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ABSTRACT 

The problem of determining the optimum number of components in 
fitting a Gaussian model to aperture synthesis data is considered. As 
a measure of the badness of the fitted model, we propose the use of 
Akaike's Information Criterion (AIC). 

1. INTRODUCTION 

The output of an aperture synthesis telescope is a set of sampled 
values of the visibility function which is the Fourier transform of the 
sky brightness distribution. If the visibility function is completely 
sampled along the coordinate of spatial frequency under the circumstance 
of high signal-to-noise ratio, the true sky brightness distribution is 
obtained by a simple Fourier inversion process. In many practical 
cases, however, measurement of the visibility function is limited by a 
small number of antennas and by the measurement errors. 

When the measured visibilities are incomplete and noisy, the 
synthesis map estimated through the direct Fourier inversion is dis­
turbed by undesirable sidelobe effects, which make the physical inter­
pretation of the structure very difficult. Various reconstruction 
techniques to cope with the problem of estimating a reliable brightness 
distribution from a limited set of visibility data have been developed. 
Some of these are model fitting (Fomalont, 1968), CLEAN (Hogbom, 1974), 
and Maximum Entropy Method (Gull and Daniell, 1978) and they have been 
used successfully for some class of brightness distribution suitable 
for each reconstruction technique. 

We have taken a new look at the problem of model fitting. A model 
brightness distribution is usually represented by a set of simple-shaped 
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components. We use a Gaussian model because it has the non-negative 
property and it is convenient for the Fourier transform. For mathematical 
simplicity, we considered the one-dimensional case. So far, the goodness 
of fit has been evaluated in a least square sense, and the number of 
components has been determined rather arbitrarily and/or empirically. If 
the number of degrees of freedom is too large compared with that of the 
independent observations, the results of fitting are satisfactory but 
are very sensitive to the noise, and viae versa. 

As a measure of the badness of the fitted model, we propose the use 
of Akaike's Information Criterion (AIC). We can select the optimum model 
on the basis of the Minimum AIC Estimate (MAICE). In the following 
sections, the basic principle of the method is described and some 
numerical examples are illustrated. 

2. STATISTICAL NATURE OF THE OBSERVATION 

Let T (x) be the true brightness distribution. If the observation 
noise is additive, N observations of the visibility function are expres­
sed by 

Zj = T*(Uj) + n.. (j-1,2 N ) , (1) 

where T*(u) is the Fourier transform of T*(x), and {u.} are the spatial 

frequencies at which the {z.} are measured. The {n.} are the noises. If 
N . ^ ^ 

n = (n.,n„,...,nN) is a random vector whose probability density function 
(PDF) is g*(n ), the PDF of the random vector z =(z.,z„,...,z ) is given 

^ f*(zN) = g*(yN) (2) 

N . where y is a N-vector whose j-th element is 

yj = Zj - T*(u..) (j-1,2 N). 

3. MODELING 

As an estimate of T (x), we adopt the Gaussian model: 

, M M 1 (x"Pm) 

T..(x 6M) = Z wra
 l- exp { 2_ } (3) 

m=l /2TT a 2a 
m m 

where 
9 = (w],a],y],w2,a2,y2,...,wM,aM,yM) 

is the parameter vector of the model to be adjusted. Taking the Fourier 
transform of Equation (3), the visibility function is modeled as 
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M 
TM(u|eM) = Z w exp{- k2iruCT ) 2 + ^2iruy }. (4) M ' •, m r 2 m m m=l 

N We also assume t h a t the noise n has the PDF: 

N | n . | 2 

gN(n |a) = J T 2 exp{ i ^ - }. (5) 
j = l 2ira 2a 

Equation (5) i s derived from the assumption tha t the r e a l and the imagi­
nary p a r t s of {n.} are s t a t i s t i c a l l y independent samples from the same 

normal d i s t r i b u t i o n with zero mean and standard dev ia t ion a. From (2) 

N and (5) we obtain the expression for the j o i n t PDF of z as 

* i |z- - V u J e M ) | 2 

fM(zN|9,a) = JT —— exPt" — -*-? >• (6) 
j = l 2ira 2a 

4. MEASURE OF THE BADNESS OF THE FITTED MODEL 

If the number of Gaussian components M of the model (3) is speci­
fied, the parameters of (6) can be estimated by the maximum likelihood 

~M * 

method. Let (9 , <s) be the maximum likelihood estimate (MLE). Then esti­

mates of T*(x) and f*(zN) are given by TM(x | 9
M) and fM(z

N I 9M, a) 

respectively. 

As a measure of the badness of the fitted model, we propose the 
use of Akaike's Information Criterion (AIC), which is defined by 

AIC = -2 x log(maximum likelihood of a model) 

+ 2 x (number of parameters to be adjusted). (7) 

This criterion is introduced by Akaike (1973,1977) as an estimate of 
minus twice the entropy of the true PDF with respect to the MLE of PDF. 
In our case, the entropy and AIC are given by 

f ( N I 6M ~"> 
B{f (.);f(. |e , Ma)} = J f (z ) log — - dz , (8) 

f (z ) 
and 

AIC(M) = -21og{fM(z
lN | 9 , Ma) + 2(3M+1), (9) 
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respectively. Although it is impossible to maximize (8) without knowing 
the true PDF f (.), (9) can be minimized by a suitable choice of M. Thus 
AIC provides a criterion for the optimum choice of the number of 
Gaussian components. The estimated model which gives the minimum of 
AIC is called the Minimum AIC Estimate (MAICE). 

5. NUMERICAL PROCEDURE 

N 
To maximize (6) for given z , it is sufficient to minimize 

N 
-log{fM(z

N|eM,a)} = Nlog27r + Nloga2 + -—• _ I | Z j - ? M ( U j |e
M) |2. (10) 

2a j=l 

If the function 

*(eM) = z |z.-5L(u.|eM)r (JO 
j=i J J 

~M 
is minimized by 8 , the minimum value of (10) is given by 

-log{fM(z
N|6M,Ma)} = Nlog2Tr + NlogMa

2 + N, (12) 

where a is given by 

M o
2 = ̂  <K6M). (13) 

Now the problem is reduced to the minimization of the non-negative 

M 
function (j>(8 ). Since the minimization of (11) leads to a problem of 
solving a set of nonlinear equations, it must be solved iteratively, 
starting with a suitable initial guess. 

M 
It is easy to evaluate the function <j>(9 ) and its gradient for 

M 
given 0 . It is also not difficult to obtain a rough estimate of the 
Hessian matrix of second partial derivatives. Considering the situation, 
we propose the use of Davidon's Variance Algorithm for minimization 
(Davidon, 1968, 1969), which is essentially a modified Newton-Raphson 
algorithm, where the direct computation of variance, the inverse of the 
Hessian, is replaced by successive correction of the estimated variance. 

6. NUMERICAL EXAMPLES 

As a true brightness distribution, three Gaussian components are 
used. Simulated noisy data are generated by adding zero mean normal random 
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numbers with a standard deviation of 0.1, to the real and imaginary parts 
of the Fourier transform of the true brightness distribution. In this 
example, the number of complex visibility data is 50. 

We start with equally spaced and identical Gaussians as an initial 
estimate, the number of which is the same as that of the assumed model. 
In Table 1., AIC(M), its constituent terms, and^a, for one- to six-compo­
nent models are shown. Constant terms in (12) are omitted. 

M AIC(M) -21og{f (zN|6H a)} 2(3M+1) M( 

1 

2 

3 

4 

5+ 

6 

-359.29 

-393.86 

-421.01* 

-417.23 

-411.23 

-418.39 

-367.29 

-407.86 

-441.01 

-443.23 

-443.23 

-456.39 

8 

14 

20 

26 

32 

38 

0.156 

0.127 

0.108 

0.107 

0.107 

0.100 

*MAICE weight for one of the Gaussians is reduced to zero. 

Table 1. 

Figure 1. shows the result of MAICE together with that of direct 
Fourier inversion. The effectiveness of the model fitting by MAICE over 
the Fourier inversion is very clear. Fitted models for M=2,3,4 and 6 
are shown in Figure 2. 

We dropped some visibility data to see the applicability of the 
MAICE procedure when visibility data are incompletely sampled. The 
results are shown in Figure 3. Numbers of complex visibility data are 38 
and 19 for Figures 3.a and 3.b, respectively. The main features of the 
true brightness distribution are still well reconstructed. 

The convergence of the iterative, procedure is quadratic, and the 
computing time for the three component model is less than 6 seconds. 

7. CONCLUSION 

We have shown by numerical examples that the MAICE procedure is very 
useful in fitting a Gaussian model to aperture synthesis data. The shapes 
of the components need not necessarily be Gaussian; other shapes can be 
used in specific cases. In any case, it is preferable that the component 
shape has the properties of non-negativity and smoothness. The first 
and the second terms in the AIC expression represent "badness of fit" 
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Figure 1 . Se lec ted model by MAICE (N=50) 
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Figure 2. Fitted models for M = 2, 3, h and 6. AIC is minimum for M=3. 
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Figure 3. Results of MAICE for incompletely sampled visibility data. 
Numbers of complex visibilities are; (A) N=38, and (B) N=19. 
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and "unreliability of model" respectively. The model selected by MAICE 
is the most parsimonious one. If we have a priori information on the 
brightness distribution, visibility function, and noise statistics, it 
should be included in the model to reduce the number of degrees of free­
dom as far as possible. Although we have concentrated our discussion on 
the model fitting in aperture synthesis, application of the MAICE 
procedure to other imaging systems is straightforward. 
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DISCUSSION 

Comment Y. BIRAUD 
How to determine the number of degrees of freedom - or the number of 
Gaussian components - knowing the noise characteristics? 
Reply M. ISHIGUR0 
We did not do experiments for a wide range of signal to noise ratio. 
If we know the noise characteristics, the parameters of the noise 
distribution may be fixed and need not be estimated. 

Comment R.H.T. BATES 
Is it not dangerous to model the "true" brightness distribution as a 
sum of Gaussians? 
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Reply M. ISHIGURO 
It is dangerous to use smooth functions to fit true brightness 
distributions which have sharp boundaries. It is recommended to test 
several different classes of models. Selection of the optimum model can 
be done by MAICE. 

Comment J.J. WITTELS 
It is particularly self-deceptive to create a circular-Gaussian test model 
for an inversion program that models the data by superposing circular 
Gaussians. Very few astronomical sources display such a high degree of 
cylindrical symmetry. 
Reply M. ISHIGURO 
For a two dimensional example, we used elliptical Gaussians. So the 
number of parameters is (7M + 1). 

Comment J.J. WITTELS 
Would you comment on the impression that although, in your example, the 
model appeared to agree with the calculated curve for the test source, 
it did not appear to agree very well with the data. This situation is 
particularly disturbing since agreement with the data(that is both the 
minimum point to point scatter as well as the absence of systematic 
disagreement) is the primary criterion for selecting an acceptable model. 
In this vein, have you tried blind tests of your method? 
Reply M. ISHIGURO 
The brightness distribution can be modeled by many other suitable 
functions. We can select most objective ones from a set of possible 
models by the MAICE procedure. 

Comment U.J. SCHWARZ 
In relation to the question by Wittels, I would like to point out that 
the discrepancy between observations and model seems to me - at least 
for low intensities of the model - to be only apparent. In a display 
of the modulus of the complex visibility the noise will always give a 
positive contribution, whereas the model correctly has small or zero 
amplitude. 
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