zf c)i1 / 2

(12) rnn\\og\F»{zk)/P>{ci)\\2\og±t j * 1,
4

p<n ' 7'

and

(14) ^ " ^ " ^ ( z ) - l | < 7 for \z\ > T-.

Write W = Pn{zk) and define h^z) = z-de~lP{z) - 1, h2{z) = -z/W and 5 by

(15) S{z) = P(z) =ezd(1+^(2)), zeD(0,r)

(16) 5(z) = Pi{z) = ezd(l + /i2(z)), 2 € C/(2r)

(17) 5(z) = e< (̂z) in A{r,2r),

where <f> is as in Lemma 3.

By (8) and (14) hi(z), h2(z) satisfy the conditions of Lemma 3, and 5 is quasiregular

in C with || Us | |^ V (outside A(r, 2r), \i = 0).

PROPERTIES OF S. The set V = U(2\W\) c U(16r) by (8). By (9) we have S{V) =

Pj(V) C V and Sn -1 00 in V. By (10) S maps A into V.

The only points where 5 fails to be a local homeomorphism are the critical points

Cj, 1 ̂  i < d - 1 of P, and one further point cd = dW/{d + 1) in U{2r). The P orbit of

Ci, 2 ̂  i ^ d - 1, tends to 00 and by (12) does not meet A(r, &\W\). Thus the S orbit of

Cj tends to 00. By the second inequality of (10) S ( Q ) = Pi(cd) € V and so Sn(cd) —> 00

as n —> 00.
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[7] Dynamics of slowly growing entire functions 373

By (13) we have &(zk) - P*(zk) € D(0,r), j < n, Sn(zk) = Pn(zk), Sn+1(zk) =
P\ {Pn{zkj) = 0 . For i < k the S orbit of z, is the same as the P orbit and lies in K{P),
since r > R.

P~n is univalent in D(W,p), where p = W(l - 7/2). If (p-n)'(W) = A, then by the
l/4-theorem P~n(D(W,p) D D(zk,\X\p/4). Since this latter set does not contain zero
we have

(18) |A|p<4|zt | .

If p' = \W\V2 we have from the last inequality (9) that \S(z)\ > e\W\d-l(p' - d) >
2\W\ for z € C = C(W,p'). Thus S{C) C V, S" -> 00 on C. By (11) p'/p < 1/2. By
the distortion theorem and (11), (18) for z € C

(19) \P-(z) - zk\ <

and the 5 orbit of P~n(z) tends to 00.

THE QUASICONFORMAL CONJUGATION $ : C ->• C. We define $ by giving its complex
dilatation p., which we compute, starting with /J. = 0 in V (the "standard complex
structure"), and elsewhere by "pulling this (j. back" in such a way as to make $ 5 $ - 1

analytic, that is making $5 , $ have the same dilatation. In fact this means taking fi = 0
00

except in A \J S~nA, and

= J in A

fa) = r{S{z))£2&, z e P { A ) .

Thus sup I/iiI = sup \/J.(<j>)\ ^ 77, noting that S" is analytic on S~"(i4).
C A

By the measurable Riemann mapping theorem [18] there is a unique quasiconformal
homeomorphism <$ of C which fixes 0,1,00 and has dilatation fi. The function Q —
$ 5 $ - 1 fixes 0, l,oo, is 00 only at 00 and is holomorphic in C. Thus Q is a polynomial.

PROPERTIES OF Q. All this is much as in [10]. The valency of Q at zero is two since
$ is a homeomorphism. The remaining critical points are cj = $(ci), 2 ^ i ^ d, and
their orbits are $(5m(Cj)) -»• 00. Thus if |Pn(Cj)| > T + e holds for n ^ n0 we have
\Sn{ci)\ > T + e in the construction and hence |Qn(cJ)| = $(Sn(ci)) > T. $(Sm(cd))
in W{2r) c U(R) for all m. We put z| = $(ZJ) whose Q orbit is ${Sm(zi)} which
is bounded and thus in K(Q). We have \z[ — z'\ < e because |$(z) - z\ < S < e/2 in
D(0,R)D{zi}.

For i < k the 5 orbit and the P orbit of z,- are the same and the Q orbit zj is given
by Qm{z'i) = $(Fm(zi)) so that |Fm(z,) - Qm(zi)| < £ for all m and if the P orbit of *
is in £>(0, ,4) then the Q orbit of z[ is in £>(0, X + e). If Pm{zi) = 0, then <3m(z-) = 0.
The Q orbit of zk also terminates in zero and contains a point outside D(0, R).
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Since $ - 1 has dilatation bounded by r\ we have for z G D(0,R) that |$~1(^) — z\ < <5,
\Po^~'i(z)-P{z)\ <e/2, \^oPo^-1(z)-Po^-1(z)\ < <5 and hence \Q{z)-P(z)\ < e.

The zeros of Q are ^(ai)) where <ij are the zeros of S and the multiplicities are the
same, (vi) is clear.

There is a point p with \p — zk\ < e/2 such that Sm(p) —* oo as m —¥ oo. Then
p' = ${p) satisfies Qm(p') = $(Sm(p)) -» oo. \p'-p\ < e/2. Since Qm(zk) = 0, z'k is in a
component of F(Q) where Qm —> 0 and the segment [z'k,p'] contains some point of J{Q),

whose distance from zk is at most 2e. The proof is complete. D

4. P R O O F OF THEOREM 1

Let A(r) be the given increasing positive function for which / is to satisfy (1). We
take sequences £„, Rn, n ^ 0 which are to satisfy

(20) 0 < en+i < -£•„,

(21) 8<Rn<Rn+1) Rn>2n, A(Rn) > 2n + 2,

and certain conditions to be imposed as we proceed. Let {an}, n ^ 0, be a countable
dense sequence in D(3,1) = A. We shall construct a sequence of polynomials Pn of
degree (n + 2) whose limit is the required function / .

Begin with PQ(Z) = z2, so that K(P0) = D(0,1). Make £o smaller if necessary so
that D(ao,4eo) C A, and Ro larger so that P — P0) e = e0, k = 1, z\ = a0 satisfy the
conditions of Lemma 1. Then there exists a polynomial Pi of degree 3 with a double zero
at zero, Pi ( l ) = 1, a critical point c[ whose orbit lies in U(2RQ) and tends to oo, a point
z\ with \z\ - Z\\ < £o whose Pi orbit terminates in zero. Further \P\(z) — Po(z)\ < e0 in
D{0,Ro) and there is a point of J(Pi) and hence also a point of K(Pi)c in A.

Let n( l ) be the smallest j such that Q.J g K{Pi)- Set 2O,o = <*0 = 21, ̂ o,i = z[,

z\,\ = Qii'--i2n(i)-i,i = a i - i i zn(i),i = otj. Make e\ smaller so that D(ai,Ae{) c A,
i < n ( l ) .

Enlarge /?! so that Lemma 1 applies to P = Pi, R = Rlt e = £\ with k = n'(l),
{zi,-- - , ^ } = {2o,i,- • -,Zn(\),\}, Zk = 2n(i),i = otj. Let P2 be the Q of Lemma 1.

Continuing in this way we obtain polynomials Pk of degree (k + 2) with a double
zero at 0, P*(l) = 1, integers n(k) increasing to oo, sequences £„, Rj, satisfying (20), (21)
and points zSjk, 0 < s ^ n(k), such that

(22) z s , k e K(Pk), 0^s< n { k ) ,

(23) 25ifc = a,, n(k - 1) < s ^ n(k),

(24) n{k) = min j with a,- $ K(Pk).

For 0 < s ^ n(/c), D(a3,4£fc) C A. For 0 < s ^ n(&),

(25) ks,*-z«,*+i| < e *

There is a point of ./(P*) and hence also a point of {K(Pk)}
c in Z?(z,,(jt_i),4efc_i).

(26) \Pk+i{z) - Pkiz)\ < £*> for z €
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[9] Dynamics of slowly growing entire functions 375

The Pk orbit of 2 ^ is close to the Pt_i orbit of Zi^-i for i ^ n(k - 1):

(27) \Pl(zi,k) ~ H-i(«*-i)\ < £*-!, j e N.

If the Pk-\ orbit of zitk-i terminates in zero, (which happens for i = n(k - 1)), then
so does the Pk orbit of ziik after the same number of steps. The Pt_i-orbit of zn(k-i),k-i

contains a point in U(2Rk-\).

The critical points of Pk other than zero are c^ , 1 ^ i < k, where 0 < \c\>k\ <
|c2,*| • • • < \ck,k\ and \cktk\ > 2Rk-\. The orbit of each of these under Pk tends to 00.
Further

(28) \ a , k - i - Cj , f c | < e * - i , l ^ i ^ k - 1 .

If |i=^_1(ci,Jt_1)| > 5, where S ^ Rk-U for n ^ TV, then |PA
n(ci,A)| > 5-e*_ i , n>N.

Apart from zero the zeros of Pk are simple,

0 < \ahk\ < \a2,k\--- < \ak,k\,

where

|ojt,fc| > 2Rk-i and |a_,,A_i - a_,-,fc| < ek-u 1 ̂  j ^ k.

By definition i?fc_i > 2 |a^_i | , so that we may assume

(29) 2 < |o,-lt| < -loi+i,*!, |a,-,*| > Ri-i-

By (26) Pt converges locally uniformly in C to an entire function / . First we estimate
M(rJ).

k

For a fixed k write ai>k — a so that .Fk(z) — ez2 F](l —z/oi). The condition P*(l) = 1

and (29) gives |e| 4 B where 5 " 1 = f ] ( l - 2~J), and also

00

+r/|a>|)J n = max{j : \aj\ < r}, B' = 2 ^ ( 1 + 2"n).
1 1

Thus

log M(r, Pfc) < log(55") + 2 log r + n log(2r) < 2n log r, r > r0.

But r ^ an > Rn-i by (29) and A(r) > 2n by (21). Thus logM(Pk,r) < A{r) logr,

r > r0 and the same estimate holds for all values of k.

Thus / satisfies (1). Since we may assume that A(r) < ( logr)2 we have from

Theorem B that all components of F(f) are bounded.

Suppose that as = ztk as in (23). Then for any I > k, \zsk — zst\ < 2ek by (20)

and (25). Thus as k -> 00 we have zsk -> fs in D{otj,2ek) C A. and P3
k(zsk) ->• P(£,)

for any fixed j . The P t + i orbit of zsk is in /C(PA+i) and by (27) the Pi orbit is in an
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oo.
ek+i + Ek+2 H 1" £1-1 < e' neighbourhood of this, where e' = J2ey Thus the / orbit of

o
£, is bounded. Moreover, for s — n(k) the P( orbit, I ^ k, oi z,ti terminates in 0 after a
fixed number, say m(k) of steps and so /m**'(f4) = 0, while the / orbit of £n(fc-i) contains
a point in U{2Rt-\ — e). Thus ( J / " ( A ) is unbounded. Also {£,} is dense in A since
en -> oo as n -> oo.

We have /(0) = 0, / '(0) = 0 so that 0 is an attracting fixed point of / and F(f) has
a bounded invariant component H which contains 0.

If A C F(f), then since there are in A some points whose orbits terminate in 0, we

have / m ( A ) c H for some m and \Jfn(A) lies in the bounded set H \J ( \J / J (A)Y
o S=o '

Thus in fact A meets J(f) in say a point /3.

Suppose now that there is some component G of F(f) where / " —> oo. Any neigh-

bourhood of j3 contains preimages of G and hence A meets a component G\ without loss

of generality G, in which / " —> oo. This contradicts the density of {£s} in A.

Thus there is no Fatou component where / " —> oo and it follows that all components

are simply-connected.
From (28) and preceding inequalities the critical points of Pk can be taken to satisfy

Since / has order 0 its inverse has no finite singularities other than critical values.

These correspond to critical points 0 and Tfc = lim Ci>k, so we have i^_i < 7fc < (1/2)/^.

We claim that for each fixed i, lim fn(ci) = oo.
k—*oo

For given T > 0 choose k > i so that Rk> T + e'. Then there is an integer N such
that n > N implies |Pfc

n(ci,*)| > Rk. Thus for n ^ N: \P£+l{ci,k+i)\ > Rk - ek. Indeed,
for all p we have \Pk+p{ci,k+p)\ > Rk - e' for n ^ N, and so |/n(7?i)| ^ Rk - e' ^ T.

The postcritical set of / is P = {0, /"(%), n ^ 0, i ^ 0}. P does not divide the
plane which is known to imply that there are no Fatou domains with non constant limit
functions. The only possible constant limit functions are critical points which are fixed
points or else limit points of P [9]. Thus only 0, oo come into question and oo has been
excluded above, so the proof is complete.
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